Untyped Lambda Calculus

Principles of Programming Languages

CSE 526
(1) Syntax
(2) Variables and Substitution
(3) Reductions
(4) Recursion
(5) Nameless Representation

Lambda Calculus

- A formal notation to study computability and programming.
- Can be considered as the smallest universal programming language.
- Universal: Can be used to express any computation that can be performed on a Turing Machine
- Small: Has only two constructs: abstraction and application.
- Brief History:
- Introduced by Church and Kleene in 1930s.
- Used by Church to study problems in computability.
- Concepts have heavily influenced functional programming.
- Used to study types and type systems in programming languages

Lambda Terms

Syntax of the λ-calculus

$$
t::=\quad \text { Terms }
$$

Lambda Terms

Syntax of the λ-calculus

$$
\begin{array}{lll}
t::= & & \text { Terms } \\
& x & \text { Variable }
\end{array}
$$

Lambda Terms

Syntax of the λ-calculus

$$
\begin{array}{rlrl}
t: & & & \text { Terms } \\
& x & & \text { Variable } \\
& & \lambda x . t & \\
\text { Abstraction }
\end{array}
$$

Lambda Terms

Syntax of the λ-calculus

$$
\begin{array}{rlll}
t: & & & \text { Terms } \\
& x & \text { Variable } \\
& \lambda x . t & \text { Abstraction } \\
& t t & \text { Application }
\end{array}
$$

Lambda Terms

Syntax of the λ-calculus

$$
\begin{array}{rlrl}
t: & & & \text { Terms } \\
& x & \text { Variable } \\
& \lambda x . t & \text { Abstraction } \\
& t t & \text { Application }
\end{array}
$$

Textual Representation:
Use parentheses to represent trees as linear text

Informal Semantics

λ-expressions can be considered as expressions in a functional language

- Abstraction: $(\lambda x, t)$ is a "function" with formal parameter x that returns (the value of) term t.

Informal Semantics

λ-expressions can be considered as expressions in a functional language

- Abstraction: $(\lambda x . t)$ is a "function" with formal parameter x that returns (the value of) term t.
- Example 1: $\lambda x . x$ is the identity function: one that returns the argument value itself.

Informal Semantics

λ-expressions can be considered as expressions in a functional language

- Abstraction: $(\lambda x, t)$ is a "function" with formal parameter x that returns (the value of) term t.
- Example 1: $\lambda x . x$ is the identity function: one that returns the argument value itself.
- Example 2: $\lambda x . \lambda y . x$ is a function that takes "two arguments x and y and returns the first argument".
The explanation in blue above is not accurate, but is good enough for government work. We'll see the subtlety shortly.

Informal Semantics

λ-expressions can be considered as expressions in a functional language

- Abstraction: $(\lambda x, t)$ is a "function" with formal parameter x that returns (the value of) term t.
- Example 1: $\lambda x . x$ is the identity function: one that returns the argument value itself.
- Example 2: $\lambda x . \lambda y . x$ is a function that takes "two arguments x and y and returns the first argument".
The explanation in blue above is not accurate, but is good enough for government work. We'll see the subtlety shortly.
- Application: $\left(t_{1} t_{2}\right)$ is a "function call" where t_{1} is a function and t_{2} is the supplied argument.

Informal Semantics

λ-expressions can be considered as expressions in a functional language

- Abstraction: $(\lambda x . t)$ is a "function" with formal parameter x that returns (the value of) term t.
- Example 1: $\lambda x . x$ is the identity function: one that returns the argument value itself.
- Example 2: $\lambda x . \lambda y . x$ is a function that takes "two arguments x and y and returns the first argument".
The explanation in blue above is not accurate, but is good enough for government work. We'll see the subtlety shortly.
- Application: $\left(t_{1} t_{2}\right)$ is a "function call" where t_{1} is a function and t_{2} is the supplied argument.
- Example: $((\lambda x . x) y)$ supplies y as the argument to the identity function.

