Sequences

A sequence is a function the domain of which is either
the set of all natural numbers (an infinite sequence), or
some initial segment thereof (a finite sequence), where
by an initial segment we mean any set of the form
{0,1,...,n}.

For example, the function f that maps each natural
number n to a rational number, f(n) = (-1)"/(n+ 1),
defines an infinite sequence

11 11
b) 27 37 47 57 et
The finite sequence
2,3,5,7,11,13
is formally a function f:{0,1,2,3,4,5} — N such that

fQ) = 2
f =3
f2) =5
f@ =7
f(4) = 11
f(6) = 13

Sequences of Sets

The domain of a sequence must be the set of natural
numbers or a subset thereof. But the codomain can be
any set; for instance, a set of sets.

For example, we may define a function D on the natural
numbers by

D(n) ={m €Z : m is a multiple of n}.
What is the codomain of this function?
The powerset of Z.

Generalized union and intersection operations can be
applied to sequences with such codomains.

Notations for Sequences

There is no standard notation for sequences, though
finite sequences are often written by listing the elements
in order, sometimes enclosed within parentheses

(817 827 M) sil)
or angle brackets
(81,82, -+, 8n).

Curly brackets are used to denote sets, never sequences.

In the case of infinite sequences one often lists the first
few terms to indicate a pattern, though such descrip-
tions are evidently ambiguous.

For example,
1,1,2,3,5,8,13,21,34, ...

refers to the Fibonacci sequence. The n-th term in this
sequence, denoted by s, or s[n], is obtained by adding
the two preceding values.

Sequences are similar to tuples, but different in terms
of their set-theoretic definition.

Generalized Union and
Intersection

If s is a sequence of sets we define two operations as
follows:

Js={z : =€ s for some k € N}
k
and

ﬂs:{x :x € sy, forall ke N}
k

For example, if D is the above sequence then |J, D =7
and N, D = {0}.

More generally, if A is a set, we define the union over A
by

JA=1{z : z€a for someac A}
and the intersection over A by

(JA={z : z€aforallac A}.

Let S be any set.
What set is |JP(S)?

The set S.
What set is P(S)?

The empty set.

Strings

A string is a finite sequence of elements from some given
set.

For instance, in formal language theory one studies sets
of strings over a given finite set X, usually called an
alphabet.

The alphabet may be as simple as a two-element set
{0,1} or a slightly larger set containing all lower and
upper-case letters and some special characters. The
elements of a given alphabet are usually called symbols.

Strings are usually represented by juxtaposition of sym-
bols, e.g., penguin or 100100.

Formally, a string of length n over X is a function,
the domain of which is the set {0,1,...,n — 1} and the
codomain the set X.

Thus penguin, as a string, is a function on {0,1,2,3,4,5,6}

with

penguin(0) = p
penguin(l) = e
penguin(2) =n
penguin(3) =g
penguin(4) = u
penguin(5) =i
penguin(6) =n

Substrings

We say that v is a substring of w if there exist strings x
and y such that w = zvy.

For example, road and runner are substrings of roadrunner.

How many substrings does a string of length n have?
At most In(n + 1) + 1. (Proof on next slide.)

For example, cat has seven substrings, but dodo has
fewer than eleven.

If w = zv for some string x, then v is called a suffix of
w.

Similarly, if w = vx for some string x, then v is called a
prefix of w.

Thus road is a prefix of roadrunner, whereas runner is
a suffix.

Basic String Operations

The length of a string is formally defined to be the size
of its function domain. (You recall that the natural
number n may be defined as the set {0,...,n — 1}, so
that the length of a string actually is its domain.)

If w is a string, we denote its length by |w|. For example
|rat| = 3 and |catcher| = 7.

A string of length zero is called an empty string. Which
function does an empty string correspond to?

The same symbol may occur more than once in string,
such as c in catcher. We then speak of different occur-
rences of a symbol.

A common operation is that of concatenation of two
strings v and w, usually denoted by juxtaposition vw or
sometimes by v“w. Formally, the string z = vw is defined
by: z(i) = v() if 0 < i < |v|, and z(t1) = w(— |v|) if
o] <4 <|v| + |wl.

For example, if v = rat and w = catcher, then vw =
ratcatcher. We have vw(2) =t =v(2) and vw(4) =a =
w(1).

Concatenation is an associative operation: (uwv)w =
u(vw), for all strings u, v, and w.

Lemma.

A string of length n has at most in(n+1) +1
substrings.

Proof. We use induction to prove that the following
property P is true for all natural numbers n.

P(n): If w is a string of length n then it has
no more than (3.1, i) 4+ 1 substrings.

Induction basis. If n = 0 then w is the empty string and
has one substring. The assertion is true because the
empty string haas only one substring (namely, itself)
and Y9 i=o0.

Induction step. We have to prove that P(k) implies
P(k + 1) for all natural numbers k.

Induction hypothesis. Let k be an arbitrary natural num-
ber and suppose P(k) is true.

We need to show that P(k+1) is true. For that purpose
let w be a string of length k4 1. Since w is a nonempty
string it can be written as aw’, where a € and w' is a
string of length k.

By the induction hypothesis, w’ has no more than Zle i+
1 substrings. Also, if v is a substring of w, but not of

w’, then it must be a prefix of w. Since w is of length
k4 1 it has k+ 1 different prefixes.

Thus the total number of substrings of w is at most

k k+1
F+D+Q i+ =) i+1.
i=1 i=1

This completes the induction proof. The lemma follows
from the well-known fact that Y, i = Zn(n+1).

Equality of Strings

The view of strings underlying the inductive definition
is that the elements of >* are constructed by the binary
operator - and the constant A.

