Specification of Languages by
Rules
We have specified the set S of balanced strings of paren-

theses via a definition by recursion. An alternative def-
inition can be formulated via so-called rules, as follows:

B — A
B — (BB)
B — (B)

Formally, a rule is a pair of strings over an alphabet
VUz.

In this example, V = {B} and X = {(,)}.

Only elements of V' may occur on the left-hand side of
a rule. They are also called nonterminals. One of the
nonterminals, in the example B, is distinguished as the
start symbol.

The rules may be used to generate strings over X by
beginning with the start symbol and then repeatedly re-
placing nonterminals by corresponding right-hand sides
until a string in X* is obtained.

For example, from B we may obtain (BB), then ((B)B)
and ((A\)B) and finally ((A\)X), which is equal to (()).

Languages and Replacement

We say that a string v can be obtained from u by re-
placement with G, and write v =¢ v or u = v, if there
exist strings z and y in (VUX)* and a rule A — w in G
such that u = zAy and v = zwy.

For example, we have
((9)8) =6, (N)S)
and also
(08) =a, (ON).
A sequence of replacement steps
Up =G UL =G =G Un
is called a derivation in G of u, from wug.
For example,
S= 85 =5(5) = S((5)) = S(0) = (SHO) = OW)
and
S=88= (9= 0= 00S) = 0S) =0
are both derivations in G;.

We also write u =, v if v can be derived from u in this
way (by zero or more replacement steps).

Thus,
S =z 00W0).

Context-Free Grammars
Let > be an alphabet.

A (context-free) grammar G for X, with start symbol
S, is a finite subset of V x (V U X)*, where V is a set
disjoint from >~ and S e V.

The elements of G are called rules and are written as
A —gu or A — u. Elements of V are called nontermi-
nals; elements of >, terminals.

The set of rules in the above example is a context-free
grammar. Other examples of such grammars are G,
consisting of rules

S — A

S — SS

S — (S)
and G2, consisting of two rules

S — A
S — (9)S

In both cases, S is the start symbol (and the only non-
terminal).

Grammars as Language
Generators

The language L(G) generated by G is defined to be the
set

{we " : S=5w},
where S is the start symbol of G.

In other words, the language generated by a grammar
is the set of all strings of terminals that can be derived
from the start symbol.

For instance, the language generated by G, is the set S,
and the language generated by Gs is the set S;. Conse-
quently, L(G1) = L(G2).

We will sketch a proof that L(G2) = S> below, but first
give some examples of grammars for specific languages.



Examples

Let X be the alphabet {a,b}. Give grammars for the
following languages.

1. L=%*

2. L=70

3. The set of all strings in >* of even length.
4. L ={a"" : n e N}

5. The set of all palindromes in X*.

6. The set of all strings in X* with an equal number
of a’s and b's.

7. The set of all decimal strings that represent num-
bers divisible by three. (In thiscase ¥ = {0,1,...,9}.)

8. The set of all strings in >* with an even number of
a's.

1. L(G2) C S2

We have to show that every string w in L(G52) is an
element of S,. This can be proved by induction on
the length of the derivation generating w.

Induction basis. If w can be derived from the start
symbol § of G> in one step, S =¢, w, then w = A
and, hence, w € S>.

Next suppose n > 1. We assume, as induction hy-
pothesis, that each string that can be derived from
the start symbol S of G> by fewer than n replace-
ment steps is an element of S>. We need to show
that each string that can be derived from S in G2
by n steps is also an element of Ss.

Let w be any arbitrary such string. Then there is a
derivation

S =g, w1 =g, - =G, Wn

where w = w,. Since n > 1 we must have w; =
(8)S. In other words, the derivation is of the form

S =q, (8)S=¢, - =g, (@)S =4, (@),

where z and y are strings that can be derived from S
in fewer than n steps. By the induction hypothesis,
z and y are elements of S>. By the definition of S,
the string w = (x)y is also an element of Ss.

Example

Give a grammar for the set of all decimal strings that
represent numbers divisible by three.

The grammar below is based on the following observa-
tion:

An integer is divisible by three if the sum of its
digits is divisible by three.

Let X be the set of digits {0,1,...,9} and G be the
grammar with start symbol Sp and all rules,

S —d

where d € X, 7 € {0,1,2}, and d mod 3 =4, as well as
all rules

Si — dS;

whered € =, € {0,1,}, j € {0,1,2}, and (d+35) mod 3 =
i.

The language L(G) represented by this grammar is the
set of all strings in X* that represent integers divisible
by three.

2. 52 C L(Go)

We have to show that every string w in S, can
be derived from the start symbol S of G,. This
assertion can be proved by induction on the number
of applications of recursion needed to produce w
according to the definition of Ss.

Induction basis. The only string w € S, that can be
obtained without any application of the recursive
rule is the empty string A, which can be derived
from S in a single step, S =g, A.

Next suppose n > 0. We assume, as induction hy-
pothesis, that any string in S that can be obtained
by fewer than n applications of the recursive rule
can be derived from S in G>. We need to show
that each string in Sy that can be obtained by n
applications of the recursive rule can also be de-
rived from S in G2. Let w be any arbitrary such
string.