Syntactic Conventions and Syntactic Sugar

- Parentheses can be dropped using the following conventions:
- application is left associative
e.g. $((f f) x)$ is same as $f f x$
- a λ binds as much as possible to its right. e.g $\lambda f . \lambda x . f(f x)$ is same as $(\lambda f .(\lambda x . f(f x)))$
- Multiple consecutive abstractions can be combined:
e.g. $\lambda f . \lambda x . f(f x)$ is same as $\lambda f x . f(f x)$

The Meaning of Lambda Expressions

- Recall: $\lambda x . t$ stands for a function with x as the parameter and (the value of) t as the return value.

The Meaning of Lambda Expressions

- Recall: $\lambda x . t$ stands for a function with x as the parameter and (the value of) t as the return value.
- ($t_{1} t_{2}$) stands for "calling" the function t_{1} with t_{2} as the parameter.

The Meaning of Lambda Expressions

- Recall: $\lambda x . t$ stands for a function with x as the parameter and (the value of) t as the return value.
- ($t_{1} t_{2}$) stands for "calling" the function t_{1} with t_{2} as the parameter.
- Example: Consider the expression

$$
((\lambda w y x . y(w y x)) \quad(\lambda s z . z))
$$

This is an instance of an application. The expression in blue is passed as an argument to the function in red.

The Meaning of Lambda Expressions

- Recall: $\lambda x . t$ stands for a function with x as the parameter and (the value of) t as the return value.
- $\left(t_{1} t_{2}\right)$ stands for "calling" the function t_{1} with t_{2} as the parameter.
- Example: Consider the expression

$$
((\lambda w y x . y(w y x)) \quad(\lambda s z . z))
$$

This is an instance of an application. The expression in blue is passed as an argument to the function in red.

- The meaning of an application: replace every occurrence of the formal parameter in the body of the function with the given argument. In the above example

The Meaning of Lambda Expressions

- Recall: $\lambda x . t$ stands for a function with x as the parameter and (the value of) t as the return value.
- $\left(t_{1} t_{2}\right)$ stands for "calling" the function t_{1} with t_{2} as the parameter.
- Example: Consider the expression

$$
((\lambda w y x . y(w y x)) \quad(\lambda s z . z))
$$

This is an instance of an application. The expression in blue is passed as an argument to the function in red.

- The meaning of an application: replace every occurrence of the formal parameter in the body of the function with the given argument. In the above example
(1) $\lambda y x . y((\lambda s z . z) y x)$

The Meaning of Lambda Expressions

- Recall: $\lambda x . t$ stands for a function with x as the parameter and (the value of) t as the return value.
- $\left(t_{1} t_{2}\right)$ stands for "calling" the function t_{1} with t_{2} as the parameter.
- Example: Consider the expression

$$
((\lambda w y x . y(w y x)) \quad(\lambda s z . z))
$$

This is an instance of an application. The expression in blue is passed as an argument to the function in red.

- The meaning of an application: replace every occurrence of the formal parameter in the body of the function with the given argument. In the above example
(1) $\lambda y x . y((\lambda s z . z) y x)$
(2) $\lambda y x \cdot y((\lambda z, z) x)$

The Meaning of Lambda Expressions

- Recall: $\lambda x . t$ stands for a function with x as the parameter and (the value of) t as the return value.
- ($t_{1} t_{2}$) stands for "calling" the function t_{1} with t_{2} as the parameter.
- Example: Consider the expression

$$
((\lambda w y x . y(w y x)) \quad(\lambda s z . z))
$$

This is an instance of an application. The expression in blue is passed as an argument to the function in red.

