Predicate Logic

Predicate, or first-order, logic is a formal logical system
that extends propositional logic by additional logical op-
erators, called quantifiers, and by variables that range
over domains other than Boolean values.

For example, consider the definition of reflexivity for a
binary relation R:

A binary relation R on a set A is called reflexive
if xRx for all x in A.

This definition can not be formalized in propositional
logic, but requires predicate logic:
Vz [z € A— (z,z) € R]
or, abbreviated,
(Vz € A) (z,z) € R.
The symbol V is called a quantifier or more specifically

a universal quantifier. The letter x denotes a universally
quantified variable.

Example - Circularity
Consider now a slightly more complicated formula,

VaVyVz [(x € ANy e ANz e A) —
((z,y) € RA(y,2) € R— (z,7) € R)]
or, abbreviated,
Vz € AVy € AVz € A [(z,y) € RA(y,2) € R— (z,2) € R].

This formula expresses that the relation R is circular.
Informally, it is true if, and only if, for all z, y, and z in
A such that zRy and yRz, it is the case that zRx.

For example, if A ={1,2,3} and R = {(1,1),(2,2),(3,3)},

then the formula is true.

The formula is also true if for R we take

{(1,2),(2,3),(3, 1)}

However, if we take the union of the two relations

{(1,1),(2,2),(3,3),(1,2),(2,3),(3, 1)}

the formula is false.

Intuitive Semantics

Intuitively, the above formula is true, for a given set A
and a subset R C Ax A, if, and only if, the set R contains
all pairs (a,a), where a is an element of A.

For example, let A be the set {1,2,3}.

If R denotes the binary relation {(1,1), (2,2),(3,3)} then
the formula is true. But for R = {(1,2),(2,3),(3,1)} it
is false.

In general, the truth value of predicate logic formulas
depends on how variables, such as A and R, are inter-
preted. In some instances a formula may be true; in
other cases, false.

Function and Predicate
Symbols

Predicate logic extends the language of propositional
logic by function and predicate symbols.

We use the letters f, g, h,... to denote function symbols,
and the letters p,q,r,... to denote predicate symbols.

We also assume that with each function and predicate
symbol a non-negative integer, called its arity, is asso-
ciated.

Function symbols are meant to denote functions over
a certain domain; predicate symbols, relations or prop-
erties. The arity indicates the number of arguments a
function or relation takes.

A function or predicate symbol of arity O is also called
a constant. We use the letters a,b,c,... to denote con-
stant function symbols.

Finally, we use the letters z,v, z,... to denote variables,
which denote elements of a given domain.



Terms and Atoms

Let F and R be sets of function and predicate symbols,
respectively, and X be a set of variables.

The set of terms (over F and X) is defined inductively
by:

e every variable z in X is a term, and

e if fis a function symbol in F of arity n, and t1,...,t,
are terms, then f(t1,...,t,) is also a term.

Note that constants are terms by this definition.

Similarly, we define the set of atomic formulas, or atoms
for short, by:

e if p is a predicate symbol in R of arity n, and
t1,...,t, are terms, then p(t1,...,ty) is an atom.

If a term or atom contains no variables, we say that it
is variable-free or ground.

The parentheses are not necessary, but increase the
readability.

Examples of Predicate Logic
Formulas

Some students do not satisfy the prerequisites for CSE-
213.

Jz(Student(x) A ~PrereqCSE213(x)

All students who satisfy the prerequisites for CSE-213
may take the course.

Vz[Student(z) A PrereqCSE213(xz) — TakesCSE213(x)]

Some students in CSE-213 drink.
Jz[Student(z) A TakesCSE213(z) A Drinks(z)]

If some students drink then all students drink.

Jz(Student(x)ADrinks(x)) — Vz(Student(x) — Drinks(x))

First-Order Logic — Syntax

Predicate logic contains logical operators called quan-
tifiers, more specifically a universal quantifier ¥V and an
existential quantifier 3.

The symbols of a first-order (predicate) logic are thus
the following:

logical connectives: A,V, -, —
quantifiers: Vv, 3
function symbols: f,g,h,...

predicate symbols: p,q,r,...
variables: z,y, z,...

A first-order language L is specified by its sets of func-
tion and predicate symbols and variables.

Syntactically well-formed formulas are expressions con-
structed from atomic formulas and the logical opera-
tors. The syntax rules for propositional connectives are
the same as for propositional logic (except that atomic
formulas are used instead of propositional variables).

Quantified formulas are of the form
(Vz F) or (3= F)
where F' is a formula and z a variable.

The formula F' is called the scope of the quantifier; and
we say that the quantifier binds the variable x.

More Examples
Only dogs bark.
Rephrase: It barks only if it is a dog.

Or equivalently: If it barks, then it is a dog.
Vx [Barks(x) — Dog(x)]
Everyone has a father.

Vz [Person(x) — Jy (Person(y) A Father(y, x))]

Nobody is infallible.