One can take this approach a step further and give an
abstract definition of strings, where A and a - w are
not explicitly defined, and hence not tied to any spe-
cific representation. For such an "“abstract data type
specification” it is essential to specify suitable require-
ments, including an equality relation as well as so-called
“destructor” operations that allow one to decompose
strings.

For example, equality can be defined recursively as fol-
lows: If v and w are elements of >*, then

v~ w if and only if
1. » and w are both identical to A, or else

2. v and w are both different from A and can be written
as a-v' and b-w', respectively, where a = b and
v o~ w'.

This definition of coincides with the equality of strings
as finite sequences.

Inductive Definition of Strings
Another way of defining strings is by induction using the
basic operation of adding a symbol at the beginning of
a string.

Let > be a finite set. The set X* is defined by the
following rules:

1. The empty string, denoted by A, is an element of
3.

2. If wis an element of >* and a is an element of ¥,
then a - w is an element of X*.

3. The expressions obtained by the above rules are the
only elements of X*.

The operation - : X x =* — X* maps a pair (a,w) to the
string beginning with the symbol a and followed by w.

For example, if ¥ ={a,b,c,...,z,y, 2} then
vei-o-l-a-N

produces the string wiola.

Recursive Definitions of String
Operations

Inductive definitions provide a natural basis for recursive
definitions of functions defined on these domains.

For example, the length function can be defined by:
1. INN=0
2. Ja-w|=|wl+1
whereas concatenation of strings is defined by:
1. If v is the string A and w is any string, then vw = w.

2. If v is a string a-v" and w is a string, then vw = a-w’
where w’ is v'w.

Further Recursive Definitions

The substring relation can be defined as follows. For all
strings v and w,

1. if v is A, then v is a substring of w;
2. if v is a prefix of w, then v is a substring of w;

3. if w is of the form a-w’ and v is a substring of w’,
then v is also a substring of w;

and in no other cases is v a substring of w.

This definition depends on the prefix relation, which can
be defined as follows.

A string v is a prefix of a string w if and only if
1. vis A or else

2. v and w are of the form a-v' and a-w’, respectively,
where o' is a prefix of w'.

Inductive Sets

A set is called inductive if it can be specified by an
inductive definition.

An example of an inductive set is the set A = {2"—1 :
n € N}, which can be inductively specified by:

(i) 0e A and
(ii) if z € A then 2z 4+ 1 € A.

The following set,
B ={2,3,4,7,8,11,15,16,...},
is also inductive.

Let us first give a formal (non-inductive) definition of
this set:

B = {z € N : either x = 2*, for some k € N with k> 1,

or else z mod 4 = 3}.
A possible inductive definition is:

(i) 2€e Band 3€ B, and
(i) if z € B and z is even, then 2z € B;
if x € B and z is odd, then 4+ 4 € B.

We shall see later on that not all sets are inductive.

Inductive Definitions of Sets

Sets in general can often be defined in a constructive
way via induction. An inductive definition of a set S
consists of three parts:

Basis
Define one or more objects to be elements of S.

Induction

Give rules to construct new elements of S from
existing elements of S.

Closure

Limit the elements of S to those that can be ob-
tained by the two preceding steps.

For example, the set O of odd natural numbers can be
defined by specifying that

(i) 1e0 and
(i) ifz € O then z +2 € O.

Note that usually only the basis and induction parts are
explicitly stated, whereas the closure condition is as-
sumed implicitly.

Examples - Sets of Strings

We have already given an inductive definition of the set
> * of all strings built with symbols from the alphabet
3.

Suppose ¥ = {1,0} and S is a subset of * containing
the strings 1, 10, 100, 1000, etc. (i.e., all strings of a
1 followed by any number of 0's). Here is an inductive
definition of this set:

(i) 1 €S and
(i) if z € A then z0 € S.

The set T of all strings of any number of a's followed by
the same number of b's can be inductively defined by:

(i) AeT and
(ii) if z € T then azbe T.

Determine which set (of strings over {a,b}) is specified
by the following definition:

(i) NeU and
(ii) if z € U then abz € U.

Inductive Definition of Lists

Let A be a set. The set listsy Of lists over A can defined
inductively in a similar way as strings:

Basis
() € listsq.

Induction
if t € Aand L € listss, then x :: L € listsa.

Keep in mind that we implicitly assume closure: only
objects obtained by the above two steps are elements
of listsa.

The element () is called the empty list, and also denoted
by nil. We sometimes write cons(z, L) instead of z :: L
and, in general, simplify the notation by writing

<a17 az,...,ap-1, an)

instead of

ay :(az i (- (an—1 it (ap :imil) -+).

Examples - Lists

We next give an inductive definition of the set § of all
lists over A that are of even length:

(i) nite S and

(ii)yifae A, be A, and L € S, then a :: (b ::
L)es.

Characterize which elements comprise the following set
T, inductively defined by:

(i) if a € A and L € listss then (a,a :: L) € T,
and

(i) ifae Aand (b,L) €T, then (bya:: L) €T.

Finally, we inductively define the set U of all lists over
{a,b} with alternating occurrences of a's and b’s:

(i) the lists nil, (a), and (b) are elements of U;
(iiyifa:: LeUthenb:: (a:: L)€ U, and
(iii)ifb:: LeUthena::(b::L)eU.

Basic List Operations

We may view () and cons as operations that construct
lists.

Other operations may be viewed as “decomposing” given
lists, and are called destructors. These include, for lists,
the head and tail functions, which are defined as follows:

If L is a non-empty list z :: I/, then head(L) = =
and tail(L) = L.

Note that the two functions are not defined for the
empty list, and hence are partial functions on the do-
main listsa.

The above definition implies that the following identity
is valid for all non-empty lists L:

L = head(L) :: tail(L).
Exercises.

Define a function that returns the length of a
given list.

Give a recursive definition of the equality rela-
tion for lists over A.