- The meaning of an application: replace every occurrence of the formal parameter in the body of the function with the given argument. In the above example
(1) $\lambda y x . y((\lambda s z . z) y x)$
(2) $\lambda y x \cdot y((\lambda z, z) x)$
(3) $\lambda y x, y x$

Encoding Booleans in the λ-Calculus

B	λ-calculus	
true	$\lambda x . \lambda y . x$	
false	$\lambda x . \lambda y . y$	
\&\&	$\lambda x \cdot \lambda y .((x y) f a l s e)$	
\|		$\lambda x . \lambda y .((x$ true $) y)$
!	$\lambda x .((x$ false $)$ true $)$	
if	$\lambda c . \lambda t . \lambda e .((c t) e)$	

This is known as the Church encoding of Booleans, or simply Church Booleans.

Encoding Booleans in the λ-Calculus

B	λ-calculus	
true	$\lambda x . \lambda y . x$	
false	$\lambda x . \lambda y . y$	
\&\&	$\lambda x . \lambda y .((x y) f a l s e)$	
\|		$\lambda x . \lambda y .((x$ true $) y)$
!	$\lambda x .((x$ false $)$ true $)$	
if	$\lambda c . \lambda t . \lambda e .((c t) e)$	

Example:
(true \&\& false)

This is known as the Church encoding of Booleans, or simply Church Booleans.

Encoding Boolean in the λ-Calculus

\mathbf{B}	λ-calculus
true	$\lambda x \cdot \lambda y \cdot x$
false	$\lambda x \cdot \lambda y \cdot y$
\&\&	$\lambda x \cdot \lambda y \cdot((x y)$ false $)$
II	$\lambda x \cdot \lambda y \cdot((x$ true $) y)$
$!$	$\lambda x \cdot((x$ false $)$ true $)$
if	$\lambda c \cdot \lambda t \cdot \lambda e .((c t) e)$

Example:
(true \&\& false)
$\equiv \quad(\lambda x \cdot \lambda y \cdot((x y) f a l s e))$
($\lambda x . \lambda y, x)$
($\lambda x, \lambda y, y)$

This is known as the
Church encoding of Booleans, or simply Church Boolean.

Encoding Boolean in the λ-Calculus

> Example: $$
\begin{array}{r}\text { (true \&\& false) } \\ \equiv \quad\left(\lambda x \cdot \lambda y \cdot\left(\begin{array}{rl}(x y) f a l s e)) \\ (\lambda x \cdot \lambda y \cdot x)\end{array}\right.\right. \\ \\ \rightarrow \quad(\lambda x \cdot \lambda y \cdot y)\end{array}
$$ $\begin{array}{r}(\lambda y \cdot(((\lambda x \cdot \lambda y \cdot x) y) \text { false })) \\ (\lambda x \cdot \lambda y \cdot y)\end{array}$

This is known as the Church encoding of Booleans, or simply Church Booleans.

Encoding Boolean in the λ-Calculus

Example:
(true \&\& false)

$$
\begin{gathered}
\equiv \quad(\lambda x \cdot \lambda y \cdot((x y) f a l s e)) \\
(\lambda x \cdot \lambda y \cdot x) \\
\rightarrow \quad(\lambda x \cdot \lambda y \cdot y) \\
\rightarrow \quad(\lambda y \cdot(((\lambda x \cdot \lambda y \cdot x) y) \text { false })) \\
(\lambda x \cdot \lambda y \cdot y) \\
\rightarrow \quad(((\lambda x \cdot \lambda y \cdot x)(\lambda x \cdot \lambda y \cdot y)) f a l s e)
\end{gathered}
$$

This is known as the Church encoding of Booleans, or simply Church Boolean.

