
CSE 130
Introduction to Programming

in C
Arrays and Pointers

Spring 2018
Stony Brook University

Instructor: Shebuti Rayana
http://www3.cs.stonybrook.edu/~cse230/

Definition: Arrays
■ A collection of elements of the same type stored

contiguously in memory under one name
– can be of any data type, e.g., integer, long integer, float,

double, character etc.
– even collection of arrays!
– Arrays of structure, union, pointer etc. are also allowed

■ Advantages:
– For ease of access to any element of an array
– Passing a group of elements to a function

Shebuti Rayana (CS, Stony Brook University) 2

Array Representation
■ A sample one-dimensional integer array

Shebuti Rayana (CS, Stony Brook University) 3

2 5 1 7 3 10

[0] [1] [2] [3] [4] [5]

Memory Address content
1000 2
1002 5
1004 1
1006 7
1008 3
1010 10

Conceptual Picture Actual Picture

• A collection of integer
type elements
• Each element is
associated with a location
index
• In C, array index starts
from zero

Arrays: Declaration & Initialization
■ Declaration: int A[6];
– An array of 6 integers
– A[0], A[1], A[2], …, A[6]
■ If array is declared within a function it contains garbage,

if not initialized
■ If array is globally declared it contains zeros

■ Initialization:
int A[6] = {2,5,1,7,3,10};

– First index is 0, and Last index is array size-1

■ Accessing array element at index i: A[i]
Shebuti Rayana (CS, Stony Brook University) 4

Arrays: Characteristics
■ The storage class of arrays may be

automatic, external, or static, but not
register
■ If external or static arrays are not initialized

they are by default initialized to zero
■ If an array is declared without a size and is

initialized to a series of values, it implicitly
given the size of the number of initializers.
int A[] = {2,5,1,7,3,10};
size of array A is 6 here

Shebuti Rayana (CS, Stony Brook University) 5

Arrays: Characteristics (cont.)
■ Character arrays:
char c[] = {‘a’,‘b’,‘c’,‘\0’};

■ Alternatively:
char c[] = “abc”;

■ These two representations are equivalent

■ string is a sequence of characters that is treated
as a single data item and terminated by
null character '\0' . C does not support strings as a
data type. A string is actually one-
dimensional array of characters in C.

Shebuti Rayana (CS, Stony Brook University) 6

Null character, represents end of string

Array Usage: Example
■ Sum all the elements of an array

Shebuti Rayana (CS, Stony Brook University) 7

Errors in array usage
1. If i has a value outside the range

[0,size-1], no compiler error. Run-
time error will occur when A[i]is
accessed.

– Overrunning the bounds of an array is a common
programming error

– The effect of the error is system-dependent
– Often the value of some unrelated variable will

be returned
2. If local array is used before initialization

garbage value will be processed

Shebuti Rayana (CS, Stony Brook University) 8

2-dimensional array
■ A 2D 3-by-3 integer array
– 2D square array
– not always necessary to

have equal number of
columns and rows

■ Declaration: int A[3][3];

■ Initialization: int A[3][3] =
{{2,5,1},{7,3,10},{0,1,6}};

■ Applications:
– Matrix representation, e.g, graph adjacency matrix

Shebuti Rayana (CS, Stony Brook University) 9

2 5 1

7 3 10

0 1 6

[0] [1] [2] ← columns

[0]

[1]

[2]

rows
↓

2D Array for Graph Adjacency Matrix

Shebuti Rayana (CS, Stony Brook University) 10

■ int A[6][6] =
{{0,1,1,0,0,0},
{1,0,0,1,0,0},
{1,0,0,1,1,0},
{0,1,1,0,0,1},
{0,0,1,0,0,1},
{0,0,0,1,1,0}};

20

1
3

5

4

Undirected unweighted
plain graph

2D Arrays in Memory
■ In the computer memory, all elements are

stored linearly using contiguous addresses.
■ In order to store a two-dimensional matrix

, two dimensional address space must be
mapped to one-dimensional address space.
■ In the computer's memory matrices are

stored in either Row-major order or Column-
major order form.

Shebuti Rayana (CS, Stony Brook University) 11

2D Arrays in Memory (cont.)

