Formal Languages

Let > be an alphabet, i.e., a finite set. The set of all
strings over X is denoted by >*.

By a (formal) language over >~ we mean any subset of
>F,

For example, the empty set ) and the set X* itself are
formal languages in this sense.

Other examples of a formal languages are the sets

L; ={we {0,1}* : w has an equal number of 0's and 1's}

and

L, ={w e {0,1}* : w begins with a 1}.

The last sets have been defined via comprehension:
L={wexX" : P(w)}.

For computational purposes comprehension is too pow-
erful a formalism. For instance, the problem of deter-
mining whether a string is an element of a specified
language can not be solved algorithmically for arbitrary
languages specified via comprehension.

We will briefly discuss other specification formalisms
that are useful in the definition of (the syntax of) pro-
gramming languages.

Balanced Parentheses

If we focus on the parenthesis structure of arithmetic
expressions we obtain a simpler formal language S that
can also be defined recursively:

1. The empty string X is an element of S.

2. If 53 and sy are elements of S, then the following
are also elements of S:

(@) (s1s2)
(b) (s1)

The set S is formal language as it is a subset of X*
where X is the two-element set {(,)}.

The elements of S are examples of strings of balanced
parentheses (though there are also balanced strings that
are not elements of S).

Arithmetic Expressions

An important example of a formal language are arith-
metic expressions, which are typically defined by recur-
sion:

1. Variables, integers, and real numbers are arithmetic
expressions.

2. If E1 and E» are arithmetic expressions, then the
following are also arithmetic expressions:

(a) (B1+ E2)
(b) (E1— E»)
(c) (B1x Ez)
(d) (B1/E2)
(e) (—E1)

For example,

x

5

(x x 5)

(=(@x5)+y)
are arithmetic expressions according to this definition.
The above definition is hierarchical in that it presup-

poses definitions of formal languages representing vari-
ables, integers, and (certain) real numbers.

Arithmetic Expressions (cont.)

Arithmetic expressions are usually written in a simplified
form by dropping redundant parentheses.

Let A denote the set of arithmetic expressions as de-
fined above. By A’ we denote the set of all expressions
that can be obtained from elements of A by possibly
omitting outer parentheses from an expression and/or
parentheses that are implied by:

1. Precedence (highest to lowest): unary minus; mul-
tiplication and division; addition and subtraction

2. Associativity (say, to the left)

For example,
54z 4 (10 xy)
and
—-54+24+10xy
are elements of A’ as each can be obtained from the
fully parenthesized expression

(((=5) + =) + (10 x ).

Note that the omission of (matching pairs) of parenthe-
ses is optional. If one wishes one can keep all parenthe-
ses and consequently A is a subset of A’



Balanced Parentheses (cont.)

The set of strings S corresponds to the set of expres-
sions A, but not to A’.

For example, the expression (z + y) x (z —y) contains
the string of parentheses ()(), which is not an element
of S.

Consider the set S; defined by:
1. The empty string X is an element of S;.

2. If z and y are elements of S1, then the following are
also elements of Si:
(@) =y
(b) (=)

Do the strings of parentheses in S1 correspond to the
arithmetic expressions of A'?

What about the set S5, defined by:
1. The empty string )\ is an element of Ss.

2. If z and y are elements of S5, then (z)y is also an
element of S>.

Profile-Balanced Strings

We say that a string x is profile-balanced if its profile
begins and ends at 0 and never turns negative.

Let S3 be the set of all profile-balanced strings of paren-
theses.

Lemma
S1=5,=2853.

Proof

We show that S3 is a subset of both S; and S, and vice
versa.

1. $C S5

We have to show that every string w in S is profile-
balanced, i.e., an element of S3. This assertion can
be proved by induction on the number of applica-
tions of recursion needed to produce w according
to the definition of Ss.

Induction basis. The only string w € S> that can be
obtained without any application of the recursive
rule is the empty string A\, which is indeed profile-
balanced.

Next suppose n > 0. We assume, as induction hy-
pothesis, that any string in S> that can be obtained
by fewer than n applications of the recursive rule is
profile-balanced. We need to show that each string

Profiles

By the profile of a string of parentheses we mean the
running total, as we move from left to right, of the
number of left parentheses minus the number of right
parentheses.

Profiles can be represented graphically as shown below
for the strings (()(())) and O)(())(), respectively.
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in S> that can be obtained by n applications of the
recursive rule is profile-balanced. Let w be any ar-
bitrary such string.

Since w requires at least one application of recur-
sion, it must be a string of the form (z)y, where x
and y require fewer than n applications of the re-
cursive rule. By the induction hypothesis, x and y
are profile-balanced.

An inspection of the profile of w indicates that w is
also profile-balanced, as shown below.

profile of x
profile of y

2. 51CS3

This part can be proved in a similar way as the
preceding part.

3. S5C S

We have to show that every profile-balanced string
w is an element of S>. We prove this assertion by
induction on the length of w.



Induction basis. If |lw| = 0, then w must be the
empty string, which is an element of S, by the def-
inition of Ss.

Next suppose n > 0. We assume, as induction hy-
pothesis, that any profile-balanced string of length
less than n is an element of S>. We need to show
that each profile-balanced string of length n is an
element of S>. Let w be be an arbitrary such string.

We first break the string w into substrings « and vy,
such that w = zy and z is the shortest non-empty
profile-balanced prefix of w.

For example, if x = ()(()), theny = () and z = (()).

Note that x may be identical to w, in which case
y = A. The strings w and x both begin with a left
parenthesis and end with a right parenthesis. Thus
there exists a string v such that z = (v).

Since v and y are both profile-balanced strings strictly
shorter than w, we may apply the induction hypoth-
esis to infer that they are elements of S».

Since w is identical to (v)y, we conclude that it is
an element of Sb.

. S3C S5
This part can be proved using similar ideas as above.

Summary

We have characterized strings of (matching pairs of)
parentheses in different, but equivalent ways.

Let S’ be the set S1 (or Sz or S3). The elements of S’
are called balanced strings of parentheses.

These strings (i.e., elements of S’) correspond to sim-
plified arithmetic expressions (elements of A’).

In particular, any string of parentheses obtained from
an expression in the set A’ is balanced. And conversely,
every balanced string can be expanded to an arithmetic
expression.

We will not give a formal proof of this correspondence,
but the key observation is that in a redundant pair of
parentheses the left and right parenthesis are at the
same level in the profile of the string. Their omission
will change the profile but keep it in balance.