Encoding Boolean in the λ-Calculus

B	λ-calculus
true	$\lambda x \cdot \lambda y \cdot x$
false	$\lambda x \cdot \lambda y \cdot y$
$\& \&$	$\lambda x \cdot \lambda y \cdot\left(\binom{x}{\right.$ \& } false $)$
II	$\lambda x \cdot \lambda y \cdot((x$ true $) y)$
$!$	$\lambda x \cdot((x$ false $)$ true $)$
if	$\lambda c \cdot \lambda t \cdot \lambda e .((c t) e)$

$$
\begin{aligned}
& \text { Example: } \\
& \text { (true \&\& false) } \\
& \equiv \quad(\lambda x \cdot \lambda y \cdot((x y) f a l s e)) \\
& \text { (} \lambda x, \lambda y, x) \\
& \text { (} \lambda x . \lambda y, y \text {) } \\
& \rightarrow \quad(\lambda y \cdot(((\lambda x \cdot \lambda y \cdot x) y) f a l s e)) \\
& \text { (} \lambda x . \lambda y, y) \\
& \rightarrow(((\lambda x \cdot \lambda y \cdot x)(\lambda x \cdot \lambda y \cdot y)) f a l s e) \\
& \rightarrow \quad((\lambda y \cdot(\lambda x \cdot \lambda y \cdot y)) f a l s e)
\end{aligned}
$$

This is known as the Church encoding of Booleans, or simply Church Boolean.

Encoding Boolean in the λ-Calculus

B	λ-calculus
true	$\lambda x \cdot \lambda y \cdot x$
false	$\lambda x \cdot \lambda y \cdot y$
$\& \&$	$\lambda x \cdot \lambda y \cdot((x y)$ false $)$
II	$\lambda x \cdot \lambda y \cdot((x$ true $) y)$
$!$	$\lambda x \cdot((x$ false $)$ true $)$
if	$\lambda c \cdot \lambda t \cdot \lambda e .((c t) e)$

This is known as the Church encoding of Booleans, or simply Church Booleans.

Example:
(true \&\& false)

$$
\left.\begin{array}{cc}
\equiv & (\lambda x \cdot \lambda y \cdot((x y) \text { false })) \\
(\lambda x \cdot \lambda y \cdot x) \\
(\lambda x \cdot \lambda y \cdot y)
\end{array}\right] \begin{gathered}
(\lambda x \cdot \lambda y \cdot y) \\
\rightarrow \quad(\lambda y \cdot(((\lambda x \cdot \lambda y \cdot x) y) \text { false })) \\
\rightarrow \quad(((\lambda x \cdot \lambda y \cdot x)(\lambda x \cdot \lambda y \cdot y)) f a l s e) \\
\rightarrow \quad((\lambda y \cdot(\lambda x \cdot \lambda y \cdot y)) f a l s e)
\end{gathered}
$$

$$
\rightarrow \quad(\lambda x, \lambda y, y)
$$

Encoding Boolean in the λ-Calculus

B	λ-calculus
true	$\lambda x \cdot \lambda y \cdot x$
false	$\lambda x \cdot \lambda y \cdot y$
$\& \&$	$\lambda x \cdot \lambda y \cdot((x y)$ false $)$
II	$\lambda x \cdot \lambda y \cdot((x$ true $) y)$
$!$	$\lambda x \cdot((x$ false $)$ true $)$
if	$\lambda c \cdot \lambda t \cdot \lambda e .((c t) e)$

This is known as the Church encoding of Booleans, or simply Church Booleans.

Example:
(true \&\& false)

$$
\left.\begin{array}{cc}
\equiv & (\lambda x \cdot \lambda y \cdot((x y) \text { false })) \\
(\lambda x \cdot \lambda y \cdot x) \\
(\lambda x \cdot \lambda y \cdot y)
\end{array}\right] \begin{gathered}
(\lambda x \cdot \lambda y \cdot y) \\
\rightarrow \quad(\lambda y \cdot(((\lambda x \cdot \lambda y \cdot x) y) \text { false })) \\
\rightarrow \quad(((\lambda x \cdot \lambda y \cdot x)(\lambda x \cdot \lambda y \cdot y)) f a l s e) \\
\rightarrow \quad((\lambda y \cdot(\lambda x \cdot \lambda y \cdot y)) f a l s e)
\end{gathered}
$$

$$
\rightarrow \quad(\lambda x \cdot \lambda y \cdot y)
$$

$$
\equiv \text { false }
$$

Encoding Natural Numbers in the λ-Calculus

This is known as the Church encoding of Naturals, or simply Church Numerals.