Shebuti Rayana (CS, Stony Brook University) 12

2 5 1

7 3 10

0 1 6

[0] [1] [2]

[0]

[1]

[2]

Conceptual Picture Actual Picture
Address Content Index

1000 2 (0, 0)
1002 5 (0, 1)
1004 1 (0, 2)
1006 7 (1, 0)
1008 3 (1, 1)
1010 10 (1, 2)
1012 0 (2, 0)
1014 1 (2, 1)
1016 6 (2, 2)

Row Major Order
Example is given for row major order only

2D Array Usage: Example
■ Matrix multiplication code for matrix a and b
int i, j, k;
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

double sum = 0;
for (k = 0; k < n; k++) {

sum += a[i][k] * b[k][j];
}

c[i][j] = sum;

}

}

Shebuti Rayana (CS, Stony Brook University) 13

Pointers

Shebuti Rayana (CS, Stony Brook University) 14

Introduction
■ A variable in a program is stored in a certain

number of bytes at a particular memory
location or address.
■ Pointers are used to access memory and

manipulate address.
■ If v is a variable, then &v gives its memory

address
– Address operator & is an unary operator

Shebuti Rayana (CS, Stony Brook University) 15

Pointers: Declaration
■ Example Declaration: int *p;
– p is a pointer to integer
– The indirection or dereferencing operator * is unary

■ Its range of values include a special address
0 and a set of positive integers that represent
machine addresses.

■ Example assignment to pointer p
p = 0;
p = Null; // same as p = 0
p = &i; // pointing to i
p = (int *)1776; /* absolute address
*/

Shebuti Rayana (CS, Stony Brook University) 16

Pointers: Characteristics
■ If p is a pointer then *p is the value of

the variable of which p is the address.
■ Direct value of p is an address of a

memory location, and *p is indirect value
of p, which is the value stored in that
memory location.
■ In a certain sense * is the inverse

operator of &

Shebuti Rayana (CS, Stony Brook University) 17

Pointers: Example
■ int a = 1, b = 2, *p;

■ Think of the pointer as an arrow, but it is not yet assigned
a value. So, we do not know what it points to

■ Next line: p = &a

■ b = *p; b = ?
Shebuti Rayana (CS, Stony Brook University) 18

1

a

2

b p

1

a

2

b p

Pointers: Example Code

Shebuti Rayana (CS, Stony Brook University) 19

Value of i: 7
Location of i: effffb24

• A pointer can be initialized in a declaration.
• The variable p is of type int and its initial value is
&i.

• The declaration of i must occur before we take its
address.

Pointers: Declaration and Initialization
Declaration and Initialization

int i=3,j=5,*p=&i,*q=&j,*r;
double x;

Expression Equivalent
Expression

Value

p == &i p == (&i) 1

**&p *(*(&p)) 3

r = &x r = (&x) illegal

7* *p/ *q+7 ((7*(*p))/(*q
))+7

11

*(r=&j) *= *p (*(r = (&j)))
*= (*p)

15

Shebuti Rayana (CS, Stony Brook University) 20

Constructs not to be pointed at
■ Do not point at constants.
– &3 /* illegal */

■ Do not point at ordinary expressions.
– &(k + 99) /* illegal */

■ Do not point at register variables.
– register v;
– &v /* illegal */

■ Address operator can be applied to variables
and array elements.

– If a is an array, expressions such as &a[0] and
&a[i+j+3] make sense.

Shebuti Rayana (CS, Stony Brook University) 21

Call-by-reference
■ "call-by-reference" is a way of passing addresses

(references) of variables to a function that then
allows the body of the function to make changes to
the values of variables in the calling environment.

Shebuti Rayana (CS, Stony Brook University) 22

Ca
ll

by
 v

al
ue

Call by reference

Output:
i = 5
j = 10

Output:
i = 10
j = 5

Relationship between Arrays and Pointers
■ A pointer variable can take different

addresses as values. In contrast, an
array name is an address , or pointer,
that is fixed. So following are illegal:
a = p ++a a += 2

■ Suppose a is an array and i is an int,
– a[i] is equivalent to *(a+i)
■ Equivalent expressions:
#define N 100
int a[N], i, *p, sum = 0;
p = a equivalent to p = &a[0]
p = a + 1 equivalent to p = &a[1]

Shebuti Rayana (CS, Stony Brook University) 23

Relationship between Arrays and Pointers
■ Following 3 for loops are equivalent:
for(p = a; p < &a[N]; ++p)

sum += *p;

for(i = 0; i < N; ++i)

sum += *(a+i);

p=a;
for(i = 0; i < N; ++i)

sum += p[i];

Shebuti Rayana (CS, Stony Brook University) 24

