CSE213

FALL2007

SOLUTION: EXAM 1

(1)(a)N (b)N (c) Closure

(d)Recursive: $S \to aS$ Nonrecursive: $S \to a$

(e) α is a single nonterminal.

(2) Basis: $0 \in S$

Inductive step: If $x \in S$ then $x + 6 \in S$

(3)Basis: $(0,1,2) \in P$

Induction: If $(x, y, z) \in P$ then $(x + 1, y + 1, z + 1), (x, y + 1, z + 1), (x, y, z + 1) \in P$.

(4)Two solutions:

 $\label{eq:Using concat} \text{Using concat} : \ concat(< head(L), head(L) >, dup(tail(L)))$

Using cons: head(L) :: (head(L) :: dup(tail(L)))

(5) $S \rightarrow 00A$

 $A \rightarrow 0A$

 $A \rightarrow 1A$

 $A \to \Lambda$

(6)(i) j = i + 1; i >= 0, k > 0

(ii) bc

(iii) Derivation of string, abbc;

 $S \Rightarrow ABC$

 $S \Rightarrow aAbBC$

 $S \Rightarrow abBC$

 $S \Rightarrow abbC$

 $S \Rightarrow abbc$

(7)(i) N

(ii) $\{0,1\}^*$ contains Λ , while $L_0 \cup L_1$ does not. Because both L_0 and L_1 don't have Λ in them.

(8)(a) $B \subseteq C$

(b) If C does not have any element from A, then B=C. If it has some element from A, then $B\subset C$. Hence, $B\subseteq C$ always holds.