1. Any regular language is finite.
Justify: $L = a^*$ is finite \[n \]

2. For any language L there is a deterministic automata M, such that $L = L(M)$.
Justify: language must be regular \[n \]

3. Given L_1, L_2 regular languages over Σ, then $(L_1 \cap (\Sigma^* - L_1))L_2$ is not regular.
Justify: Regular languages are closed under intersection and complement \[n \]

4. There is an algorithm that for any finite automata M computes a regular expression r, such that $L(M) = r$.
Justify: defined in the proof of Main Theorem \[n \]

5. For any M, $L(M) = \bigcup \{ R(1, j, n) : q_j \in F \}$, where $R(1, j, n)$ is the set of all strings in Σ^* that may drive M from state initial state to state q_j without passing through any intermediate state numbered $n + 1$ or greater, where n is the number of states of M.
Justify: only when M is a finite automaton \[n \]

6. Pumping Lemma says that we can always prove that a language is regular.
Justify: it gives certain characterization of infinite regular languages and can be used for proving that a language is not regular. \[n \]

7. $L = \{a^{2n} : n \geq 0\}$ is regular.
Justify: $L = (aa)^*$ \[y \]

8. $L = \{a^n : n \geq 0\}$ is not regular.
Justify: $L = a^*$ \[n \]

9. $L = \{b^n a^n : n \geq 0\}$ is not regular.
Justify: proved using Pumping Lemma \[y \]

10. Let L be a regular language. The language $L^R = \{w^R : w \in L\}$ is regular.
Justify: L^R is accepted by a finite automata $M^R = (K \cup s', \Sigma, \Delta', s', F = \{s\})$, where K is the set of states of M accepting L, $s' \notin K$, s the initial state of M, F is the set of final states of M and
$$ \Delta' = \{(r, \sigma, p) : (p, \sigma, r) \in \Delta\} \cup \{(s', e, q) : q \in F\}, $$
where Δ is the set of transitions of M. \[y \]

11. Any subset of a regular language is a regular language.
Justify: $L_1 = \{b^n a^n : n \geq 0\} \subseteq L = b^* a^*$ and L is regular, and L_1 is not regular \[n \]
QUESTION 1 Use the constructions defined in the proof of theorem

A language is regular iff it is accepted by a finite automata

construct a finite automata M such that $L(M) = a(ab \cup aab)^*b$ and

$$M = M_a(M_{ab} \cup M_{aab})^*M_b$$

Solution - follow DIRECTLY book definitions!