Equivalence Relations

A relation that is reflexive, transitive, and symmetric is
called an equivalence relation.

For example, the set {(a,a), (b,b), (¢,c)} is an equiva-
lence relation on {a,b, c}.

An equivalence relation R defines “clusters” of elements
of A. More formally, we define for each element a € A
a set,

[alr={b€ A : aRb},
that is also called the equivalence class of a (with re-
spect to R).

If the relation R is clear from the context, we usually
write [a] instead of [a]g.

A partition of a set A is a subset N of P(A) such that
(i) 0 is not an element of M and (ii) each element of A
is in one, and only one, set in I.

For example, {{a},{b},{c}} and {{a,c},{b}} are parti-
tions of {a,b,c}, but {{a}, {b},{b,c}} is not.

Congruence Modulo p

We define binary relations on the integers, for all inte-
gers p greater than 1, as follows.

We say that m is congruent to n modulo p, and write
m = n(mod p), if m —n is an integer multiple of p.

For example, take p = 3. Then 1 is congruent to 4
modulo p, but not congruent to 3.

Let R, be the set
{(m,n) : m=n(mod p)}.
Is the relation R, reflexive?

Is it transitive?
Is it symmetric?

The answer to each question is affirmative, and hence
each relation R, is an equivalence relation on the inte-
gers.

Partitions and Equivalence
Relations

Theorem.

If R is an equivalence relation on a non-empty
set A, then the equivalence classes of R con-
stitute a partition of A.
Conversely, if I is a partition of A, then the relation
{(a,b) : a and b are elements of the same set in M}

is an equivalence relation.

In other words, there is a one-to-one correspondence
between equivalence relations on A and partitions on A.

For example, the relation ~ on N, defined by
m~n<< m-+nis even,

is an equivalence that partitions the set of natural num-
bers into two subsets—the sets of even and odd natural
numbers, respectively.

An Equivalence Relation on
Strings

Let > be an alphabet. We define a binary relation ~ on
the set of strings >* as follows:

v~ w if and only if |v| = |w|.

The relation ~ is an equivalence.

Reflexivity. We have |w| = |w|, and hence w ~ w, for all
strings w.

Symmetry. If v ~ w, then by definition |v| = |w|. By the
symmetry of equality we thus have |w| = |v|, and hence
w ~ V.

Transitivity. Suppose u ~ v and v ~ w. Then |u| = |v|
and |v| = |w| and therefore, by the transitivity of equality,
|lu| = |w|, which implies u ~ w.

Let ~* be the set of all strings of size k over .

The collection of all sets ¥, k € N, is a partition of X*.
In fact, the sets % are the equivalence classes induced
by ~.



Equinumerous Sets

Two sets A and B are said to be equinumerous (or of
the same size) if, and only if, there is a bijection from
A to B. (Recall that a function is a bijection if it is
one-to-one and onto.)

We write A ~ B if A and B are of the same size in this
sense. The relation ~ is also an equivalence.

Reflexivity. The identity function on A is a bijection
from A to A, thus A ~ A.

Symmetry. If there is a bijection f from A to B, then the
inverse function f~1! is a bijection from B to A. Thus,
A~ B implies B ~ A.

Transitivity. Suppose A ~ B and B ~ C. Then there
are bijections f from A to B and g from B to C. The
composition of the two functions f and g is a bijection
from A to C and thus A ~ C.

The Pigeonhole Principle

The following observation is known as the Pigeonhole
Principle:

If A and B are finite sets and B has fewer el-
ements than A, then there is no one-to-one
function from A to B.

For example, how many of the integers from the set
A = {1,2,3,4,5,6,7,8} need to be selected so that,
regardless of the choice of selection, there is at least
one pair with a sum of 97

Four is not enough, as we may select 1,2, 3,4 where no
pair yields a sum larger than 7.

But any selection of five integers from A must contain
a pair whose sum is 9. To see why, observe that A can
be partitioned into four different subsets A; = {1,8},
Ax = {2,7}, A3 = {3,6}, and As = {4,5}, where the
sum of each of the four corresponding pairs is 9.

Now if a1, a2,a3,aa, and as are the selected integers from
A, we define a function f, by setting f(a;) to be the set
Aj that contains a;.

By the pigeonhole principle, the function f is not one-
to-one, so that there exist two integers a; and a; with
f(ai) = f(a;). In other words, there must be one subset
Ag, both of whose elements are selected. The corre-
sponding sum is 9.

Finite and Infinite Sets

We call a set finite if it is equinumerous with some set
{0,1,...,n — 1}, for some natural number n.

If A is equinumerous with {0,1,...,n—1}, then it is said
to be of cardinality n, written |A| = n.

If a set is not finite, it is called infinite.

Examples of infinite sets are the sets of natural numbers,
of integers, of rational numbers, of real numbers. But
not all of these sets are equinumerous, as we shall seel

A set is called countably infinite if it is equinumerous
with the set P of positive natural numbers.