Since w requires at least one application of recur-
sion, there exist strings = and y in Sy such that
w = (z)y and z and y require fewer than n ap-
plications of the recursive rule. By the induction
hypothesis, there are derivations

S =g,z and S =¢, y.
But then there is also a derivation
S =q, (8)S =¢, (2)S =4, (v)y,
which shows that w € L(G2).



Derivations

We have seen that the same string can possibly be gen-
erated in different ways, i.e., by different derivations, in
a grammar.

For example, recall the grammar G1 with rules

S — A
s — S5
S — (S)
and start symbol S.
The string ()() can be derived in five steps by

S=S8S=(S)S=0S= 0= 00
or

S=S85=505)=50=090= 00
in Gl.

The string ()()() can be derived by

S=S55S=(5)S=(SS=08)S=00S
= 000 =000

but also by

S =SS = SSS = (5)SS = ()SS = ()(S)S
= 005 =000 =000

in Gl.

Parse Trees (cont.)

The yield of the parse tree in the above example is the
string ()().

The tree can be constructed by starting with a single
node labelled by S and then expanding it in several steps
by adding each time children to a leaf according to one
of the grammar rules.

In this sense the tree represents the derivations of ()()
we had shown earlier. The constructions results in the
same tree for both derivations because they employ the
same replacement steps, only in a different order.

One can argue that the derivations are therefore essen-
tially the same and that the tree representation captures
their essence in a more abstract way.

Parse Trees

Derivations are sequences of replacement steps but can
also be represented in a more abstract way by labelled
trees.

A parse tree for a grammar G is a labelled tree T', where
(i) each leaf of T is labelled by an element of X or by
the empty string A, (ii) each interior (i.e., non-leaf) node
of T is labelled by an element of V, and (iii) for each
node 7 labelled by an element A of V there exists a rule
A — z172...7TH, SUCh that the children of i are labelled
by z1,x2,...,x, (in this order).

For example,
S

is a parse tree for the grammar G1 (where e denotes ).

The string one obtains by concatening the labels of
leaves from left to right is called the yield of the tree.

Ambiguous Grammars

If we construct parse trees from the two derivations of
OO0 we obtain two different trees,

T
/N /IN

and




This indicates that the grammar G1 is ambiguous, as the
structure of the string ()()() is not uniquely determined
by the rules of Gj.

The grammar G2, on the other hand, which defines
the same language as G1, is unambiguous and there-
fore preferable to G;.

R4 the set of rules

S — A

S — AA

A — AAA

A — a

A — bA

A — Ab
and Rs the set of rules

S — A

S — bS

S — SaSaS

Let S be the start symbol in each case.
Which of these grammars generate L7

Answer. All except the grammar based on Rsz. For
example, the string abba can not be derived from S by
R3.

We sketch next a proof that L(R1) = L.

Example

Let L be the set of all strings in {a,b}* with an even
number of a's.

Let R; be the set of rules

>

PSS /A AR
A
Q
S

R> the set of rules

bS
Sb
aSa

nn nin

Lrld

R3 the set of rules

aa
aba

SS

NN K
Ll

Lemma. For each string w in (VUZX)*, if S =% w then
w contains an even number of a's, and if A =% w then
w does not contain an even number of a's.

Proof sketch. By induction on the length of the deriva-
tion of w.

We prove that for all n > O, if w is a string in
(VUX)* then

(i) if S =% w then w contains an even number
of a’'s and

(i) if A =% w then w does not contain an even
number of a's.

Let n be an arbitrary, but fixed integer with n > 0.

Induction hypothesis. If Kk < m and w is a string in
(VUX)* then w contains an even number of a's, provided
S =k w, and w does not contain an even number of a’s,

provided A :>’;21 w.

Induction step. We prove the above assertion for all
strings w in (V U X)* for which S =% w or A =% w,
distinguishing several subcases depending on the first
replacement step in the derivation.



Lemma. For each string w in X*, if w contains an even
number of a's then S =% w, and if w does not contain
an even number of a's then A =7, w.

Proof sketch. By induction on the length of the string
w.

We prove that for all n > 0O, if w is a string in
>* and |w| =n, then

(i) if w contains an even number of a's then
S =% wand

(ii) if w does not contain an even number of
a's then A =4 w.

We consider two cases depending on whether w is the
empty string or a non-empty string. If w # )\, then
we further distinguish between two subcases, as either
w=a-v Of w=>b-v, for some string v.

Example - Non-Context-Free
Grammar

Consider a grammar for a language over the alphabet
> = {a}, with nonterminals {S, D, R, T, [,]}, start symbol
S, and the following rules:

{s — [Da],
S — a,

Da — aaD,
D] — R],
D] —T,
aR — Ra,
[R— [D,
aTl — Ta,
[T — e}

This grammar, which is not context-free, generates the
language {a® : n > 0}.

The variable D is used to double the length of a string
of a's:
Dd* =* a?*D.

The symbols [ and ] are used as left and right markers
between which the generation of a string a?" takes place.
The variable R initiates another application of doubling,
whereas T is used to terminate the process.