=3z [Person(z) A = Fallible(x)]



Free and Bound Variables

There is an important distinction between bound and
free occurrences of variables.

All occurrences of the variable z in a subformula Vz F
or Jx F' are said to be bound. Occurrences of x that are
not bound are said to be free.

In other words, bound occurrences of a variable are
those that occur in the scope of a quantifier binding
that variable. The same variable may have both free
and bound occurrences in a formula.

Formulas without free occurrences of variables are called
sentences.

Example. The formula

vz ((r(z,y) — (vy(Gz r(z,2)) Ar(z, 2)))

is not a sentence. It contains both free and bound oc-
currences of variables.

In general, the truth value of a formula depends on the
assignment of values to its free variables. Semantically,
sentences are formulas that are either true or false.

Substitution (cont.)

Unfortunately, substitutions may have undesired side ef-
fects semantically, and hence their application is usually
done subject to certain restrictions.

Definition.
We say that a term t is free to replace a variable
x in a formula F' if no free occurrence of z is in
the scope of a quantifier that binds a variable
y occurring in t.

Each of the following conditions implies that t is free to
replace z in F"

l.t==z

2. t is a constant.

3. The variables of t do not occur in F.
4

. The variables of t do not occur within the scope of
a quantifier in F.

o

The formula F contains no quantifiers.

6. The variable z does not occur free within the scope
of a quantifier in F.

Is f(z,y) free for z in (Vz p(x) A q(y)) — (—p(x) vV q(y))?
Is f(z,y) free for y in Vz (p(z) A q(y)) — (=p(z) V q(y))?

Substitution

An important operation in predicate logic is the substitu-
tion of terms (or values) for variables, more specifically
for free occurrences of variables.

Definition.

If F'is a predicate logic formula, t is a term, and
z is a variable, then we denote by F(z/t) the
formula obtained by (simultaneously) replacing
all free occurrences of z in F by t.

The expression z/t is called a substitution.

If the variable z is not free in F, i.e., if F' contains only
bound occurrences of = or no occurrences of z at all,
then F(z/t) is identical to F.

For example, let F be the formula Vzp(z,y) and let ¢ be
a term. Then F(z/t) = F and F(y/t) = Vzp(x,t).

Replacements of different (free) occurrences of the same
variable take place simultaneously.

For instance, if F is the disjunction p(z,z) V dyq(zx,y),
then F(z/h(z)) is p(h(z), h(z)) V Iy q(h(z), y).

Interpretations

Let F be a set of function symbols, R a set of predicate
symbols, and X a set of variables.

An interpretation Z for the predicate logic based on F,
R, and X consists of the following components:

1. a nonempty set D, which is called the domain of
the interpretation,

2. for each n-ary function symbol f € F an n-ary func-
tion f7: D™ — D,

3. for each m-ary predicate symbol p € R an n-ary
relation p? C D", and

4. for each variable z in X an element z” in D.

For example, let F be the set {0,1,4,%,—} and R the
set {=,<,<}. We may take the set of real numbers as
domain and define 0% as the real number 0, 17 as the
real number 1, +Z as addition, *Z as multiplication, —Z
as subtraction, =7 as the equality predicate, <7 as the
less-than-or-equal-to relation, and <% as the less-than
relation.



Interpretation of Terms

Let 7(F,X) denote the set of terms built from function
symbols in F and variables in X.

Intuitively, terms denote elements of the domain D.
More specifically, each interpretation Z with domain D
induces a mapping

tr: T(F,xX)—D
defined recursively by:

T if t is a variable z
SIE, ) i t=f(t, )

For example, let t be the term z x (y + (z + 1) x 2). If
T is an interpretation as indicated above, with 27 = 3,
yI =2, and 2Z =1, then t£ = 18.

Notation

If Z is an interpretation with domain D and
d € D, we denote by Z(z/d) the interpretation
that is the same as Z except that zZ(/49) = 4.

Models and Countermodels

An interpretation 7 is said to be a model of a formula
F if F is true with respect to Z. Otherwise, the inter-
pretation is called a countermodel for F.

For example, Let F' be the formula

va [p(f(z, ), z) — p(z,y)]

Consider an interpretation Z where the domain D is the
set of natural numbers; the function f7 is defined by
fE(,9) = (i 4+ j) mod 3; p? is the equality relation; and
y? = 0. Thisinterpretation is a model for F. (Informally,
F' expresses the fact that for all natural numbers k, if
2k mod 3 =k, then k= 0.)

On the other hand, if Z is an interpretation where the
domain D is the set {a,b}, fZ is any binary function
such that fZ(a,a) = a and fZ(b,b) = b, p” is the equality
relation, and y? = a; then T is a countermodel for F.

Semantics of Predicate Logic
Let Z be an interpretation with domain D.

We define the semantics of predicate logic formulas via
a binary relation denoted by the symbol =. Informally,
T = F holds if the formula F is true under interpretation
7.

