Logic

Logic deals with the formalization of natural language
and reasoning methods.

A variety of logical systems have been developed, in-
cluding

propositional logic,
predicate logic,
temporal logics, and
modal logics.
Typical applications of logic in computing include
logic programming,

automated verification, and
reasoning about knowledge

We will begin with an introduction to propositional logic.

1
The Case of McGregor's Shop
Mr. McGregor phoned Scotland Yard that his shop had
been robbed. Three suspects A, B, C were rounded up
for questioning and the following facts were established:
1. Each of A, B, C had been in the shop on the day of
the robbery, and no one else had been in the shop
that day.
2. If A was guilty, then he had exactly one accomplice.
3. If B is innocent, so is C.
4. If exactly two are guilty, then A is one of them.

5. If C is innocent, so is B.

Whom did Inspector Craig indict?

For other cases see What Is the Name of This Book?
by Raymond Smullyan.

From the Files of
Inspector Craig

The following facts are known about a robbery:
1. If A is guilty and B is innocent, then C is guilty.
2. C never works alone.
3. A never works with C.

4. No one other than A, B, or C was involved, and at
least one of them is guilty.

Can one infer from these facts who is guilty and who is
innocent?

Fundamental Notions in Logic

The above examples can be formalized in propositional
logic, a system based on well-known logical connectives,
such as negation, conjunction, disjunction, and implica-
tion. (Most applications of logic to computing require
richer logical languages with additional, more specialized
logical operators.)

Some of the key questions in the study of logical systems
are:

When is a given logical formula true? (Valid-
ity)

Do given assumptions logically imply a given
formula? (Logical consequence)

How can we deduce a desired conclusion from
given axioms? (Provability)

The relationship between the concepts of truth and
proof within specified a logical system often plays a
central role.



Propositional Logic

Propositional logic is a formal system in which the ba-
sic units are propositions. These represent statements
and can be combined via logical connectives into more
complex propositions.

The basic assumption is that

each proposition is either true or false (but not
both).

Simple propositions are denoted by (propositional) vari-
ables or by constants representing true and false.

The connectives used to form more complex proposi-
tions include negation (-, read ‘“not’), conjunction (A,
read “and”), disjunction (v, read “or"), and implication
(—, read “implies”).

Semantics of Propositional
Logic

The constants T and L are also called truth values and
represent truth and falsity, respectively.

The semantics of propositional logic formulas rests on
so-called truth functions for the logical connectives.

Traditionally truth functions are given by way of truth
tables, though they can also be defined by suitable iden-
tities:

-T = L T—-T = T
-1 =~ T T—-1 ~ L
1L—-T = T

l—-1 = T

TAT = T TVT = T
TAL = L TVl = T
INANT = L 1vT = T
Al = L lvli = L

Formally, these identities define an equivalence relation
on propositional formulas. We define:

axf

if, and only if, 8 can be obtained from « by repeat-
edly using the above identities to replace a subformula
matching one side by the other side.

Syntax of Propositional Logic

The syntax of propositional formulas is specified by the
following rules:

(proposition) 1= T | _L | (variable)
| (—=(proposition))
| ({proposition) A (proposition))
| ({proposition) Vv (proposition))
| ({proposition) — (proposition))

(variable) = P|Q|R]| ...

We use the letters a and 3 to denote propositional for-
mulas.

Other common connectives are exclusive disjunction (&,
read ‘“either-or") and biconditional («, read “if and only
if").

Parentheses are often omitted to increase readability
(provided the intended expression remains unambigu-
ous).

The notion of a subformula can be defined in the ex-
pected way. For example, P and (P — Q) are both
subformulas of (=(P — Q)).

For example,

(TVL) = 1laT—la~l.

If a propositional formula contains no variables it is
equivalent either to T or L (but not both).



One of Inspector Craig’'s Cases

The known facts can be represented by the formulas
1. PA-Q — R
2. R—-PVQ
3. P——-R
4. PVQVR

where P represents the statement “A is guilty,” @ the
statement “B is guilty,” and R the statement "“C is
guilty.”

Let o« be the conjunction of the above four formulas.
We get the following truth table for «:

4444 HT
A4 A4 HO
i I I
b e

Propositional Equivalence

Two propositional formulas o and 3 are said to be (propo-
sitionally) equivalent, written a ~ 3, if and only if ao =~
Bo, for all truth valuations o whose domain includes all
variables occurring in « or 3.

Basically, one may check equivalence of propositional
formulas by inspecting truth tables.

Examples.
PA=-P ~ —(P—P)
P—P ~ T

Note that ~ extends =~ in the sense that for all variable-
free propositional formulas « and 3, we have a ~ g if,
and only if, a = .

Truth Valuations

A (truth) valuation is a mapping from propositiona) vari-
ables to truth values.

