CSE 213 F07 : Quiz 2-Solutions

November 10, 2007

1. a) Recall the definition of composition of two functions (see book pg. 195)
 \[R \circ S = \{(1,2),(1,4)\} \]
 To obtain pair (1,2), we should have composed two pairs of the form
 \((1,a) \in R \) and \((a,2) \in S \) ; where a is any value in our universe.
 Similarly, to obtain pair (1,4) we should have had two pairs of the
 form \((1,b) \in R \) and \((b,4) \in S \) ; where b is any value in our universe.
 Therefore, any answer of the form: \(\overline{R} = \{(1,a),(1,b)\} ; \overline{S} = \{(a,2),(b,4)\} \) is valid.

 b) Yes, because it does not violate the transitivity property.

2. a) Answer= \{ 1,3 \}

 The diagonal set with respect to R is \(D = \{2, 8, 32, 128, \ldots\} \) because
 \(2+2, 8+8, 32+32, \ldots \) are perfect squares. Its complement will be
 \(\{1, 3, 4, 5, \ldots\} \) . Therefore, the two smallest elements are 1 and 3.

 b) Yes. For any pair, \((x, y) \) such that \(x + y \) is a perfect square and since
 addition has the commutative property we know that \(y+x \) is a perfect
 square also and pair \((y, x) \) can be in set R. Therefore, R is symmetric.

 c) Yes

 d) Recall that for a relation to be equivalent, it must be transitive, sym-
 metric and reflexive. Therefore, we have to show that this is the case.

 Transitive

 \(t(R) \) is transitive by definition or transitive closure.

 Symmetric

 \(t(R) \) is symmetric since R is symmetric and transitivity closure
 does not affect symmetry property.

 Reflexive

 \(t(R) \) is reflexive. \((1, 3), (3, 1) \in R \), when we obtain \(t(R) \) , \((1, 1), (3, 3) \)
 are added to the set. The same will apply for similar pairs, so
 pair of the form \((n, n) \) will be added when performing the tran-
 sitive closure.
 Precisely, if x is a perfect square, then
 \((1, x - 1) \in R \) and \((x - 1, 1) \in R \)
(2, x - 2) ∈ R and (x - 2, 2) ∈ R

... when we get t(R), we add (1, 1), (2, 2), (3, 3), ... , (x - 1, x - 1) for every perfect square x, all previous members will be added to t(R). There are infinitely many perfect squares so for all members of t(R) there will be (a, a) ∈ t(R). Therefore t(R) is reflexive.