1) \(R_1 \) is not a partial ordered relation, since it is not antisymmetric. Having \((1,3)\) and
\((3,1)\) in the relation; does not imply that \(1=3\) because \(1 \neq 3\).
\(R_2 \) is a partial order because it is antisymmetric and transitive.

2) In order for a relation to be partial order, it has to be antisymmetric and transitive.
Then, for \(uRv \) where \(\text{length}(u) \leq \text{length}(v) \), we have to check the antisymmetric and transitive properties.
\(R \) is not antisymmetric and we prove this by a counter example:
Let have two strings \(s,t; s=a \) and \(t=b \). Then, \(sRt \) and \(tRs \) are in the relation since
\(\text{length}(s) \leq \text{length}(t) \) and \(\text{length}(t) \leq \text{length}(s) \) since both strings are of length 1.
However this does no imply that \(s=t \) (according to the definition of antisymmetric relation).
Then we conclude that \(R \) is not anti-symmetric, hence, not a partial order.

3) Relations on \(Z (+ -) \)
 a) For all \(m, n \) in \(Z \), \(mR_1 n \) iff every prime factor of \(m \) is a prime factor of \(n \).
 \(R_1 \) is not a partial order because it is not antisymmetric
 Proving by counter example:
 \(mR_n \) where every prime factor of \(m=2 \), \((1,2)\) is a prime factor of \(n=4 \)
 \(m=2 \) with prime factors 1 and 2
 \(n=4 \) with prime factors 1,2
 Similarly, \(nR_m \) is in the relation, because every prime factor of 4 is a prime
 factor of 2. However, \(n \neq m \) because \(4 \neq 2 \).

 b) For all \(m, n \) in \(Z \), \(mR_2 n \) iff \(m+n \) is even.
 \(R_2 \) is not partial order because it is not antisymmetric.
 Proving by counter example:
 \(3R_1 1 \) is in the relation because \(3+1 \) is even; also \(1R_3 3 \) is in the relation because
 \(3+1=4 \) is even. However, \(3 \neq 1 \).

4) Divides relation on: \(A=\{1,2,4,8,\ldots,2^n\} \)
 In order to prove that the divides relation on \(A \) is a total order, we have to prove that
 \(A \) is a partial order and that every pair of elements in the divides relation, \(a \) and \(b \) are
 comparable; that is to say that either \(aRb \) or \(bRa \) is an element of the relation.
 Proving partial order:
 Transitivity: If \((a,b) \) is an element of the divides relation then we know that \(a \) divides
 \(b \); similarly if \((b,c) \) is and element of the divides relation, then we know that \(b \)
divides \(c \). Transitivity holds because for elements \((a,b), (b,c) ; (a,c) \) will be also part
of the relation and the divides property will still hold.
 Antisymmetry: If \((a,b) \) is a member of the divides relation, then \((b,a) \) would be a
member only if \(a=b \).
 Show that \(aRb \) or \(bRa \) (a and b are comparable for all a and b):
 Let \(a \) and \(b \), be particular but arbitrarily chosen elements of \(A \). By definition of \(A \),
there are nonnegative integer \(r \) and \(s \) such that \(a=2^r \) and \(b=2^s \) (Since \(r, s \) are the
exponents, nonnegative integers). Now either \(r < s \) or \(s < r \);
If \(r<s \), then \(b = 2^s = 2^r \cdot 2^{s-r} = a \cdot 2^{s-r} \) where \(s-r \geq 0 \). It follows, by definition of
divisibility, that \(a \) divides \(b \).
By a similar argument, if \(s < r \), then \(b \) divides \(a \). Hence \(aRb \) or \(bRa \), where \(R \) is the divides relationship.

5) Hasse diagram:

![Hasse diagram](image)

Greatest: None
Least: 1 (it is minimal and 1 is less than equal all the elements in \(A \))
Maximal: 20 and 15
Minimal: 1 (this element that has not predecessors)
Chains of length 3: 1-2-4-20; 1-5-10-20;
Least upper bound: 60 (last common multiple of 20 and 15)
Greatest Lower bound: 1

6) All partial order relations on \(A = \{ a, b, c \} \), where \(a \) is maximal
\(R_1 = \{(a,a),(b,b),(c,c)\} \)
\(R_2 = \{(a,a),(b,b),(c,c),(b,a)\} \)
\(R_3 = \{(a,a),(b,b),(c,c),(c,a)\} \)
\(R_4 = \{(a,a),(b,b),(c,c),(b,a),(c,a)\} \)
\(R_5 = \{(a,a),(b,b),(c,c),(c,b),(c,a)\} \)
\(R_6 = \{(a,a),(b,b),(c,c),(b,c),(b,a)\} \)
\(R_7 = \{(a,a),(b,b),(c,c),(c,b),(b,a),(c,a)\} \)
\(R_8 = \{(a,a),(b,b),(c,c),(b,c),(b,a),(c,a)\} \)
\(R_9 = \{(a,a),(b,b),(c,c),(b,c)\} \)
\(R_{10} = \{(a,a),(b,b),(c,c),(c,b)\} \)

7) Lexicographic order
a) \(\preceq_l \) if is a partial order then it has to be transitive and antisymmetric.
Recall the definition of lexicographic relation \(\preceq_l \) on \(\Sigma^* \)(see class notes)
x <L y is in the relation if x is a proper prefix of y or x = up, y = ur have a longest common prefix u and m is a predecessor of n.

Given y <L z also in the relation, we know that either y is a proper prefix of z or y = ur, z = us where p is a predecessor of r.

