Sets

Sets are a basic data structure of mathematics.

Informally a set is simply a (well-defined) collection of
objects.

Well-known examples of sets from mathematics include
the set of integers, the set of rational numbers, the set
of real numbers, etc. In computer science one often
needs to deal with sets of (finite-length) strings, e.g.,
bitstrings, or sets of expressions that are well-formed
according to certain syntax rules.

While the concept of sets is deceptively simple, all math-
ematical objects can, in principle at least, be described
or defined in terms of sets. In that sense sets are the ba-
sic building blocks for constructing mathematical (i.e.,
formal, abstract) objects.

We will discuss key components of the theory of sets
and later on explore various applications of sets to com-
puting.

Description of Sets

A finite set can (in principle) be described by listing its
elements. For instance, we write

{z1,--.,xn}
to denote the set consisting of elements z1,...,z,.
For example, the set
A ={a,{1},b,1}
has four elements and the statements
a€A{l}eAbeA and 1€ A

are all true.

Note that

1. sets can be elements of other sets: the set {1} is
an element of A; and

2. the set {A} contains one element (whereas A has
four elements), so that A € {A} and A # {A}.

Sets and Elements

Two basic concepts of set theory are the notion of a set
and the element relationship.

We use the symbol € to denote the element relation and
write

reA
to denote the proposition that =z is an element of A

(which may be true or false for specific choices of = and
A).

It is customary to denote sets by capital letters, such as
A, B, and C, and elements by small letters, such as z,
y, and z. But this can sometimes be confusing, for as
we shall see sets can themselves be elements of other
sets!

A similar notation as above is often used for infinite
sets as well, e.g., when one denotes describes the set
of natural numbers by

N={0,1,2,3,...}
or the set of odd natural numbers by
{1,3,5,...}.
But the use of ellipsis imparts a certain degree of vague-

ness, and we will discuss a more formal way of defining
the set of natural numbers in set theory.



Equality

Two sets A and B are said to be equal, written A = B,
if, and only if, they have the same elements.

More formally this can be expressed by:

(A=B) < Vz(r € A < z € B).

Examples.
(1,2} = {2,1}7
{1,2} = {1,1,2,2,2}7
{17273} = {1717113}?

Note that sets are unordered collections of objects, where
the multiplicities of elements don’t matter.

If A and B are finite sets containing a different number
of elements, then they are obviously not equal.

Subsets

A set A is said to be a subset of another set B, written
A C B, if, and only if, every element of A is also an
element of B.

Examples.
{1,2} C {1,2,3}7
{1,1,2,2} C {1,2}7

Note that A is a subset of B if the following formula is
true:

Vz[zr € A—z € BJ.

Lemma. If AC Band BC A, then A= B.

Proof. If AC B and B C A, then by the definition of the
subset relation, every element of A is an element of B
and every element of B is an element of A. This means
that A and B have the same elements, hence are equal.

Comprehension

The description of a (finite) set via an explicit listing of
its elements is a relatively crude specification formalism.
One often obtains more intuitive descriptions of sets by
characterizing elements via a logical property.

Let A be a set and P(x) be a formula in one variable.
Then by

{xreA: P(z)}
we denote the set that consists of all elements z of A
for which P(zx) is true.

Remark. In formal set theory one has to introduce an ax-
iom, called the Principle of Comprehension, which states
that

for every set A and formula P there exists a set
B, such that

Vz [z € B <= (z € AN P(2))].

Proper subsets

We say that A is a proper subset of B, written A C B,
if A is a subset of B, but not equal to A:

ACB < (ACBAA#B).

Example.
{1,2} € {1,1,2,2}7

Be careful about the distinction between the element
relation and the subset relation.

Examples.
2 € {1,2,3}7
{2} € {1,2,3}7
2 C {1,2,3}7
{2} € {1,2,3}7
{2} € {{1}.{2}}?
{2t e {1} {2}}7



The Empty Set

Let A be any set. How many elements are there in the
set {r e A:x#x}?

A set with no elements is called an empty set.

Theorem. If 0 is an empty set, then § C A, for all sets
A.

Proof. It is vacuously true that every element of an
empty set is an element of every other set A. 3

Corollary. There is at most one empty set.

Proof. Suppose A and B are both empty sets. By the
theorem above we have A C B and B C A, and hence
A=B.x

Another postulate of formal set theory, the Existence
Axiom, asserts that

there exists a set,

which by the above considerations implies that there is
an (unique) empty set.

We use the symbol @, or sometimes {}, to denote the
empty set.

Powersets

There are various operations that allow one to construct
new sets from given ones.

If A is a set, we denote by P(A) the set whose elements
are the subsets of A.

Example. If A is the set {1,2,3}, then

PA) = {0,
{13,{2}. {3},
{1,2},{1,3},{2,3},
{1,2,3}

}
Do we have 1 € P(A), or 2 € P(A), or 3 € P(A)?
No, because 1 # {1}, etc.

