MODEL CHECKING PUSH-DOWN SYSTEMS

VERIFICATION OF INFINITE STATE SYSTEMS

Samik Basu

September 23, 2002

Organization

e Programs with (recursive) procedure calls
* Control flow graphs
* Push-down Models of Programs

e Property

* Linear Temporal Logic
e Buchi Automata
* Modal mu-calculus

e Model Checking by abstraction

Model Checking

Given a Model M of the program & a property ¢ specified in
?
temporal logic, M = ¢

e Automata-theoretic Approach

* M and ¢ are represented as finite state automata
* Product automata construction
* Check for language emptyness

Program Model

Control-flow graph Push-down Model

Program Model

Control-flow graph Push-down Model
M:
S1
S3
call M S2
p
S4

Control-flow graph

M:
S1
S3
call M S2
p
S4

Program Model

Push-down Model

S = {s1, S2, S3, S4, S5} — stack alphabets

Control-flow graph

M:
S1
S3
call M S2
p
S4

Program Model

Push-down Model

S = {s1, S2, S3, S4, S5} — stack alphabets
Transition Rules:

51— [s2

s1 <= [s3

s2 — [85

54 — |85
s5 — ||

Program Model

Control-flow graph Push-down Model
M:
Sq S = {s1, S2, S3, S4, S5} — stack alphabets

Transition Rules:
83 S1 — _82_
S1 — [S3
Y 7 T
ca P S2 —™ |S5
84 S4 —> :85:
s5 — |]

§3 — [31, 84]

LTL formula

Examples

Fp existence of reachable state where p holds true
Gp property p holds in all reachable states

GFp in any infinite path, states where p holds appear infinitely many
times

FGp in any infinite path, a state is reached from where p holds true
globally

Buchi Automata
B=(Q,—,%,Qo, F) where

() — States,

(Do — Init States,

>. — Propositions,

— — Q X 2 X Q,

F' — Final States

Accepting Sequence visits F
infinitely many times

Buchi Automata

B=(Q,—,%,Qo, F) where
L p

() — States, GF(p)
Qo — Init States, i ..@3 0

>. — Propositions,

— — Q X 2 X Q,
F' — Final States t

Accepting Sequence visits F’ p
FG(p) -@ :

infinitely many times

Product Construction

PDA rules Buchi rules Product rules
p Is true at s
si—=[a—a (q,5) = (@]
si—[s2] @ —aq (q1,51) = (g2,[52])

s1 [t 89] @1 —— g2 (qu,81) — (go, [t, 52])

Product is another Push-down System

Abstract Product Construction — ||

Abstract Product Construction — ||

tt 'p

Abstract Product Construction — ||

tt 'p

ql 02
ql 92

gl g2

ql q2

Abgract Produd

Abstract Product Construction — ||

tt

ql 92

gl g2

q 02

Abgract Produd

Abstract Product Construction — ||

tt 'p

ql g2
| qA\
gl q

gl g2

2

q 02

Abgract Produd

Abstract Product Construction — ||

tt 'p

2

VN
¢ a

gl g2

q 02

Abgract Produd

Abstract Product Construction — ||

tt 'p

ql 92

7N

gl g2

q 02

Abgract Produd

Abstract Product Construction — ||

tt 'p

ql g2
! QZN
gl g2

P\

gl g2

M’s effect

q 02

Abgract Produd

Summarizing Effects of Procedure Calls

e ecrase — How the state of Buchi automata changes when the
top-of-stack symbol is erased

e Keep track of whether a final state of Buchi automata is visited

Summarizing Effects of Procedure Calls

e ecrase — How the state of Buchi automata changes when the
top-of-stack symbol is erased

e Keep track of whether a final state of Buchi automata is visited

Base Case erase(qi, s1,B,q2) if (q1,51) <= (g2, [])
& B=q € F

Summarizing Effects of Procedure Calls

e ecrase — How the state of Buchi automata changes when the
top-of-stack symbol is erased

e Keep track of whether a final state of Buchi automata is visited

Base Case erase(Qla s1, B, QZ> if (QL 31) = ((127 H)
& B=q € F

Direct Transfer erase(qi,s1,B,q3) if (q1,51) < (qo, [s2])A
erase(qo, s2, B2, q3)
& B=(q1 € F)V By

