
Model Checking Push-down Systems

Verification of Infinite State Systems

Samik Basu

September 23, 2002

Organization

• Programs with (recursive) procedure calls

? Control flow graphs

? Push-down Models of Programs

• Property

? Linear Temporal Logic

• Büchi Automata

? Modal mu-calculus

• Model Checking by abstraction

Model Checking

Given a Model M of the program & a property ϕ specified in

temporal logic, M
?

|= ϕ

• Automata-theoretic Approach

? M and ϕ are represented as finite state automata

? Product automata construction

? Check for language emptyness

Program Model

Control-flow graph Push-down Model

Program Model

Control-flow graph Push-down Model

S1

S2

S5

S3

S4

call M

M:

p

Program Model

Control-flow graph Push-down Model

S1

S2

S5

S3

S4

call M

M:

p

S = {s1, s2, s3, s4, s5} – stack alphabets

Program Model

Control-flow graph Push-down Model

S1

S2

S5

S3

S4

call M

M:

p

S = {s1, s2, s3, s4, s5} – stack alphabets

Transition Rules:

s1 ↪→ [s2]
s1 ↪→ [s3]
s2 ↪→ [s5]
s4 ↪→ [s5]
s5 ↪→ []

Program Model

Control-flow graph Push-down Model

S1

S2

S5

S3

S4

call M

M:

p

S = {s1, s2, s3, s4, s5} – stack alphabets

Transition Rules:

s1 ↪→ [s2]
s1 ↪→ [s3]
s2 ↪→ [s5]
s4 ↪→ [s5]
s5 ↪→ []

s3 ↪→ [s1, s4]

LTL formula

Examples

Fp existence of reachable state where p holds true

Gp property p holds in all reachable states

GFp in any infinite path, states where p holds appear infinitely many

times

FGp in any infinite path, a state is reached from where p holds true

globally

Büchi Automata

B = (Q,→,Σ, Q0, F) where

Q – States,

Q0 – Init States,

Σ – Propositions,

→ – Q× Σ×Q,

F – Final States

Accepting Sequence visits F

infinitely many times

Büchi Automata

B = (Q,→,Σ, Q0, F) where

Q – States,

Q0 – Init States,

Σ – Propositions,

→ – Q× Σ×Q,

F – Final States

Accepting Sequence visits F

infinitely many times

GF(p)

p

tt p

tt

FG(p)

tt

p

p

Product Construction

PDA rules Büchi rules Product rules

p is true at s1

s1 ↪→ [] q1
p−→ q2 (q1, s1) ↪→ (q2, [])

s1 ↪→ [s2] q1
p−→ q2 (q1, s1) ↪→ (q2, [s2])

s1 ↪→ [t, s2] q1
p−→ q2 (q1, s1) ↪→ (q2, [t, s2])

Product is another Push-down System

Abstract Product Construction – II

Abstract Product Construction – II

q1
!p

!ptt

FG(!p)

s1

s2

s3

s4

s5

M:

Call M

p

q2

Abstract Product Construction – II

q1
!p

!ptt

FG(!p)

s1

s2

s3

s4

s5

M:

Call M

p

q2

q1

q1

q1

q1

q1

q2

q2

q2

q2

q2

Abstract Product

Abstract Product Construction – II

q1
!p

!ptt

FG(!p)

s1

s2

s3

s4

s5

M:

Call M

p

q2

q1

q1

q1

q1

q1

q2

q2

q2

q2

q2

Abstract Product

Abstract Product Construction – II

q1
!p

!ptt

FG(!p)

s1

s2

s3

s4

s5

M:

Call M

p

q2

q1

q1

q1

q1

q1

q2

q2

q2

q2

q2

Abstract Product

Abstract Product Construction – II

q1
!p

!ptt

FG(!p)

s1

s2

s3

s4

s5

M:

Call M

p

q2

q1

q1

q1

q1

q1

q2

q2

q2

q2

q2

Abstract Product

Abstract Product Construction – II

q1
!p

!ptt

FG(!p)

s1

s2

s3

s4

s5

M:

