CSE303 PRACTICE Q1 SOLUTIONS

PART 1: Yes/No Questions

$\{\emptyset\} \subseteq \{a, b, c\}$	
Justify : $\emptyset \notin \{a, b, c\}$ 2. Set A is countable iff $N \subseteq A$ (N is the set of natural numbers).	n
Justify : $A = \{\emptyset\}$ is countable (finite), but N is not a subset of $\{\emptyset\}$, i.e. $N \not\subseteq \{\emptyset\}$.	
In fact A can be ANY finite set, or any infinite set that does not include N, for example $A = \{\{n\}: n \in N\}$.	
In this case $ A = N $, but N is not a subset of $A,$ i.e. $N \not\subseteq A.$	\mathbf{n}
3. 2^N is infinitely countable.	
Justify : $ 2^N = R = C$ and R are uncountable.	n
4. Let $A = \{\{n\} \in 2^N : n^2 + 1 \le 15\}$. A is infinite.	
Justify : $\{n \in N : n^2 + 1 \le 15\} = \{0, 1, 2, 3\},\$	
hence $A = \{\{0\}, \{1\}, \{2\}, \{3\}\}$ is a finite set.	n
5. Let $\Sigma = \{a\}$. There are countably many languages over Σ .	
Justify : There is any many languages as subsets of Σ^* , i.e. uncountably many and exactly as many as real numbers.	\mathbf{n}
5. For any $L, L^+ = L^* - \{e\}.$	
Justify : Only when $e \notin L$.	\mathbf{n}
$L^* = \{ w_1 w_n : w_i \in L, i = 1, 2,n, n \ge 1 \}.$	
Justify : $n \ge 0$.	\mathbf{n}
3. For any language L over an alphabet Σ , $L^+ = L \cup L^*$.	
Justify : Take L such that $e \notin L$. We get that $e \in L \cup L^*$ as $e \in L^*$	
and $e \notin L^+$.	n

PART 2: PROBLEMS

QUESTION 1 Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$. Show that

$$(L_1 \Sigma^* L_2)^* = \Sigma^*$$

Solution: By definition, $L_1 \subseteq \Sigma^*, L_2 \subseteq \Sigma^*$ and $\Sigma^* \subseteq \Sigma^*$. Hence

$$(L_1 \Sigma^* L_2) \subseteq \Sigma^*.$$

Now we use the following property:

Property For any languages $L_1.L_2$,

if $L_1 \subseteq L_2$, then ${L_1}^* \subseteq {L_2}^*$ and obtain that

$$(L_1 \Sigma^* L_2)^* \subseteq {\Sigma^*}^* = \Sigma^*.$$

We have to show that also

$$\Sigma^{\star} \subseteq (L_1 \Sigma^{\star} L_2)^{\star}.$$

Let $w \in \Sigma^*$ we have that also $w \in (L_1 \Sigma^* L_2)^*$ because w = ewe and $e \in L_1$ and $e \in L_2$.

- **QUESTION 2** Let \mathcal{L} be a function that associates with any regular expression α the regular language $\mathcal{L}(\alpha)$.
- **1.** Evaluate $\mathcal{L}(((a \cup b)^*a))$.
- **Solution:** $\mathcal{L}(((a \cup b)^*a)) = \mathcal{L}((a \cup b)^*)\mathcal{L}(a) = (\mathcal{L}(a \cup b))^*\{a\} = (\mathcal{L}(a) \cup \mathcal{L}(b))^*\{a\} = (\{a\} \cup \{b\})^*\{a\} = \{a, b\}^*\{a\}.$

2. Describe a property that defines the language $\mathcal{L}(((a \cup b)^*a))$.

Solution $\{a, b\}^* \{a\} = \Sigma^* \{a\} = \{w \in \{a, b\}^* : w \text{ ends with } a\}.$

QUESTION 3 Let $\Sigma = \{a, b\}$. Let $L_1 \subseteq \Sigma^*$ be defined as follows:

 $L_1 = \{ w \in \Sigma^* : \text{ number of } b \text{ in } w \text{ is divisible three} \}$

Write a regular expression α , such that $\mathcal{L}(\alpha) = L_1$. You can use shorthand notation. Explain shortly your answer.

Solution:

$$\alpha = a^* (a^* b a^* b a^* b a^*)^* = a^* (b a^* b a^* b a^*)^*.$$

Explanation: the part $a^*ba^*ba^*ba^*$ says that there must be 3 occurrences of b in L_1 . The part $(a^*ba^*ba^*ba^*)^*$ says that we the number of b's is 3n for $n \ge 1$.

Observe that 0 is divisible by 3, so we need to add the case of 0 number of b's (n = 0), i.e. words e, a, aa, aaa, \ldots We do so by concatenating $(a^*ba^*ba^*ba^*)^*$ with a^* .