Language accepted by a FSA

- Let a FSA $A = (I, S, s_0, F, N)$.
 $N : S \times I \rightarrow S$ can be extended to $N : S \times I^* \rightarrow S$ to deal with strings.

 Example:
 Let a state s_0 and a string $abba$, $N(s_0, abba) = N(N(N(N(s_0, a), b), b), a)$.

- If L is the set of strings that a FSA A accepts, we say that L is the language of A and we write $L(A) = L$.

- Generally, we conjecture what is the language L and we prove that $L(A) = L$ by proving that $L \subseteq L(A)$ and $L(A) \subseteq L$.

 To prove that $L \subseteq L(A)$, we need to prove that for all word $w \in L$, then $w \in L(A)$ i.e. $N(s_0, w) \in F$.
 To prove that $L(A) \subseteq L$, we need to prove that for all word $w \in L(A)$, then $w \in L$. So we need to prove that if $N(s_0, w) \in F$, then $w \in L$.

- Conjecture:
 Any string w that ends with 00 is accepted by A.
 w is a string of length greater than 2.
 $L = \{ w \in I^* | w = w', 00 \}$

- We prove using the structure of w that if $w \in L$, i.e. $w = w', 00$ then w is accepted by A. (We prove that $L \subseteq L(A)$).
 w is a string of length n that ends with 00. So $w = w', 00$. The size of w' is greater than 2.
 After the first $n - 2$ symbols of w have been input, A is in one of its three states: s_0, s_1 and s_2. From any of these three states, input of the symbols 00 in will result in A moving to the accept state s_2 ($N(s_0, 00) = s_2$ and $N(s_1, 00) = s_2$ and $N(s_2, 00) = s_2$). Hence, any string that ends in 00 is accepted by M.

- We prove by induction that $N(s_0, 0^n) = s_0$ ($n \geq 0$).
 0^n means a sequence of 0 or more 0. O^0 represent the empty word denoted ϵ.
 - Basis case: $n = 0$
 $N(s_0, \epsilon) = s_0$
 - Induction hypothesis: $N(s_0, 0^k) = s_0$ for an arbitrary and fixed $k \geq 0$.
 - We prove that: $N(s_0, 0^{k+1}) = s_0$.
 $N(s_0, 0^{k+1}) = N(N(s_0, 0^k), 0) = s_0$.
 - Conclusion: $N(s_0, 0^n) = s_0$ for all $n \geq 0$.

Example

- What is the language recognized by this automaton A?

 ![Automaton Diagram]

- 10 is not accepted
 10100 is accepted
 00 is accepted
 110010 is not accepted
 1101000 is accepted

- Ideas?
 If we are in state s_0 and if we read a sequence of 1, we stay in s_0. (We can prove this property by induction - see below).
 If we are in state s_2 and if we read a sequence of 0, we stay in s_2. (We can prove this property by induction).
 If we read 2 zeros we go in the final state s_2 but then if we read 1, we go out of the final state s_2.
Example

- Design an automaton that recognizes \(L = \{a^p b^q \mid p \geq 0 \text{ and } q > 0 \} \).

- What are the words of \(L \)?
 \(a \notin L \) \((q > 0)\)
 \(aba \notin L \)
 \(b \in L \)
 \(ab \in L \)
 \(aaaaaabbbb \in L \)

 Words that begin with 0, 1 or several \(a \)'s and terminate with \(b \)'s (at least 1).

- Automaton \(A \) - Transitions diagram:

Example

- What is the language recognized by this automaton?

- 11 is not accepted
 10101 is not accepted
 1 is not accepted
 110010 is accepted
 1101000 is accepted

- Ideas?
 If we are in state \(s0 \) and if we read a 0 we go to state \(s1 \).
 If we are in state \(s1 \) and if we read a 1 we go to state \(s0 \).

- Conjecture:
 Any string \(w \) that ends with 0 is accepted by \(A \). \(w \) is a string of length greater than 1. \(A \) recognizes even numbers.
 \(L = \{w \in \{0,1\}^* \mid |w| \text{ even} \} \)

- We can prove that \(L = L(A) \).

We prove that \(L = L(A) \).

Sketch of the proof.

- \(L \subseteq L(A) \)
 Let \(w \in L \). We prove that \(N(s0, w) = s1 \).
 To do that we prove:
 - \(\forall p \geq 0, N(s0, a^p) = s0 \) (by induction on \(p \)).
 - \(\forall q \geq 1, N(s0, a^q b^q) = s1 \) (by induction on \(q \)).

- \(L(A) \subseteq L \)
 Let \(w \) such that \(N(s0, w) = s1 \). We prove that \(w \in L \).
 To do that we prove:
 - \(\forall w, N(s0, w) = s0 \Rightarrow w = a^p \) (by induction on the length of \(w \)).
 - \(\forall w \) (of length greater than 1), \(N(s0, w) = s1 \Rightarrow \exists p \geq 0, \exists q > 0, w = a^p b^q \) (by induction on the length of \(w \)).
The man, the wolf, the goat and the cabbage

http://www.ecs.soton.ac.uk/ uun/CM219/HTML/ sld032.htm

Slides 32 to 41