Call M

p

q2

q1

q1

q1

q1

q1

q2

q2

q2

q2

q2

Abstract Product

Abstract Product Construction – II

q1
!p

!ptt

FG(!p)

s1

s2

s3

s4

s5

M:

Call M

p

q2

q1

q1

q1

q1

q1

q2

q2

q2

q2

q2

Abstract Product

M’s effect

Summarizing Effects of Procedure Calls

• erase – How the state of Büchi automata changes when the

top-of-stack symbol is erased

• Keep track of whether a final state of Büchi automata is visited

Summarizing Effects of Procedure Calls

• erase – How the state of Büchi automata changes when the

top-of-stack symbol is erased

• Keep track of whether a final state of Büchi automata is visited

Base Case erase(q1, s1, B, q2) if (q1, s1) ↪→ (q2, [])
& B = q1 ∈ F

Summarizing Effects of Procedure Calls

• erase – How the state of Büchi automata changes when the

top-of-stack symbol is erased

• Keep track of whether a final state of Büchi automata is visited

Base Case erase(q1, s1, B, q2) if (q1, s1) ↪→ (q2, [])
& B = q1 ∈ F

Direct Transfer erase(q1, s1, B, q3) if (q1, s1) ↪→ (q2, [s2])∧
erase(q2, s2, B2, q3)
& B = (q1 ∈ F) ∨B2

Summarizing Effects of Procedure Calls

• erase – How the state of Büchi automata changes when the

top-of-stack symbol is erased

• Keep track of whether a final state of Büchi automata is visited

Base Case erase(q1, s1, B, q2) if (q1, s1) ↪→ (q2, [])
& B = q1 ∈ F

Direct Transfer erase(q1, s1, B, q3) if (q1, s1) ↪→ (q2, [s2])∧
erase(q2, s2, B2, q3)
& B = (q1 ∈ F) ∨B2

Call Transitions erase(q1, s1, B, q4) if (q1, s1) ↪→ (q2, [s2, s3])∧
erase(q2, s2, B2, q3)∧
erase(q3, s3, B3, q4)
& B = (q1 ∈ F) ∨B2 ∨B3

Abstract Product from PDS rules & erase

↪→ + erase

• ◦−→ – keeps track of whether a final Büchi state is visited (goodness

label) & whether the stack depth has increased (resource label)

Abstract Product from PDS rules & erase

↪→ + erase

• ◦−→ – keeps track of whether a final Büchi state is visited (goodness

label) & whether the stack depth has increased (resource label)

Direct Transfer (q1, s1)
B,0
◦−→ (q2, s2) if (q1, s1) ↪→ (q2, [s2])

& B = q1 ∈ F

Abstract Product from PDS rules & erase

↪→ + erase

• ◦−→ – keeps track of whether a final Büchi state is visited (goodness

label) & whether the stack depth has increased (resource label)

Direct Transfer (q1, s1)
B,0
◦−→ (q2, s2) if (q1, s1) ↪→ (q2, [s2])

& B = q1 ∈ F
Call with no return (q1, s1)

B,1
◦−→ (q2, s2) if (q1, s1) ↪→ (q2, [s2, s3])

& B = q1 ∈ F

Abstract Product from PDS rules & erase

↪→ + erase

• ◦−→ – keeps track of whether a final Büchi state is visited (goodness

label) & whether the stack depth has increased (resource label)

Direct Transfer (q1, s1)
B,0
◦−→ (q2, s2) if (q1, s1) ↪→ (q2, [s2])

& B = q1 ∈ F
Call with no return (q1, s1)

B,1
◦−→ (q2, s2) if (q1, s1) ↪→ (q2, [s2, s3])

& B = q1 ∈ F
Call with matched return (q1, s1)

B,0
◦−→ (q3, s3) if (q1, s1) ↪→ (q2, [s2, s3])∧

erase(q2, s2, B2, q3)
& B = (q1 ∈ F) ∨B2 ∨B3

Abstract Product from PDS rules & erase

↪→ + erase

• ◦−→ – keeps track of whether a final Büchi state is visited (goodness

label) & whether the stack depth has increased (resource label)