It is usually sufficient to consider truth valuations with
a finite domain; various notations are used to denote
such mappings, e.g.,

[P>T,Q— T, R 1]

or
[T/P,T/Q,L/R].

If a = a(Pi,...,P,) is a formula containing variables

Pi,...,P,, and o is a truth valuation, then by aoc we

denote the result of replacing in « each occurrence of a
variable P; by its truth value, as specified by o.

Some Basic Equivalences

PVP ~ P
PAP ~ P
PVQ ~ QVP
PAQ ~ QAP
PA(PVQ) ~ P
PAQVR) ~ (PAQ)V(PAR)
PV-P ~
PA-P ~
P ~
PVT ~
PAT ~
PVl ~
PANL ~
-(PVQ) ~ —=PA-Q
-(PANQ) ~ =PV-Q
P—-Q ~ —-PVQ

Yoo e



Substitution

Valuations are a special kind of substitutions. In general,
by a (propositional) substitution we mean a mapping
from (propositional) variables to (propositional) formu-
las.

We will use the letters ¢ and 7 to denote substitutions,
and write ao to denote the result of applying the sub-
stitution o to the formula a.

Note that applying a substitution means to simultane-
ously replace all occurrences of variables by the indi-
cated formulas.

For example, if
o=[P— PAQ,Q+ —R]
then ((PVQ) — P)ois (PAQ)V-R) — (PAQ).

Substitution Theorem.

For all propositional formulas « and 3 and propo-
sitional substitutions o, if a ~ 3, then ac ~ Go.

Tautologies and Contradictions

A propositional formula « is said to be satisfiable if ao ~
T, for some truth valuation o.

A propositional formula « is called a tautology if it al-
ways evaluates to true, i.e., if ac = T for every truth
valuation o whose domain contains all variables occur-
ring in a.

Similarly, « is called a contradiction (or unsatisfiable) if
it always evaluates to false.

A formula that is neither a tautology nor a contradiction
is also called a contingency.

For example, PV —P is a tautology, whereas P A =P is
a contradiction.

Theorem. [Tautology and contradiction]

A propositional formula « is a tautology if and
only if its negation —« is a contradiction.

Theorem. [Tautology and equivalence]
Two propositional formulas a and g8 are logi-

cally equivalent if and only if the formula (o —
B| A (B — «) is a tautology.

Replacement

We write a[3] to indicate that 8 occurs as a subformula
of a, and (ambiguously) denote by «a[3’] the result of
replacing a particular occurrence of 38 in a by 3.

If necessary, one indicates the occurrence by writing
a[B]p, where p specifies the position of the subformula,
e.d., in Dewey decimal notation. (The subformula of «
at position p is often denoted by «alp.)

For example, if ais (PAQ)VR, then a1z is Q and «[P]12
is (PAP)VR.

Replacement Theorem.
If a, B8 and B are propositional formulas with

B~ B, and p is a position in «a, then a[B], ~

a[ﬂl]p-

Logical Consequence

A (propositional) formula « is called a logical conse-
quence of a set of formulas N, written

NE«o

if o is true for every valuation o under which each for-
mula in N is true.

For instance, « is a logical consequence of a finite set
N = {a1,...,an} if

aoc ~ T whenever cio~ -~ ayo~ T.
Theorem [Tautology and logical consequence]

A formula « is a logical consequence of az,...,an
if, and only if, the implication
a1 N Nap, — o

is a tautology.

We call a set of formulas N satisfiable if there is a
valuation o that makes each formula a in N true. A set
of formulas is unsatisfiable if it is not satisfiable.

Theorem [Logical consequence and unsatisfiability]
A propositional formula « is a logical conse-

quence of a set of propositional formulas N if,
and only if the set N U {-a} is unsatisfiable.



An Example

Consider the following propositional formulas:

AANBAC — D (D)
“AANM — L (2)
FANE — =D 3)
GANM — C (4)
-BAF — -H (5)
-DABAE — G (6)
MA-T — J (7
HAM — K (8)
KANJA-L — FE (9)
-HAF — L (10)
MAL — =F (11)
KAINA — E (12)

Is the implication
M — —F (13)

a logical consequence of these formulas?

Checking validity via the corresponding truth table is
possible, but rather time consuming, considering that
the table has 213 = 8192 rows.

Example (cont.)

Let us apply Quine's method to the formula
a=(1)A---A(12) — (13)
where (1),...,(13) refer to the formulas above.

Let us select the variable M. It can easily be seen that
the formula a[M — 1] is equivalent to T (as L — —F'is
equivalent to T).