Summarizing Effects of Procedure Calls

e ecrase — How the state of Buchi automata changes when the
top-of-stack symbol is erased

e Keep track of whether a final state of Buchi automata is visited

Base Case erase(qi, s1,B,q2) if (q1,51) <= (g2, [])
& B=q € F
Direct Transfer erase(qi,s1,B,q3) if (q1,51) < (qo, [s2])A
erase(qe, 52, B2, q3)
& B=(q1 € F)V By
Call Transitions erase(qi,s1,B,q4) if (q1,51) — (qo, [S2, S3])A
erase(qq, 52, B2, q3)A

erase(qs, s3, B3, qa)
& B = (Ql EF)VBQ\/Bg

Abstract Product from PDS rules & erase

— -+ erase

e o— — keeps track of whether a final Blichi state is visited (goodness
label) & whether the stack depth has increased (resource label)

Abstract Product from PDS rules & erase

— -+ erase

e o— — keeps track of whether a final Blichi state is visited (goodness
label) & whether the stack depth has increased (resource label)

Direct Transfer (q1,51) Sl (q2,82) it (q1,51) — (g2, [s2])

& B=qg, € F

Abstract Product from PDS rules & erase

— -+ erase

e o— — keeps track of whether a final Blichi state is visited (goodness
label) & whether the stack depth has increased (resource label)

B,0

Direct Transfer (q1,81) o— (q2,52) if (q1,51) — (g2, [s2))
& B=q1 € F
B,
Call with no return (q1,51) o— (q2,82) if (q1,s1) — (qo, [S2, S3])

& B=q € F

Abstract Product from PDS rules & erase

— -+ erase

e o— — keeps track of whether a final Biichi state is visited (goodness
label) & whether the stack depth has increased (resource label)

B,0

Direct Transfer (q1,81) o— (q2,52) if (q1,51) — (g2, [s2))
& B=qg, € F
B,
Call with no return (q1, 51) ot (q2,s2) if (q1,51) — (g2, [s2, s3])
& B=q € F
B,0

Call with matched return (g1, $1) o— (g3, 83) if (q1,51) — (g2, [S2, S3])A

erase(CIQ, S92, B, QS)
& B=(q1 € F)V B2V Bs

Abstract Product from PDS rules & erase

— -+ erase

e o— — keeps track of whether a final Biichi state is visited (goodness
label) & whether the stack depth has increased (resource label)

B,0

Direct Transfer (q1,81) o— (q2,52) if (q1,51) — (g2, [s2))
& B=qg, € F
B,
Call with no return (q1, 51) ot (q2,s2) if (q1,51) — (g2, [s2, s3])
& B=q € F
B,0

Call with matched return (g1, $1) o— (g3, 83) if (q1,51) — (g2, [S2, S3])A
erase(QQa 52, B27 Q3)
& B=(q1 € F)V B3V Bs

Finite Set of o— rules: R-graph

Accepting Sequence in R-graph

true, —

e o— appears in a cycle — Good Cycle

e Accepting Sequence: Sequence of transitions from the start state
leading to a good cycle

/\/_/th

GoodCycle

Accepting Sequence in R-graph

true, —

e o— appears in a cycle — Good Cycle

e Accepting Sequence: Sequence of transitions from the start state
leading to a good cycle

/\/\/th

GoodCycle

: : _,0
e Resource Constraint: Good cycle consists of only o— edges

* Property is satisfied for any finite depth stack

SCC Detection

e Disjunctive Property: At least one o—— is labeled by true

e Conjunctive Property: All o— is labeled by 0

SCC Detection

e Disjunctive Property: At least one o—— is labeled by true

e Conjunctive Property: All o— is labeled by 0

e Tarjan's SCC detection algorithm

* Disjunctive Property: Couvreur — FM'99

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges
Each partition bridged by 1-edges
SCC detection performed per partition

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges
Each partition bridged by 1-edges
SCC detection performed per partition

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges
Each partition bridged by 1-edges
SCC detection performed per partition

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges
Each partition bridged by 1-edges
SCC detection performed per partition

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges
Each partition bridged by 1-edges
SCC detection performed per partition

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges
Each partition bridged by 1-edges
SCC detection performed per partition

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges
Each partition bridged by 1-edges
SCC detection performed per partition

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges
Each partition bridged by 1-edges
SCC detection performed per partition