The set of natural numbers is countably infinite as the
function f, defined by f(n) =n+ 1, is a bijection from
N to P.

A set is called countable if it is finite or countably infi-
nite; and uncountable otherwise.

Informally, one can list the elements of a countable set,
though the list may never end.

Subsets of Countable Sets

A function f: A — B is called a one-to-one correspon-
dence (between A and B) if it is one-to-one and onto.

Theorem.
Every subset of a countable set is countable.

Proof. 1t is sufficient to show that subsets of P are
countable. Let A be a subset of P.

If A is finite it is countable by definition.

Suppose A is infinite. We define a one-to-one corre-
spondence f from P to A by recursion:

1. Let f(1) be the smallest element of A.

2. If n > 1, then f(n) is defined to be the smallest
element of A\ {f(1),...,f(n—1)}.

It can easily be verified that f is one-to-one and onto. j

The above proof uses the so-called well-ordering princi-
ple of the natural numbers:

Every non-empty subset of N has a smallest
element.



Cartesian Products of
Countable Sets

Theorem.
The set P x P is countable.

Sketch of proof. We define a one-to-one correspon-
dence between P and P xP by “enumerating” all ordered
pairs of positive natural numbers as follows.

Begin with the pair (1,1), then list all pairs the compo-
nents of which add up to 3, then all pairs of components
that add up to 4, and so on.

(1,1) (1,2) (1,3) (1,4)
(2,1) (22) (2,3) (24
31 32 363 34

(4,1) (4,2) (4,3) 4,4

Examples of Countable Sets

The set of integers Z is countable. A suitable bijection
from Z to P is the function f, defined by:

_J2n+1 ifn>0
f(”)_{ —2n  ifn<0

Surprisingly, the set of rational numbers Q is also count-
able.

Proof. The set of integers Z is countable. Hence by the
above theorem, the set Z x Z is also countable.

But the set of rational numbers Q is a subset of Z x Z,
and therefore is also countable.

Corollary

The Cartesian product of two countable sets is
countable.

Proof. Let A and B be countable sets. Thus there
are one-to-one correspondences f between A and P and
g between B and P. But then the function h defined
by h(z,y) = (f(z),g(y)) is a one-to-one correspondence
between A x B and P x P.

It follows immediately from the definition of countability
that if there is a one-to-one correspondence between
two sets X and Y, then one set is countable if and only
if the other is countable.

We already know that P x P is countable. Consequently
A x B is also countable. y

Countability of Formal
Languages

Theorem.

The set >* of all strings over an alphabet ¥ is
countable.

Proof. We use the fact that
==
keN
where Y* denotes the set of all strings of length k.

Since all sets * are countable, there are corresponding
one-to-one functions f;, : ¢ — N.

We define a function f:3X* — N x N by:

The function f is one-to-one. (If f(w) = f(v), then
[w] = Jv| and f,(w) = filo)(v) = flu(v). But since f, is
one-to-one, we may conclude that w =wv.)

By the theorems we proved previously, >* is countable.

Note that the proof does not depend on the assumption
that X is finite, but shows that the statement is valid
for infinite sets X as well.



The Diagonalization Principle

We next discuss a mathematical proof technique that
has important applications in the theory of computation.

The Diagonalization Principle.

Let R be a binary relation on a set A, and let D,
the diagonal set for R, be {a € A : (a,a) € R}.
We denote by D the complement, A\ D, of D
and, for each z € A, by R, the set {y € A

(z,y) € R}
The set D is distinct from each set R,.

We illustrate this principle by an example.

Application of Diagonalization:
Uncountable Sets

Theorem.
The powerset of N is uncountable.

Proof. We prove the theorem by contradiction. Sup-
pose P(N) is countable. Then there is a one-to-one
correspondence f between N and P(IN).

We first define a binary relation
R={(,j) e NxN : je€ f(@)}.

The set R;, as defined in the statement of the diagonal-
ization principle, is equal to the set f(i). In other words,
each subset of N is equal to one of the sets R;.

Now consider the diagonal set for R,

D={neN : n€R,}.
By the diagonalization principle, the set D is distinct
from each set R;.

But D is a subset of N, and since f is a one-to-one
correspondence between N and P(N), we must have
D = Ry, for some k.

In short, the assumption that P(N) is countable leads
to a contradiction. Thus we have proved that P(N) is
not countable.

Example of Diagonalization
For example, let R be the binary relation

{(a,b), (a,d), (b,b), (b, c), (c, ), (d,b),(d, c), (d, e), (e, ) }.

This relation can be represented by a table:

a|bfc|d]|e
a X X
b X | X
C X
d X | x X
e X
We have
R(l = {b7 d}
Rb - {b’ C}
R. = {c}
Rd = {bz C, 8}
R, = e}
and D = {a,d}.

Note that these sets correspond to the rows in the above
table. The set D is represented by a sequence of boxes

EENESN

that is different from each row in the above table.