Direct Transfer (q1, s1)
B,0
◦−→ (q2, s2) if (q1, s1) ↪→ (q2, [s2])

& B = q1 ∈ F
Call with no return (q1, s1)

B,1
◦−→ (q2, s2) if (q1, s1) ↪→ (q2, [s2, s3])

& B = q1 ∈ F
Call with matched return (q1, s1)

B,0
◦−→ (q3, s3) if (q1, s1) ↪→ (q2, [s2, s3])∧

erase(q2, s2, B2, q3)
& B = (q1 ∈ F) ∨B2 ∨B3

Finite Set of ◦−→ rules: R-graph

Accepting Sequence in R-graph

•
true,
◦−→ appears in a cycle – Good Cycle

• Accepting Sequence: Sequence of transitions from the start state

leading to a good cycle

GoodCycle

true

Accepting Sequence in R-graph

•
true,
◦−→ appears in a cycle – Good Cycle

• Accepting Sequence: Sequence of transitions from the start state

leading to a good cycle

GoodCycle

true

• Resource Constraint: Good cycle consists of only
,0
◦−→ edges

? Property is satisfied for any finite depth stack

SCC Detection

• Disjunctive Property: At least one ◦−→ is labeled by true

• Conjunctive Property: All ◦−→ is labeled by 0

SCC Detection

• Disjunctive Property: At least one ◦−→ is labeled by true

• Conjunctive Property: All ◦−→ is labeled by 0

• Tarjan’s SCC detection algorithm

? Disjunctive Property: Couvreur – FM’99

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges

Each partition bridged by 1-edges

SCC detection performed per partition

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges

Each partition bridged by 1-edges

SCC detection performed per partition

1
1

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges

Each partition bridged by 1-edges

SCC detection performed per partition

1
1

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges

Each partition bridged by 1-edges

SCC detection performed per partition

1
1

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges

Each partition bridged by 1-edges

SCC detection performed per partition

1
1

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges

Each partition bridged by 1-edges

SCC detection performed per partition

1
1

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges

Each partition bridged by 1-edges

SCC detection performed per partition

1
1

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges

Each partition bridged by 1-edges

SCC detection performed per partition

1
1

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges

Each partition bridged by 1-edges

SCC detection performed per partition

1
1

Summary

• Recursion handled by summarizing the effect of procedure calls

• Distinguishes finite stack runs from stack diverging runs

? Verification is independent of recursion control parameter:

abstracted to generate finite model in terms of data domain

? Result obtained is valid for all possible finite values of recursion

control parameter

• Implemented in XSB: local, on-the-fly model checker

References

• Rachability Analysis of push-down automata
Bouajjani, Esparza, Maler – CONCUR’97

• A direct symbolic approach to model checking push-down systems
Finkel, Willems, Wolper – INFINITY’97

• Efficient Algorithms for model checking push-down systems
Esparza, Hansel, Rossmanith, Schwoon – CAV’00

• A BDD-based model checker for recursive programs
Esparza, Schwoon – CAV’01

• Precise interprocedural dataflow analysis via graph reachability
Reps, Horwitz, Sagiv – POPL’95

Mu-calculus Model Checking for Programs

• Program models: Control flow graphs with action labels on

transitions

• Property expressed in modal mu-calculus

• Given the set of formula true at a state s of control flow model,

find the set of formula true at the states that has transitions to s

Mu-calculus
Syntax
F → P | F1 ∨ F2 | F1 ∧ F2 | 〈a〉F | [a]F | X
X → µX.F | νX.F

Semantics: [[F]]e gives the set of states where F is true in the current environment
e : X 7→ 2S

[[P]]e = {s | P is true in s}
[[F1 ∨ F1]]e = [[F1]]e ∪ [[F2]]e
[[F1 ∧ F1]]e = [[F1]]e ∩ [[F2]]e