The formal definition is by structural induction on for-
mulas:

(VIFF =p(ts,....t,), thenT = Fiff (¢F,.. ., ¢) €
P’

(i) If F = =G, then T |= F holds iff Z = G does
not hold.

(iii) If F = G1 A G2, then Z = F holds iff both
Z = Gi and 7 |= G» hold.

(iv) If F = G1V G», then T = F holds iff at
least one of 7 = G1 and 7 = G>» holds.

(v) If F = VzG, then Z |= F holds iff 7 = G
holds for all interpretations J = Z(z/d), where
deD.

(vi) If F = 3zG, then T = F holds iff J &=
G holds for some interpretation J = Z(z/d),
where d € D.

Validity

Some formulas are true for every possible interpretation.
In other words, they are true based on their logical struc-
ture. Examples of such formulas are (propositional) tau-
tologies.

In general, we say that a predicate logic formula is valid
if every interpretation is a model. A formula that is not
valid is also called invalid.

A formula is said to be satisfiable if it has a model; and
unsatisfiable, otherwise. Thus, a formula is unsatisfiable
if every interpretation is a countermodel.

A valid formula is satisfiable, whereas invalid formulas
may be satisfiable or unsatisfiable.

For example, the formula 3z (p(z) A g(x)) — Jzp(z) A
Jz q(x) is valid.

On the other hand, 3z p(z) A 3z q(z) — Fz (p(x) A q(z))
is satisfiable, but not valid.



Closures

In many applications formulas with free variables are
transformed into (or implicitly interpreted as) sentences.

Let F' be a formula with free variables z1,...,z,. By the
universal closure of F we mean the sentence

Va1 -Ve, F
and by the existential closure of F, the sentence
dxq - --dz, F.
For example, if F'is the formula Vz p(z,y), then its uni-

versal closure is Vy Vz p(zx,y) and its existential closure is
JyVzp(z,y).

Theorem [Closure Properties]

1. A formula is valid if, and only if, its universal closure
is valid.

2. A formula is satisfiable if, and only if, its existential
closure is satisfiable.

Negations of Quantified
Statements

The negation of a universal statement is logically equiv-
alent to an existential statement:

-V p(z) = 3z —p(x).

Not all students drink.
Some student does not drink.

The negation of an existential statement is logically
equivalent to a universal statement:

=3z p(z) = Vz —p(z).

No student failed the course.
All students passed the course.

These equivalences indicate that semantically only one
of the two quantifiers is really needed.

Logical Equivalence

Two predicate logic formulas F' and G are said to be
(logically) equivalent if, and only if, they have the same
models. We write F = @ to indicate that F and G are
equivalent.

Theorem
F=Giff (F— G)A(G— F) is valid.

Examples of equivalences are generalized versions of
equivalences from propositional logic. For instance,

——d(z,y) = d(z,y)

is obtained from the propositional equivalence -——P = P
by substituting the atomic formula d(z,y) for P.

Another example is

Vrp(x)V -Vep(z) =T.
In general, if two propositional formulas are logically
equivalent, one may replace propositional symbols by

arbitrary predicate logic formulas: the resulting formulas
are still equivalent.

Other equivalences derive from more subtle connections
between quantifiers and propositional connectives.

List of Equivalences

1.(a) ~VaF=3z-F
(b) =Fx F =Vz-F
(c) Vz(FAG) =V F AV G
(d) Iz (FVG)=3zF vVIzG
(e) Iz (F - G)=VaF — 3z G

2.(a) VaVyF =Vyvz F
(b) JzIyF =Fy3z F

3. Assuming that z is not free in G:
(@) V2(FAG) = (VzF) NG
(b) Iz (FAG)=((FzF) NG
(c) Ve(FVG)= (VzF) VG
(d) Iz(FVGE)=@zF) VG
(e) Ve(F - G)=(3zF) - G
(f) J2(F->G)=(NzF) -G
(9) V2(G—-F)=G —VzF
(h) Iz (G—-F)=G— 3z F



Logical Consequence

We say that a predicate logic formula F' logically implies
G (or that G is a logical consequence of F), and write
F = G, if every model for F is also a model for G.

Examples of logical consequences are
Vzp(z) = Jzp(z) and
FzVyp(z,y) = Yy 3z p(z,y).
But Yz Iy p(z,y) = JyVep(z,y).

Note that two formulas F and G are equivalent if each
formula logically implies the other.

Are the following logical equivalences correct?
Vzp(z) VVzq(z) = Vo (p(z)Va(z))
Jzp(z) Azg(z) = Fz(p(@) Aq(=))

If equivalence does not hold, can one prove that one
side implies the other?

Dracula

By a logical argument one means a sequence of formu-
las, of which the last one is called the conclusion, while
all the others are called hypotheses.

An argument is (logically) correct if the conclusion is
a logical consequence of the (conjunction of all the)
hypotheses.

Example.

(1) Everyone is afraid of Dracula.
(2) Dracula is afraid only of me.
Therefore I am Dracula.

Is this argument correct?