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
fst	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
fst	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\text { pair } \varphi_{1} \varphi_{2}
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
fst	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

```
pair }\mp@subsup{\varphi}{1}{}\mp@subsup{\varphi}{2}{
\equiv ((\lambdaf.\lambdas.\lambdac. ((cf)s) \varphi \varphi ) \varphi ) )
```


Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
st	$\lambda p .(p$ true $)$
std	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\lambda f . \lambda s . \lambda c .((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow^{*} \quad \lambda c .\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
$f s t$	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\lambda f . \lambda s . \lambda c \cdot((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow^{*} \quad \lambda c \cdot\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
$f s t$	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\lambda f . \lambda s . \lambda c \cdot((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow^{*} \quad \lambda c \cdot\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
fst	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

$$
\begin{aligned}
& \text { fst }\left(\text { pair } \varphi_{1} \varphi_{2}\right) \\
& \equiv \quad(\lambda p .(p \text { true }))\left(\text { pair } \varphi_{1} \varphi_{2}\right) \\
& \rightarrow \quad\left(\text { pair } \varphi_{1} \varphi_{2}\right) \text { true }
\end{aligned}
$$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\lambda f . \lambda s . \lambda c .((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow^{*} \quad \lambda c \cdot\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
st	$\lambda p .(p$ true $)$
sid	$\lambda p .(p$ false $)$

$$
\begin{aligned}
& \text { frt }\left(\text { pair } \varphi_{1} \varphi_{2}\right) \\
& \equiv \quad(\lambda p .(p \text { true }))\left(\text { pair } \varphi_{1} \varphi_{2}\right) \\
& \rightarrow \quad\left(\text { pair } \varphi_{1} \varphi_{2}\right) \text { true } \\
& \rightarrow^{*} \quad\left(\lambda c \cdot\left(\left(c \varphi_{1}\right) \varphi_{2}\right)\right) \text { true }
\end{aligned}
$$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\lambda f . \lambda s . \lambda c .((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow^{*} \quad \lambda c .\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
fst	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\lambda f . \lambda s . \lambda c .((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow^{*} \quad \lambda c .\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
fst	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\lambda f . \lambda s . \lambda c \cdot((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow^{*} \quad \lambda c .\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
st	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\lambda f . \lambda s . \lambda c .((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow^{*} \quad \lambda c .\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { fst }\left(\text { pair } \varphi_{1} \varphi_{2}\right) \\
\equiv & (\lambda p .(p \text { true }))\left(\text { pair } \varphi_{1} \varphi_{2}\right) \\
\rightarrow & \left(\text { pair } \varphi_{1} \varphi_{2}\right) \text { true } \\
\rightarrow^{*} & \left(\lambda c .\left(\left(c \varphi_{1}\right) \varphi_{2}\right)\right) \text { true } \\
\rightarrow & \left(\left(\operatorname{true} \varphi_{1}\right) \varphi_{2}\right) \\
\rightarrow & \varphi_{1}
\end{array}
$$

$$
\text { and (pair } \varphi_{1} \varphi_{2} \text {) }
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
fst	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\begin{array}{l}
\left.\left(\lambda . \lambda s . \lambda c .((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
\rightarrow^{*} \quad \lambda c .\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{array}\right.\right.
\end{aligned}
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
st	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\lambda f . \lambda s . \lambda c .((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow^{*} \quad \lambda c .\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ft }\left(\text { pair } \varphi_{1} \varphi_{2}\right) \\
& \equiv \quad(\lambda p .(p \text { true }))\left(\text { pair } \varphi_{1} \varphi_{2}\right) \\
& \rightarrow \quad\left(\text { pair } \varphi_{1} \varphi_{2}\right) \text { true } \\
& \rightarrow^{*} \quad\left(\lambda c .\left(\left(c \varphi_{1}\right) \varphi_{2}\right)\right) \text { true } \\
& \rightarrow \quad\left(\left(\text { true } \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow \quad \varphi_{1} \\
& \text { sid }\left(\text { pair } \varphi_{1} \varphi_{2}\right) \\
& \equiv \quad(\lambda p .(p \text { false }))\left(\text { pair } \varphi_{1} \varphi_{2}\right) \\
& \rightarrow^{*} \quad\left(\left(\text { false } \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

