Relations

A (binary) relation on sets A and B is a subset of the
Cartesian product A x B. In other words, the elements
of a binary relation R are ordered pairs.

For example, if A = {a,b,c} and B = {1,2,3,4}, then
R = {(a,1),(b,1),(b,3)} is a binary relation on A and B.

The sets A and B may be identical. For example, the
less-than relation < is a binary relation on N (and N).

Every function is a binary relation in this sense. Impor-
tant examples of relations are (directed or undirected)
graphs.

More generally, an n-ary relation on sets Ai,..., A, is a
subset of the n-fold Cartesian product A; x --- X A,.

Transitivity and Symmetry

A binary relation R on a set A is said to be transitive
if whenever z,y, z are elements of A with zRy and yRz,
then zRz.

Both the less-than relation and the less-than-or-equal-to
relation are transitive.

An example of a non-transitive relation is the parent
relation. The ancestor relation, though, is transitive.

A binary relation R on A is called symmetric if zRy
implies yRx, for all z and y in A.

The equality relation is symmetric, but the less-than
relation is not.

A relation R is called antisymmetric if xRy and yRz
imply that =z and y are identical, for all x and y.

The less-than relation is antisymmetric.

A relation may be neither symmetric nor antisymmetric.

Reflexivity

Most of the relations we will discuss are characterized by
some ‘“internal” structure. In particular, we will study
equivalence relations and order relations.

A binary relation R on a set A is said to be reflexive if
(z,z) € R, for all z € A.

For example, the less-than relation is not reflexive, but
the less-than-or-equal-to relation is.

For simplicity we often write “zRy" instead of “(z,y) €
R" when R is a binary relation.

A relation R on A is said to be irreflexive if xRz for no
T € R.

The less-than relation is irreflexive.

Note that irreflexivity is different from non-reflexivity.
Every irreflexive relation R on a non-empty set A is also
non-reflexive, but a non-reflexive relation need not be
irreflexive.

Closure Properties

Let R and S be reflexive (or symmetric or transitive)
relations on a set A. Do the union RUS and intersection
RN S have the same property?

Let A be the set {1,2,3} and consider binary relations

R j {(1,1),(1,2),(2,1),(2,2),(3,3)}
an
§=1{(1,1),(2,2),(2,3),(3,2),(3,3)}.

The relations R and S are reflexive, symmetric, and tran-
sitive.

The relation RUS is reflexive and symmetric. It also con-
tains the pairs (1,2) and (2,3), but not (1,3). Therefore
it is not transitive.

In general, reflexivity and symmetry are preserved under
set union, but as the example shows, transitivity is not
always preserved.

In such cases one often considers extensions of a given
relation that satisfy certain properties. Minimal such
extensions are known as ‘“closures.”

We next discuss closures of relations under reflexivity,
symmetry, and transitivity.



Reflexive Closures
Let R be a binary relation on a set A.
By the reflexive closure of R we mean the relation
r(R) = RUE,
where E denotes the set {(z,z) : = € A}.

For example, if R is the < relation on the integers, then
r(<) is the < relation.

Theorem.

If R is a binary relation on A, then r(R) is a
reflexive binary relation with R C r(R).

Furthermore, whenever S is a reflexive relation
on A with RC S, then r(R) C S.

The first part of the theorem follows immediately from
the definition of reflexive closure.

The second part states that r(R) is the smallest reflexive
relation (in a set-theoretic sense) that contains R as a
subset.

Corollary.

If R is reflexive, then r(R) = R.

Composite Relations

Let R be a relation on A x B and S a relation on Bx C.
Then the composite relation R o S, or simply RS, is
defined to be the set

{(z,z) € Ax C : for some y € B, zRy and ySz}.

For example, if R = {(1,a),(2,a),(3,b),(4,¢)} and S =
{(a,b), (b,a)}, then RS = {(1,b),(2,b),(3,a)}.

If R is a binary relation on A, i.e., a subset of A x A,

we define the “k-fold” composition of R by induction as
follows.

R R ifh=1
RFIR ifk>1

Lemma.

We have R/ o R*¥ = RItF for all j, k> 1.

Symmetric Closures

Let R be a binary relation on a set A.
By the symmetric closure of R we mean the relation
s(R) = RURS,

where R° denotes the converse of R, i.e., the set {(y,z) :
(z,y) € R}.

For example, if R is the relation {(1,1),(1,2),(1,3)},
then

RrRe={(1,1),(2,1),(3,1)}
and S(R) = {(1,1)7 (152)7 (25 1)7 (153)5 (37 1)}

Theorem.

If R is a binary relation on A, then s(R) is a
symmetric binary relation with R C s(R).

Furthermore, whenever S is a symmetric rela-
tion on A with R C S, then s(R) C S.

The first part of the theorem again follows immediately
from the definition of symmetric closure, and the second
part states that s(R) is the smallest symmetric relation
that contains R as a subset.

Corollary.

If R is symmetric, then s(R) = R.

Transitive Closures
Let R be a binary relation on a set A.

By the transitive closure of R we mean the relation

t(rR) = J R"

k>1
For example, if R is the relation {(1,1),(1,2),(2,3)},
then t(R) = {(1,1),(1,2),(2,3),(1,3)}.
Theorem.

If R is a binary relation on A, then t(R) is a
transitive binary relation with R C t(R).

Furthermore, whenever S is a transitive relation
on A with RC S, then t(R) C S.

The proof of this theorem is not as straightforward as
the proofs of the corresponding theorems for reflexivity
and symmetry. The second part states that ¢(R) is the
smallest transitive relation that contains R as a subset.

Corollary.

If R is transitive, then t(R) = R.



Properties of Closures

Proposition

If R is a binary relation on A, then r(r(R)) =
r(R), s(s(R)) = s(R), and t(t(R)) = t(R).

Theorem
1. If R is reflexive, then so are s(R) and t(R).
2. If R is symmetric, then so are r(R) and t(R).
3. If R is transitive, then so is r(R).

This theorem implies the validity of various identities
between relations. For instance, r(s(r(R))) = s(r(R))

or s(r(s(R))) = s(r(R)).

Exercise. Show that r(s(R)) = s(r(R)), for all binary
relations R on a set A.

An important consequence of the previous results is:

Theorem
If Ris a binary relation on a set A, then t(r(s(R)))
is a reflexive, symmetric, and transitive relation
on A.

Does s(t(r(R))) also satisfy these three properties?



