Finite-State Automata

e We discussed digital logic circuits. These were

combinational circuits that implemented Boolean
functions: the output values were completely de-
termined by the input values.

In this lecture we will talk about sequential cir-
cuits, where the output depends not only on the
input, but also on the prior history, or state, of the
circuit.

Finite-state automata embody the essential idea
of sequential circuits. They can be thought of as
simple computational machines with a memory.

Definition of an FSA

e The specification of a finite-state automaton (FSA)

consists of five parts:

1. a set of input symbols I,

2. a set of states S;

3. a designated initial state sg;

4. a designated set of accepting states F' C S;

5. a next-state function N: SxI — S.

For the vending machine example we have

I = {n,d}

s = {0,5,10,15,20}
so = O

F = {20}

The next-state function can be represented by a
table:

| n(ickel) d(ime)

0 5 10
5 10 15
10 15 20
15 20 20

20 5 10

A Vending Machine

e A vending machine dispenses pieces of candy at 20

cents each. The machine accepts only nickels and
dimes and does not give change.
Its operation is shown in the following diagram.

This diagram is called a transition diagram.

Each circle represents a possible state of the au-
tomaton, reflecting the amount of money that has
been deposited.

The arrows represent transitions from one state to
another, depending on the input - “n” for nickel
and “d" for dime.

Operation starts at state 0. 0 is called an ini-
tial state. State 20 is designated as an accepting
state, in which candy is released.

Operation of an FSA

The operation of an FSA requires a sequence of
input symbols, i.e., an input string.

The computation begins at the initial state sg. At
each step, the machine makes a transition from its
current state s to the state s’ = N(s,a), where a is
the next input symbol.

We say that an input string w is accepted by an
FSA A if, and only if, A goes into an accepting state
when starting from its initial state and getting input
seguence w.

The language accepted by A, denoted by L(A),
is the set of all strings accepted by A.

The eventual state reached by the FSA determines
whether the input string is accepted or not.

Input | Eventual state
n,n 10

e n,d,n 20
n,n,d,n,n,d 20
n,d,d,n,n,n 15

Note that the third input sequence yields two pieces
of candy, whereas the last sequence yields only one
piece!

e The following automaton keeps track of which case
applies for the number of 1’'s that have been sup-
plied as input symbols.

Design of an FSA

0 0
—1)
e We next design an FSA that accepts all bitstrings L /
so that the number of 1’s in the string is divisible
by 3.
e First note that if n is an integer, e.g., the number
of 1's in a given bitstring, then n can be written as 5
3k or 3k + 1 or 3k + 2, for some integer k.
Input | Eventual state
100111 S1
00000 s0
0101 S92
Oll1111111 S0

FSA Accepting Integers Divisible by 3

Integers Divisible by 3

— A state diagram for this automaton is:

I = {0117273747576777879}
e Let us generalize the previous design to an FSA S = {so,s1,5}
that takes as input a nonnegative integer in dec- so = So
imal representation, and determines whether it is F = {so}

divisible by 3.

0,369 03,69

e First observe that a nonnegative integer n is divisi-
ble by 3 if the sum of its digits is divisible by 3.

e We again use an automaton with three states to
distinguish which of the three numbers k, k41 and
k + 2, where k is the sum of all digits seen so far,
is divisible by 3.

e They key for the design of the FSA is in the defi-
nition of the next-state function:

|01 2 3 4 5 6 7 8 9 0369
S0 | S0 S1 S2 Sp S1 S2 Sp S1 S2 SO — Here are sample computations:
81|81 S2 Sp S1 82 S0 S1 S2 S0 S1
$2 |82 So S1 S2 So S1 S2 S0 S1 82 state | so | s1 | so | so | s1| S0

tnput | 1 | 5|3 |7 |2

state | so | so|s2|so|so|s2]| S0 S0l s2
tnput | 9 [8 |7 |6 | 5|4 |32

Minimizing States in Automata

e Automata minimization algorithms work by identi-
fying equivalence classes among the set of states,
and replacing all the states in each equivalence class
by one state.

e For purposes of reliability and efficiency, less is more.

e Since the same problem can be solved by many
different automata, we are interested in finding the

machine with the fewest states which does the job. These equivalence classes are built by observing
that two states which have the same set of out-

going state transitions are clearly equivalent. Fur-
ther, accepting states are clearly different from non-
accepting states.

e Here are two head-counting automata which accept
strings of coin tosses with an even number of heads.

QT T@ Building on the implications of these observations,
H : T H T we can refine our equivalence classes to minimize
s automata.
H H (O™
H H
-

1T T

The automata on the right has the smallest number
of possible states.

Limitations of Finite-State Automata

e There are languages, i.e., sets of strings, that are
not accepted by any finite-state automaton. That
is, the computational mechanisms provided by finite
automata may not be sufficient to express certain
structural properties of strings.

e An example of a language not accepted by any finite
automaton is the set L of all strings a*t*, for k a
positive integer.

The pigeonhole principle can be used to prove that
the set L is not accepted by any finite automaton.
(Proof sketched in class.)