Encoding Data Structures in the λ-Calculus

pair	$\lambda f . \lambda s . \lambda c .((c f) s)$
fst	$\lambda p .(p$ true $)$
snd	$\lambda p .(p$ false $)$

Example: Let φ_{1} and φ_{2} be two arbitrary expressions.

$$
\begin{aligned}
& \text { pair } \varphi_{1} \varphi_{2} \\
& \equiv \quad\left(\left(\lambda f . \lambda s . \lambda c .((c f) s) \varphi_{1}\right) \varphi_{2}\right) \\
& \rightarrow^{*} \quad \lambda c .\left(\left(c \varphi_{1}\right) \varphi_{2}\right)
\end{aligned}
$$

Evaluating Lambda Expressions: An Informal Intro.

Basic reduction: $\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1}$, where
[$\left.x \mapsto t_{2}\right] t_{1}$ be the term obtained by replacing all "free" occurrences of x in t_{1} by t_{2}.

Evaluating Lambda Expressions: An Informal Intro.

Basic reduction: $\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1}$, where
[$\left.x \mapsto t_{2}\right] t_{1}$ be the term obtained by replacing all "free" occurrences of x in t_{1} by t_{2}.

- A sub-term of t of the form $\left(\lambda x . t_{1}\right) t_{2}$ is called a redex of t.

Evaluating Lambda Expressions: An Informal Intro.

Basic reduction: $\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1}$, where
[$\left.x \mapsto t_{2}\right] t_{1}$ be the term obtained by replacing all "free" occurrences of x in t_{1} by t_{2}.

- A sub-term of t of the form $\left(\lambda x, t_{1}\right) t_{2}$ is called a redex of t.
- One step in evaluating a λ-term t is replacing some redex in t according to the above reduction schema.

Evaluating Lambda Expressions: An Informal Intro.

Basic reduction: $\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1}$, where
[$\left.x \mapsto t_{2}\right] t_{1}$ be the term obtained by replacing all "free" occurrences of x in t_{1} by t_{2}.

- A sub-term of t of the form $\left(\lambda x, t_{1}\right) t_{2}$ is called a redex of t.
- One step in evaluating a λ-term t is replacing some redex in t according to the above reduction schema.
- In general, there may be many redexes in a term.
Example: Let $i d=(\lambda x, x)$ in term id (id (λz. id $z)$)

Reduction Strategies

A reduction strategy is used to choose a redex where the basic reduction step will be done.

Reduction Strategies

A reduction strategy is used to choose a redex where the basic reduction step will be done.

Reduction Strategies

A reduction strategy is used to choose a redex where the basic reduction step will be done.

- Full β-reduction: Pick a redex non-deterministically

Reduction Strategies

A reduction strategy is used to choose a redex where the basic reduction step will be done.

- Full β-reduction: Pick a redex non-deterministically
- Normal Order: choose the left-most, outer-most redex.

Reduction Strategies

A reduction strategy is used to choose a redex where the basic reduction step will be done.

- Full β-reduction: Pick a redex non-deterministically
- Normal Order: choose the left-most, outer-most redex.
- Call-By-Name: like normal-order, but ignore redexes inside abstractions.

Reduction Strategies

A reduction strategy is used to choose a redex where the basic reduction step will be done.

