Definitions

A context-free grammar \(G = (V, \Sigma, R, S) \) is called **regular**, or **right-linear** iff
\[
R \subseteq (V - \Sigma) \times \Sigma^* (V - \Sigma \cup \{e\}).
\]

Question 1 (3pts)

Given a **Regular grammar** \(G = (V, \Sigma, R, S) \), where
\[
V = \{a, b, S, B\}, \quad \Sigma = \{a, b\},
\]
\[
R = \{ S \to bS | B | e, B \to baB | a | b \}.
\]

1. Construct a finite automaton \(M \), such that \(L(G) = L(M) \)- must use general construction from the proof of the theorem:

> "For any Regular Grammar \(G \), \(L(G) \) is regular".

You can just draw a diagram.

Solution

We construct a non-deterministic finite automata
\[
M = (K, \Sigma, \Delta, s, F)
\]
as follows:
\[
K = (V - \Sigma) \cup \{f\}, \quad \Sigma = \Sigma, \quad s = S, \quad F = \{f\},
\]
\[
\Delta = \{(S, b, S), (S, e, B), (S, e, f), (B, ba, B), (B, a, f), (B, b, f)\}
\]

2. Trace a transitions of \(M \) that lead to the acceptance of the string \(bbbbabab \), and compare with a derivation of the same string in \(G \).

Solution

The accepting computation is:
\[
(S, bbbbabab) \vdash_M (S, bbbabab) \vdash_M (S, babab) \vdash_M (S, babab) \vdash_M (B, babab) \vdash_M (B, babab) \vdash_M (f, e)
\]

G derivation is:
\[
S \Rightarrow bS \Rightarrow bbS \Rightarrow bbbS \Rightarrow bbbB \Rightarrow bbbbaB \Rightarrow bbbbabab \Rightarrow bbbbabab
\]
QUESTION 2

1. Construct a Push Down Automaton M such that $L(M)$ contains all $w \in \{a, b\}^*$, such that w has the same number of a's and b's, i.e. such that

$$L(M) = \{w \in \{a, b\}^* : \#a = \#b\}.$$

Justify your answer. You can DRAW A DIAGRAM!

Solution in the Lecture Notes.