SCC Detection with Conjunctive Constraints

R-graph partitioned in DFS-graphs with only 0-edges
Each partition bridged by 1-edges
SCC detection performed per partition

Summary

e Recursion handled by summarizing the effect of procedure calls

e Distinguishes finite stack runs from stack diverging runs

* Verification is independent of recursion control parameter:
abstracted to generate finite model in terms of data domain

* Result obtained is valid for all possible finite values of recursion
control parameter

e Implemented in XSB: local, on-the-fly model checker

References

Rachability Analysis of push-down automata
Bouajjani, Esparza, Maler - CONCUR'97

A direct symbolic approach to model checking push-down systems
Finkel, Willems, Wolper — INFINITY'97

Efficient Algorithms for model checking push-down systems
Esparza, Hansel, Rossmanith, Schwoon — CAV'00

A BDD-based model checker for recursive programs
Esparza, Schwoon — CAV'01

Precise interprocedural dataflow analysis via graph reachability
Reps, Horwitz, Sagiv — POPL'95

Mu-calculus Model Checking for Programs

e Program models: Control flow graphs with action labels on
transitions

e Property expressed in modal mu-calculus

e Given the set of formula true at a state s of control flow model,
find the set of formula true at the states that has transitions to s

Mu-calculus

Syntax
F%P‘Fl\/FQ‘Fl/\FQ | <CL>F| [a]F|X
X — uX.F | vX.F

Semantics: [F]. gives the set of states where F' is true in the current environment

e: X — 2°
[P]e = {s| P is true in s}
[F1V File = [Fi]e U[F2)e
[FinFile = [FileN[F)e
[(a)F]le = {s|3s-tst. tel[F]}
[a]Fle = {s|Vs-ts.t.tc[F].}
X = e(X)
uX.F = 71'(false)

where 7/(P) = 7'~ 1(7(P))
T(false) — I[F]le[XHfalse]

Examples

o X7 =vXi.((—)tt A |—]X1): freedom from deadlock

® Xg = ,LLX2(<CL>X3 V <—>X2)
X3 = puXs.((b)tt V (—)X3): there exists a path where action a is
followed eventually by action b

e Properties can be expressed using arbitrary interleaving of least and
greatest fixed point formula
e Focus: Alternation-free mu-calculus

* Each formula can be interpreted separately starting from the
inner most fixed point formula

Model Checking

Compute the set of formula that are true in state s of procedure P using the
set of formula that are true in the end-state of P

X (5) Y: if s >t then X (a) X; (t) Y (a is an atomic action or a call to a
procedure)
Initialization

x End-states each procedure has identity mapping: X (endstate) X
* Least fixed point formula variables are false at all states
* Greatest fixed point formula variables are true at all states

M = X if X (s) deadlock where

*x S Is the start state of M
*x deadlock is the set of formula true at the endstate of M

Example

X = pX.(()tt vV (—)X)

Example

X = pX.(()tt vV (—)X)
X1=XoVXs Xo=(Xy Xg=(-)X1 Xg=tt

Example

X = pX.(()tt vV (—)X)
X1=XoVXs Xo=(Xy Xg=(-)X1 Xg=tt

Example

X = pX.(()tt vV (—)X)
X1=XoVXs Xo=(Xy Xg=(-)X1 Xg=tt

Example

X = pX.(()tt vV (—)X)

s
|
&
<
o
&
|
=
&
|
0
>
e
|
ct

Example

X = pX.(()tt vV (—)X)

s
|
&
<
o
&
|
=
&
|
0
>
e
|
ct

Example

X = uX.

S

(b)tt V (=) X)

Example

X = pX.((O)tt Vv (—)X)
= XoV X3 Xo= X4 Xs=(-)X; X4=tt
R
xl Xp X3 @
X3

cadl M

4;2\@
5 @@@

@XS@

Example
X = pX.(()tt vV (—)X)
X1=XoVXs Xo= Xy Xs={(—)X7 X4=tt

&y X2
S1

So

Txe B9

Example

X = uX.
X1 =XV X3 Xo=(

(
b

(b)tt V (=) X)

References

e Model checking for context-free processes
Burkart, Steffen — CONCUR'92

e Model checking the full modal mu-calculus for infinite sequential

processes
Burkart, Steffen — TCS'99