Then, x <L z will be in the relation because if x is a proper prefix of y, then x is a proper prefix of z. In addition, if x had a common long prefix with y and y had a common substring with z, then x and z have a common prefix and p is a predecessor of s. This proves transitivity.

x <L y is antisymmetric.

By contradiction, x <L y is not antisymmetric then y <L x is a member and x ≠ y.

However, this will never be the case because y <L x will never be in the set since x has to be a proper substring of y and y’s length will have to be at least one more than x’s length. Therefore we know that y <L x is not a member;

b) Prove sketch

Prove partial order for Σ* based on Σ (Basically, for the two cases of x <L y; x will be prefix of y as in <L define for Σ; and if x = wm, y = vw then w is the longest prefix in common and m is a predecessor of v.

Show that for this relation either x <L y or y <L x (i.e. they are comparable) for the cases that x is a proper prefix of y and when x and y have a long prefix in common.

8) Lexicographic order: aaa, aaab, aab, ab, abb, abba, abbb, ba, bba, bba, bbb
 Standard order: aa, ba, aaa, aab, abb, bba, bbb, aaab, abba, abbb

9) Let f(x, y) be the Ackerman function defined as:
 f(x, y) = if x = 0 then y + 1
 else if y = 0 then f(x - 1, 1)
 else f(x - 1, f(x, y - 1))

 Probing by well-founded induciton

 Let (x, y) be an element of the well founded set N x N.

 Now, let’s prove that f(x, y) is defined for all (x, y) ∈ N x N. We do it in two steps:

 a) Base Case:

 prove that f(x, y) is true for all minimal elements (x, y) ∈ N x N

 the minimal element is (0, 0)

 The Ackerman function is defined for (0, 0) returning 0 + 1 = 1 for the condition x = 0

 Therefore, it holds for the base case,

 b) Let us choose an arbitrary element, (m, n) of N x N and assume that the Ackerman function is given for all predecessor of (m, n):

 f(m - 1, n) ------(1)
 f(m, n - 1) ------(2)
 f(m - 1, n - 1) ------(3)

 Then we prove that it works for f(m, n)

 f(m, n) =
cases:
 if m = 0 then n+1 ; since we chose a value for m,n in NxN, we know that that n is define, therefore n+1 is also defined.
else if n=0 the f(m-1, 1) ; based on our assumption (3), we know that f(m-1, n) is defined for any arbitrary value of n; in this case n=1
else f(m-1, f(m,n-1)) ; based on our assumption (2), we know that f(m,n-1) will be defined and return a natural value s; then, f(m—1,s) is also define as in (1) for any n=s.

10) To prove that the relation < on NxN is well founded, we need to prove that there are not infinite descending chains or sequences.
For (a,b) < (c,d) if an only if max {a,b} < max {c,d}
By contradiction: (a,b)<(c,d) is not well-founded; then it must have a infinite descending chain. Since (a,b) < (c,d) is defined in terms of max{a,b} < max {c,b} then, it should be the case that max{a,b} < max {c,b} has an infinite descending chain also. However, since the relation is applied to NxN, we can have for instance a chain max{(0,0)}< max{0,1}<max(1,2)< …. ; but there is not predecessor of (0,0).
Therefore max{a,b} < max {c,d} is well founded. Since we obtained the latter based on our assumption, we conclude by contradiction the (a,b) < (c,d) does not have an infinite descending chain and therefore is well-founded.

11)
 a) Let S_n denote the sum 1.3 + 2.4+3.5+...+n(n+2) . To prove that S_n = n(n+1)(2n+7)/6
 Base case: n=1, S_1 = 1.3 = 3
 (1)(2)(2+7)/6 = 3
 Induction Step: Assume that S_n is true for all n >= 1 .
 Writing the sum for S_{n+1} we have:
 S_{n+1} = 1.3+2.4+3.5+...+n(n+2)+(n+1)(n+3)
 S_{n+1} = S_n + (n+1)(n+3).
 Replacing S_n
 S_{n+1} = n(n+1)(2n+7)/6 + (n+1)(n+3).
 S_{n+1} = (n+1)(2n^2 + 7n + 6n + 18)/6
 S_{n+1} = (n+1)(2n^2 +13n +18)/6
 S_{n+1} = (n+1)(n+2)(2(n+1) + 7)/6
 Which is the same formula as the inductive step S_{n+1}, proving this way S_n

 b) Base case: n=5
 \(n^2=25 \); 2^5 = 32; since 25 < 32 then base case holds
 Induction Step: Assume \(n^2 < 2^n \) for n > 4
 Then for n+1
 \((n+1)^2 < 2^{(n+1)} \)
 Consider \((n+1)^2 = n^2+ 2n + 1 \)
Using our assumption, \((n+1)^2 < 2^n + 2n + 1 < 2^n + 2^n < 2^{n+1}\). We can write this because for \(n > 4\), we have \(2n+1 < 2^n\). Therefore we have proved the claim that \(n^2 < 2^n\) for \(n > 4\).

c) Let \(S_n = 1 + 2 + 4 + 8 + \ldots + 2^{n-1}\). To prove that \(S_n = 2^n - 1\)

Base Case: \(n=1\). We just have one term in the sum and that is 1. From the formula we get \(2^1 - 1\), which is 1. Therefore, base case holds.

Induction Step: Assume that \(S_n = 2^n - 1\). Now, \(S_{n+1} = 1 + 2 + 4 + 8 + \ldots + 2^{n-1} + 2^n\). Using \(S_n\), we have \(S_{n+1} = S_n + 2^n = 2^n - 1 + 2^n = 2^{n+1} - 1\), thus we prove that \(S_n = 2^n - 1\).