In formal set theory, the existence of these sets requires
another axiom, the Powerset Axiom:

For every set A there exists a set B, such that

Vz(z € B <= z C A).

Examples of Sets

The (finite) set of integers between —2 and 5:
{neZ] —2<n<5}

The (open) interval of real numbers between —2 and 5:

{zreR| —2<z <5}

The (infinite) set of even integers:

{neZ|3k(n=2k)}

From a general description it may not always be obvious
what the elements of the set are:

{(z,y,2) EZXZXZ|3In(n >2Az"+y" =2")}.

The Size of Powersets

If A=0, then
P(A) = {0} # 0.

Observation.
P(A) £ 0, for all sets A.

If A= {z}, then P(A) = {0, A}.
If A= {z,y}, then P(A) = {0,{=}, {y}, A}.

If A has n elements, how many elements are there in its
powerset?

Lemma.

If A is a set with n elements, then P(A) has 2"
elements.

Proof. By mathematical induction on the number of
elements in A.



Further Set Operations

Other operations for constructing sets include
e set union
e set intersection
e relative complementation (or set difference)
e complementation

They are defined as follows.

Let A and B be subsets of some set S. We define:

AUB = {zeS|lzr€AVze B}

ANB = {zeS|lzre€ ANz e B}

B—-A = {zeS|lzeBAz¢gA}
A = {zxe S|z gA}

For example, let
S be the set of real numbers,
Atheset {reR| -1<z<0},
B theset {x e R|0 <z <1}.

What are AUB, ANB, B— A, and A°?
Note that set difference can be defined as follows:
A—-B=AnB"

Set Identities

Review the following identities between sets and observe
their similarity to equivalences in propositional logic.

1. Set union and intersection are commutative.
2. Set union and intersection are associative.

3. Distributivity: AU(BNC)=(AuB)Nn(AuC(C)
4. Double complement: (A% = A.

5. Idempotency: ANA=AUA=A.

6. De Morgan’s Laws:

(AUB)¢ = A°N B¢
and
(AN B)¢ = A°U B“.

7. Absorption: AU(ANB)=Aand An(AUB) = A.

Properties of Set Operations

Theorem.

1. ANBCAand ANBCB

2. ACAUBand BC AUB

3.If ACBand BCC, then ACC.
Proof (of first property).

Let A and B be arbitrary sets. We prove that
AN B is a subset of A. By the definition of the
subset relation, it suffices to show that every
element of AN B is an element of A. Let x be
an arbitrary element of ANB. By the definition
of intersection, we havex € A and x € B. Thus
x is an element of A.

Distributivity
Theorem. For all sets A, B, and C,
AN(BUC)=(ANnB)U(ANnCQC).

Proof. Let A, B, and C be arbitrary sets. We show that
the two sets AN(BUC) and (ANB)U(ANC) have the
same elements:

re AnN(BUCQC)
iff z€ Aandxze€e BUC
iff € Aand (zxe€ Borzel)
iff (x € Aand z € B)
or (xe Aand z €C)
iff re AnNBorxze ANC
iff ze (ANB)U(ANCQC)

Note the close connection between the “algebra of sets”
and the “algebra of propositions” (Boolean algebra).



Venn Diagrams

Sets can often be conveniently represented by Venn di-
agrams.

The union AU B of A and B is represented by:

u

The intersection AN B is represented by:

U

The set difference B — A is represented by:

u

Encoding the Natural Numbers
in Set Theory

If Ais a set, then the set AU{A} is called the successor
set of A. Sometimes the successor set of A is denoted
by A’

The natural numbers can be encoded via successor sets:

0 = 0

1 =0 = {0} = {0}

> = 1 = ()00 = {01)

3 = 2 = .. = {0,1,2}
n—l—l: = n = ... = {0,1,...,n}

In other words, we can view each natural number as an
abbreviation for a certain set!

One of the postulates of formal set theory asserts that
there exists a set that contains the empty set and also
contains the successor of each of its elements. That is,
the existence of the set of natural numbers is assumed
as an axiom.

Counterexamples for Set
Identities

Claim. For all sets A, B, and C,
(A-B)u(B-C)=A-C.

Is this claim true?

Consider the two Venn Diagrams:

The diagram on the left represents (A — B) U (B — C),
the one on the right, A - C.

The difference in the diagrams suggests a counterexam-
ple to the claim.

Take A = {z,y}, B = {y,z}, and C = {z,w}. Then
(A-B)U(B-C) ={z,y,z2}, whereas A — C = {y}.

Ordered Pairs and Tuples
Sets are unordered collections of elements.

Pairs, or more generally tuples, are ordered collections
of elements.

Examples.
(1,2) # (2,1)
{1,2,3} = {1,3,2}
(1,2,3) # (1,3,2)
{1,2} = {1,2,2}
(1,2) # (1,2,2)

Surprisingly, (ordered) pairs can be defined in terms of
(unordered) sets.

