Well-Founded Orders

A partially ordered set (A, <) is said to be well-founded
if every descending sequence of elements is finite, i.e.,
there are no infinite descending sequences.

For example, the set of natural numbers with the less-
than relation is well-founded. But the set of integers
with the same relation is not well-founded, e.g.,

0,-1,-2,-3,...
Theorem.

If (A, <) is well-founded, then each non-empty
subset of A has a minimal element (with re-
spect to <).

Conversely, if every non-empty subset of A has
a minimal element then (A, <) is well-founded.

Note that if a well-founded set if totally ordered, then
every nonempty subset has a least element.

Other examples of well-founded sets include Cartesian
products Ax B with product orders based on well-founded
component orders; and sets of strings ~* with the stan-
dard order.

Example of Well-Founded
Induction

We show how to use well-founded induction to prove
that

every natural number greater than 1 is divisible
by a prime number.

Let S be the set of positive integers and < be the usual
less-than relation.

Proof.

Let P(z) be the property that z is divisible by
a prime number.

Suppose z is a natural number with 1 < =z.
Let us assume (as “induction hypothesis”) that
P(y) is true for all predecessors of =z in S, i.e.,
for all natural numbers y such that 1 <y < z.
We must show that P(z) is true.

We distinguish between two cases.

(a) If z is a prime number then P(z) is evidently
true as z divides itself.

(b) If z is not a prime number then x can be
written as a product, x = yx*xz, where 1 <y, z <
z. By the induction hypothesis, P(y) is true
and hence y is divisible by a prime. But since y
divides x this implies that x is also divisible by
a prime number.

Well-Founded Induction

Well-founded orders are the basis for the following gen-
eral mathematical induction principle:

Principle of Well-Founded Induction

Let < be a well-founded ordering on a set S
and P be a property defined on elements of S.

If
for all elements z in S, whenever P(y) is
true for all predecessors y of z, then P(zx)
is also true,

then

‘ P(z) is true for all z in S. |

This principle can be used to (a) prove properties on
well-founded sets and (b) define properties (or func-
tions) on well-founded sets.

Ackermann’s Function
Ackermann'’s function is defined as follows:
f(z,y) = ifz=0theny+1

else if y =0 then f(z—1,1)
else f(z -1, f(z,y—1)
One can use well-founded induction with respect to the

filing order on N xN to show that this function is defined
for all pairs of natural numbers.



Standard Mathematical
Induction

An important special case of well-founded induction is
its application to the natural numbers with the usual
less-than order.

Standard Mathematical Induction

Let P(n) be a predicate defined on the natural
numbers and let a be a fixed natural number.
Suppose the following two statements are true:

1. P(a) is true.

2. For all integers k > a, if P(k) is true then
P(k+ 1) is true.

Then P(n) is true for all natural numbers n
with n > a.

Usually, the constant a is chosen to be 0.

Example - Fibonacci Numbers

Recall that the Fibonacci numbers are defined recur-
sively:
1 ifn=20
F, = 1 ifn=1
F‘nfl + EL—Q ifn >1

Let ¢ be the number (1 +/5)/2.

We claim that
FTL S ¢’L
for all natural numbers n.

We first prove two basis cases.
If n =0, then
Fo=Fo=1=¢"=¢".
If n=1, then
F,=F1=1<3/2<(14+V5)/2=¢=¢"

Next let us assume, for some arbitrary, but fixed positive

integer n, that
E171 S (bnfl and Fn S d)n'

Standard Induction Proofs

Standard induction proofs consist of two steps:
1. the basis step: proving that P(a) is true; and

2. the inductive step: proving that for an arbitrary,
but fixed number n > a, P(n + 1) is true whenever
P(n) is true.

For example, let P(n) be the property “2" > n3" and let
us prove that P(n) is true for all n > 10.

Basis step. If n = 10, then
2" =210 =1024 > 1000 = 10° = n3.
Inductive step. Assume P(n) is true for some arbitrary,

but fixed integer n > 10. We have to show that P(n+1)
is true.

2n—|—1 = 2%2n
> 2xn3 (by inductive hypothesis)
= n3 + n3
> n3+ 7n? (because n > 10)
> n3+43n24+3n4+1 (because n > 10)
= (n+1)3 (by basic algebra)

Note that the assumption that P(n) is true is called the
inductive hypothesis. It is part of the inductive step.

We show that under these assumptions

Fpyq < "L

More specifically we have

E1+1 = Fy + Fn1 (by def. of EhLl)
< g4t (by assumptions)
= ¢"ie+1)
= ¢ 12 (see below)

— ¢n+1
Note that

#? = (64+2V5)/4 = (3++5)/2

= 1+1+4+VB)/2 = 1+4¢.



Another Example

Let P(n) be the property that

S 2=12 422+ 40’ =n(n+1)(2n +1)/6.

i=1

We use induction to prove that P(n) is true for all inte-
gersn > 1.

Basis step. If n =1, then

if =1’=1=(1-2-3)/6 =n(n+1)(2n+ 1)/6.
i=1

Inductive step. Assume as induction hypothesis that
P(n) is true for some arbitrary, but fixed integer n > 1.
i.e.,

n
Y i?=n(n+1)(2n+1)/6.
i=1
We have to show that P(n + 1) is also true, or equiva-
lently
n+1
Y ?=m+1)(n+2)(2n+3)/6.
i=1

Inductively Defined Structures

Many data structures are formally defined by mathe-
matical induction. We have seen several examples, for
instance, lists of elements of a certain type t.

Basis.
The empty list, denoted by [] or nil, is a t-list.
Induction.

If L is a t-list and a is an object of type ¢, then
a . L is a t-list.

The key observation is that such a definition uniquely
specifies a set of data objects and that the inherent in-
ductive structure can be used to prove properties about
the data type or functions defined on it.

Another example is the set of all strings that can be
composed from characters of a given set >. This set
3> * can be defined inductively as follows:

Basis.

The empty string, denoted by ¢, is an element
of X*.

Induction.

If a is @ symbol in X and s is a string in X*,
then a - s is also a string in X*.

We have
YR = (UL + (et 1)2

n(n+1)2n+1)/6 + (n+1)%> (byl.H.)

(n4+1)(2n%24+n)/6 +(n+1)(n+1)6/6

(n+ D[(2n%+n) +6(n+1)]/6
(n+1)(2n?+7n+6)/6
(n+1)(n+2)(2n+3)/6

Constructing Well-Founded
Orders

Partial orders on finite sets are well-founded.

On an infinite set A a well-founded order can be con-
structed by specifying a mapping from A to a known
well-founded set, such as the natural numbers.

More specifically, let f be a function from A to N. De-
fine an order < by:

xz <yy if and only if f(z) < f(y).
Lemma.

The relations < are well-founded partial orders
on A.

If the set A has been defined inductively there is a nat-
ural way of defining a function f: A — N as follows:

1. If z is a basis element of A, then f(z) = 0.

2. If z is constructed from elements yi,...,y,, then

f@) =1+ max(f(y1), ..., f(yn))-

For instance, in this way we obtain for the (inductively
defined) set >* a well-founded order in which strings are
compared according to their length.