- Full β-reduction: Pick a redex non-deterministically
- Normal Order: choose the left-most, outer-most redex.
- Call-By-Name: like normal-order, but ignore redexes inside abstractions.
- Call-By-Value: choose the right-most, inner-most redex that is not inside an abstraction.

Evaluating Lambda Expressions

- The key step in evaluating an application then is: replace every occurrence of a formal parameter with the actual argument.

Example: $((\lambda x .(\lambda z . x z)) \quad y) \quad \rightarrow \quad(\lambda z . y z)$

Evaluating Lambda Expressions

- The key step in evaluating an application then is: replace every occurrence of a formal parameter with the actual argument.

Example: $((\lambda x .(\lambda z . x z)) \quad y) \quad \rightarrow \quad(\lambda z . y z)$

- We can formalize the meaning of application by introducing a function, called substitution that maps terms to terms:

$$
\left(\lambda x \cdot t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1}
$$

Evaluating Lambda Expressions

- The key step in evaluating an application then is: replace every occurrence of a formal parameter with the actual argument.

Example: $((\lambda x .(\lambda z . x z)) \quad y) \quad \rightarrow \quad(\lambda z . y z)$

- We can formalize the meaning of application by introducing a function, called substitution that maps terms to terms:

$$
\left(\lambda x \cdot t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1}
$$

- The central problem now is how we define this substitution function.

Substitutions ($1^{\text {st }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y . t)} & =\lambda y .[x \mapsto s] t & \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) &
\end{array}
$$

Substitutions ($1^{\text {st }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y . t)} & =\lambda y \cdot[x \mapsto s] t & \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) &
\end{array}
$$

- Appears to be correct. Example: $[x \mapsto y](\lambda z . x z)=(\lambda z . y z)$

Use: $(\lambda x .(\lambda z . x z)) \quad y) \quad \rightarrow \quad(\lambda z . y z)$

Substitutions ($1^{\text {st }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y . t)} & =\lambda y \cdot[x \mapsto s] t & \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) &
\end{array}
$$

- Appears to be correct. Example: $[x \mapsto y](\lambda z . x z)=(\lambda z . y z)$

Use: $(\lambda x .(\lambda z . x z)) \quad y) \quad \rightarrow \quad(\lambda z . y z)$

- But is incorrect!

Example: $[x \mapsto y](\lambda x, x)=(\lambda x, y)$
Use: $((\lambda x .(\lambda x . x)) \quad y) \quad \rightarrow \quad(\lambda x . y)$

Substitutions ($2^{\text {nd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y \cdot t)} & = \begin{cases}\lambda y \cdot t & \text { if } x=y \\
\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y\end{cases} \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) &
\end{array}
$$

Substitutions ($2^{\text {nd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y \cdot t)} & = \begin{cases}\lambda y \cdot t & \text { if } x=y \\
\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y\end{cases} \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) &
\end{array}
$$

- $[x \mapsto y](\lambda x . x)=(\lambda x . x)$

Substitutions ($2^{\text {nd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y \cdot t)} & = \begin{cases}\lambda y \cdot t & \text { if } x=y \\
\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y\end{cases} \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right)
\end{array}
$$

- $[x \mapsto y](\lambda x, x)=(\lambda x, x)$
- But is still incorrect! e.g. $[x \mapsto y](\lambda y . x y)=(\lambda y . y$ $y)$

Substitutions ($2^{\text {nd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y \cdot t)} & = \begin{cases}\lambda y \cdot t & \text { if } x=y \\
\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y\end{cases} \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right)
\end{array}
$$

- $[x \mapsto y](\lambda x, x)=(\lambda x, x)$
- But is still incorrect! e.g. $[x \mapsto y](\lambda y . x y)=(\lambda y . y$ $y)$
- In the result of the above example, one y is local to the function while the other y is not local.