The formula a[M — T] can be simplified by eliminating
all occurrences of the constant T. Specifically, a[M —
T] is equivalent to

ar = (14) A--- A (25) — (26)
where the subformulas are:

AANBAC — D (14)
-A — L (15)

FAE — =D (16)

G — C 17)

-BAF — -H (18)
-DABAE — G (19)
-1 — J (20)

H - K (21)
KANJA-L — E (22)
-HAF — L (23)

L — =F (24)
KANINA — E (25)
-F (26)

Quine’'s Method

The following method can be used to determine whether
a given propositional formula is a tautology, a contra-
diction, or a contingency.

Let o be a propositional formula.

e If o« contains no variables, it can be simplified to T
or L, and hence is either a tautology or a contra-
diction.

e If o contains a variable, then (i) select a variable,
say P, (ii) simplify both a[P — T] and a[P — 1],
denoting the simplified formulas by a1 and as, re-
spectively, and (iii) apply the method recursively to
a1 and as.

If a3 and ap are both tautologies, so is a. If a; and
ap are both contradictions, so is a. Otherwise «a is
a contingency.

Example (cont.)

Next we select the variable F'. The formula ai[F — 1]
is obviously equivalent to T.

The formula a[F — T] can be simplified as follows:
ar=R7)AN---AN(38) = L
where the subformulas are:

AANBAC — D 27)
-A — L (28)
FEF — =D (29)
G —- C (30)
-B — -H (31)
-DABAE — G (32)
-1 - J (33)
H - K (34)
KANJA-L — E (35)
-H — L (36)
L — 1 (37)
KAIANA — E (38)



Example (cont.)

We continue with selecting the variable L. Note that the
formula az[L — T] is equivalent to T, whereas az[L — 1]
can be simplified as follows:

az=(39)A---A(49) — L

where the subformulas are:

AANBAC — D (39)
-A — 1 (40)

E — =D (41)

G — C (42)

-B — -H (43)
-DABANE — G (44)
-1 — J (45)

H —- K (46)

KAnJ — E 4a7)
-H — 1 (48)
KANINA — E (49)

Example (cont.)

The variable H is a suitable next choice. The formula
as[H — 1] is equivalent to T, whereas as[H — T] can
be simplified to

as = (60)A---A(68) — L
where the subformulas are:

BAC — D (60)

E — =D (61)

G - C (62)

-B — 1 (63)
~-DABAE — G (64)
-1 — J (65)

K (66)

KAJ E (67)
KAl — E (68)

Example (cont.)

We pick variable A next. The formula az[A — 1] is
equivalent to T, whereas az[A — T] can be simplified to

ag = (50)A---A(B9) — L

where the subformulas are:

BANC — D (50)

E — -D (51)

G — C (52)

-B — —-H (53)
-DABANE — G (54)
-1 — J (55)

H — K (56)

KANJ — E (57)

-H — 1 (58)

KNI — E (59)

Example (cont.)

The next variable we select is K. The formula as[K —
1] is equivalent to T, whereas as[K — T] can be sim-
plified to

ag=(69)A---A(7T6) — L
where the subformulas are:

BAC — D (69)

E — =D (70)

G — C (71)

-B — L (72)
-DABANE — G (73)
- - J (74)

J — E (75)

I —- E (76)



Example (cont.)

Continuing with variable B, we find that ag[B — 1] is
equivalent to T, whereas ag[B +— T] can be simplified to

ar={T7)AN---AN(83) = L
where the subformulas are:

C — D 7))

E — =D (78)

G — C (79)
-DANE — G (80)
-I — J (81)

J — E (82)

I —- E (83)

Example (cont.)

Continuing with ag we select the variable I and find that
ag[l — T] is equivalent to T, whereas ag[I — 1] can be
simplified to

a0 =(95)A---A(99) — L

where the subformulas are:

C — D (95)

G — C (96)
“DAE — G (97)
J (98)

J — 1 (99)

If next we select J, we find that both aig[l — T] and
a1o[l — L] are equivalent to T.

Example (cont.)

In the next step we select the variable E. we find that
a7[E — 1] can be simplified to

ag=(84)AN---A(89) — L
where the subformulas are:

C - D (84)
G — C (85)
-DAE — G (86)
-1 — J (87)
J — 1 (88)
I - 1 (89)

The formula a7[E — T] can be simplified to

ag=(90)A---A(94) — L
where the subformulas are:

C — D (90)
-D (91)
G — C (92)
-D — G (93)
-1 — J (94)

Example (cont.)

Coming back to ag, we select the variable D. The for-
mula ag[D — T] is equivalent to T, whereas ag[D — L]
can be simplified to

a11 = (100) A--- A (103) — L

where the subformulas are:

c - 1 (100)
G — C (101)

G (102)
By (103)

The formula a11[G — 1] is equivalent to T, whereas
a11[G — T] can be simplified to

a;p=-CACA(I—J)— L.

Both ai12[C — 1] and ai12[C — T] are equivalent to T.

At this point we are done: All simplified formulas are
equivalent to T, which implies that the original formula
« is a tautology.