In set theory, an ordered pair (z,y) is taken as an ab-
breviation for the set {{z}, {z,y}}.

With this definition, do we indeed have

(z,y) = {{z}, {z,y}} # {y} {v,2}} = (g, 2)?
What if x = y?

Tuples can be thought of as “nested” pairs. For exam-
ple, we may regard (1,2,3,4,5) as an abbreviation for

(1,(2,(3,(4,5)))) or ((((1,2),3),4),5).

Tuples of different length are never the same.



Number Sets

Common sets of numbers, such as the integers or the
rational numbers, can be defined in terms of the natural
numbers.

For instance, integers can be formally defined as pairs
(o,n) of a sign o and a natural number n. There are
two signs, usually written as + and — (and formally
represented by two different sets, say @ and {0}).

These pairs are usually written as +n (or simply n) and
—n. There is only one 0O, that is, 40 and —0 are con-
sidered equal.

The set of all integers is denoted by Z.

The set of rational numbers can be defined by

Q={(m,n) : meZ necZ, and m # 0}.

Rational numbers are usually written as % or m/n.

Integers can be identified with rational numbers of the

form £,

Properties of Cartesian
Products

Lemma.

If A is a set of m elements and B a set of n
elements, then A x B contains m *n elements.
IfA=B,then Ax B=BxA=AXxA.
But if A% B, then Ax B# B x A.

For example, let A be the set {1} and B the set {2}.
Then Ax B={(1,2)} and Bx A={(2,1)}.

Also note that
AXDP=0x A=0.

Lemma. For all sets A, B, and C we have
Ax(BUC)=(AxB)U(AxCQC).

Proof. We need to show that Ax (BUC) and (Ax B)U
(A x C) have the same elements.

(z,y) e Ax (BUC)

iff e Ahye BUC

iff reé AN(yeBvye(O)

iff (xreANyeB)V(zeANyeD)
iff (z,y) € AxBV(z,y) € AxC
iff (z,y) € (AxB)U(AXxCQC)

Cartesian Products

Pairs and tuples provide us with a way of constructing
new sets from given ones. This will be useful when we
define “functions” and “relations.”

If A and B are sets, then by A x B (read “A cross B"),
we denote the set of all ordered pairs (a,b), where a € A
and b e B.

More formally,
A x B={(a,b)|a€ ANDbE B}.

The set A x B is also called the Cartesian (or cross)
product of A and B.

For example, if A= {1,2} and B = {4,5}, then
AxB=1{(1,4),(1,5),(2,4),(2,5)}

Note that A and B may be the same set.
For instance, if A= {1,3}, then
AxA=1{(1,1),(1,3),(3,1),(3,3)}.

If A contains m elements and B contains n elements,
how many elements are there in A x B?

Disjoint Sets

Two sets A and B are said to be disjoint if they have
no elements in common, i.e., AN B =0.

Examples.

Is {0,{0}} n{0} =07

No, {0,{0}} n {0} = {0}.

Is {0,{0}} N0 =07

Yes, the intersection AN @ of any set with the
empty set is the empty set.

A partition of a set A is a collection of pairwise disjoint
nonempty sets Ai,...,A,, such that

A=A UAU---UA,.

For example, at the end of the semester I will partition
the class into subsets with grades of A, A—, etc. It will
be a partition, since each student gets one, and only
one, grade.

Partitions are closely related to equivalence relations,
which we will discuss later in the semester.



Russell’s Paradox

The barber of a small town agreed, for a handsome fee,
to shave all the (male) inhabitants of the town who did
not shave themselves, and never shave any inhabitant
who did shave himself. The fee was to be paid at the
end of each year.

When the barber tried to collect the fee at the end of
the first year the mayor refused to make any payment,
pointing out that the barber had shaved himself and
therefore violated the rule of never shaving any inhabi-
tant who did shave himself.

Therefore the next year the barber did not shave him-
self. But at year-end the mayor turned him down again,
pointing out that time he had failed to shave someone
who did not shave himself.

This paradox illuminates a difficulty in setting up a for-
mal theory of sets: Allowing set operations that are too
general may result in inconsistencies or contradictions
in the theory.

A Set Paradox

Consider the set of all sets that are not elements of
themselves:

S={A|A¢gA}.
Is S an element of itself?

We have
SeSifand only if S¢S,
which is a contradiction!

But note that the above definition of S is not covered
by the Comprehension Principle. By this principle we
can only define, for some given set U, the set

S={AcU|A¢A}

Now, if S € S, then by the (new) definition of S, we get
S & S, which would of course be a contradiction.

Therefore we may conclude that S ¢ S, in which case
we may also infer S ¢ U. We obtain no contradiction,
though.

In short, contradictions are avoided by the additional
condition A € U required by comprehension.