[[〈a〉F]]e = {s | ∃s a−→ t s.t. t ∈ [[F]]e}
[[[a]F]]e = {s | ∀s a−→ t s.t. t ∈ [[F]]e}
X = e(X)

µX.F = τ i(false)
where τ i(P) = τ i−1(τ(P))
τ(false) = [[F]]e[X 7→false]

Examples

• X1 = νX1.(〈−〉tt ∧ [−]X1): freedom from deadlock

• X2 = µX2.(〈a〉X3 ∨ 〈−〉X2)
X3 = µX3.(〈b〉tt ∨ 〈−〉X3): there exists a path where action a is

followed eventually by action b

• Properties can be expressed using arbitrary interleaving of least and

greatest fixed point formula

• Focus: Alternation-free mu-calculus

? Each formula can be interpreted separately starting from the

inner most fixed point formula

Model Checking

• Compute the set of formula that are true in state s of procedure P using the
set of formula that are true in the end-state of P

• X (s) Y : if s
a−→ t then X (a) X1 (t) Y (a is an atomic action or a call to a

procedure)

• Initialization

? End-states each procedure has identity mapping: X (endstate) X
? Least fixed point formula variables are false at all states
? Greatest fixed point formula variables are true at all states

• M |= X if X (s) deadlock where

? s is the start state of M
? deadlock is the set of formula true at the endstate of M

Example

X = µX.(〈b〉tt ∨ 〈−〉X)

Example

X = µX.(〈b〉tt ∨ 〈−〉X)
X1 = X2 ∨X3 X2 = 〈b〉X4 X3 = 〈−〉X1 X4 = tt

Example

X = µX.(〈b〉tt ∨ 〈−〉X)
X1 = X2 ∨X3 X2 = 〈b〉X4 X3 = 〈−〉X1 X4 = tt

M:

S1

a

c

S2

5S

b

4S

call M

3

a

S

Example

X = µX.(〈b〉tt ∨ 〈−〉X)
X1 = X2 ∨X3 X2 = 〈b〉X4 X3 = 〈−〉X1 X4 = tt

M:

S1

a

c

S2

5S

b

4S

call M

3

a

S

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

Example

X = µX.(〈b〉tt ∨ 〈−〉X)
X1 = X2 ∨X3 X2 = 〈b〉X4 X3 = 〈−〉X1 X4 = tt

M:

S1

a

c

S2

5S

b

4S

call M

3

a

S

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

Example

X = µX.(〈b〉tt ∨ 〈−〉X)
X1 = X2 ∨X3 X2 = 〈b〉X4 X3 = 〈−〉X1 X4 = tt

M:

S1

a

c

S2

5S

b

4S

call M

3

a

S

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

Example

X = µX.(〈b〉tt ∨ 〈−〉X)
X1 = X2 ∨X3 X2 = 〈b〉X4 X3 = 〈−〉X1 X4 = tt

M:

S1

a

c

S2

5S

b

4S

call M

3

a

S

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

Example

X = µX.(〈b〉tt ∨ 〈−〉X)
X1 = X2 ∨X3 X2 = 〈b〉X4 X3 = 〈−〉X1 X4 = tt

M:

S1

a

c

S2

5S

b

4S

call M

3

a

S

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

Example

X = µX.(〈b〉tt ∨ 〈−〉X)
X1 = X2 ∨X3 X2 = 〈b〉X4 X3 = 〈−〉X1 X4 = tt

M:

S1

a

c

S2

5S

b

4S

call M

3

a

S

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

Example

X = µX.(〈b〉tt ∨ 〈−〉X)
X1 = X2 ∨X3 X2 = 〈b〉X4 X3 = 〈−〉X1 X4 = tt

M:

S1

a

c

S2

5S

b

4S

call M

3

a

S

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X 1 X 2 X 3 X 4

X1(s)X4 =⇒ s |= X

References

• Model checking for context-free processes

Burkart, Steffen – CONCUR’92

• Model checking the full modal mu-calculus for infinite sequential

processes

Burkart, Steffen – TCS’99