Substitutions ($2^{\text {nd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y \cdot t)} & = \begin{cases}\lambda y \cdot t & \text { if } x=y \\
\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y\end{cases} \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right)
\end{array}
$$

- $[x \mapsto y](\lambda x, x)=(\lambda x, x)$
- But is still incorrect! e.g. $[x \mapsto y](\lambda y . x y)=(\lambda y . y$ $y)$
- In the result of the above example, one y is local to the function while the other y is not local.
- But going by our definition, there is no way to distinguish between the two y 's!

Substitutions ($2^{\text {nd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y \cdot t)} & = \begin{cases}\lambda y \cdot t & \text { if } x=y \\
\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y\end{cases} \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right)
\end{array}
$$

- $[x \mapsto y](\lambda x, x)=(\lambda x, x)$
- But is still incorrect! e.g. $[x \mapsto y](\lambda y . x y)=(\lambda y . y$ $y)$
- In the result of the above example, one y is local to the function while the other y is not local.
- But going by our definition, there is no way to distinguish between the two y 's!
- Solution: We should get (λw. y w) instead (by suitably renaming "local" variables).

Bound and Free Variables: An Informal Intro.

- Variable x in λ-expression λx. t is said to be bound.

Bound and Free Variables: An Informal Intro.

- Variable x in λ-expression λx. t is said to be bound.
- Example 1: x in $\lambda x . x$ is a bound variable.

Bound and Free Variables: An Informal Intro.

- Variable x in λ-expression λx. t is said to be bound.
- Example 1: x in $\lambda x . x$ is a bound variable.
- Example 2: in $\lambda x .(x y), x$ is bound but y is not bound.

Bound and Free Variables: An Informal Intro.

- Variable x in λ-expression λx. t is said to be bound.
- Example 1: x in $\lambda x . x$ is a bound variable.
- Example 2: in $\lambda x .(x y), x$ is bound but y is not bound.
- Rough meaning: parameters are local to a function definition.

Bound and Free Variables: An Informal Intro.

- Variable x in λ-expression λx. t is said to be bound.
- Example 1: x in $\lambda x . x$ is a bound variable.
- Example 2: in λx. $(x y)$, x is bound but y is not bound.
- Rough meaning: parameters are local to a function definition.
- A variable that is not bound is said to be free.

Bound and Free Variables: An Informal Intro.

- Variable x in λ-expression λx. t is said to be bound.
- Example 1: x in $\lambda x . x$ is a bound variable.
- Example 2: in λx. $(x y)$, x is bound but y is not bound.
- Rough meaning: parameters are local to a function definition.
- A variable that is not bound is said to be free.
- Example 2: in $\lambda x .(x y), y$ is free.

Bound and Free Variables: An Informal Intro.

- Variable x in λ-expression λx. t is said to be bound.
- Example 1: x in $\lambda x . x$ is a bound variable.
- Example 2: in $\lambda x .(x y), x$ is bound but y is not bound.
- Rough meaning: parameters are local to a function definition.
- A variable that is not bound is said to be free.
- Example 2: in $\lambda x .(x y), y$ is free.
- Rough meaning: free variables in a function definition are analogous to non-local variables.

Bound and Binding Occurrences

- $\quad \lambda x$ x

Bound and Binding Occurrences

Bound and Binding Occurrences

Bound and Binding Occurrences

Bound Occurrence (use)
Binding Occurrence (declaration)

Bound and Binding Occurrences

Bound Occurrence (use)
Binding Occurrence (declaration)
$\left.\left(\begin{array}{ll}\lambda & x\end{array} \quad x\right)\left(\begin{array}{ll}\lambda & z .\end{array} l l_{x} \quad z\right)\right)$

Bound and Binding Occurrences

Bound Occurrence (use)
Binding Occurrence (declaration)

Bound and Binding Occurrences

Bound Occurrence (use)
Binding Occurrence (declaration)

Bound and Binding Occurrences

Bound Occurrence (use)
Binding Occurrence (declaration)

Bound and Binding Occurrences

Bound Occurrence (use)
Binding Occurrence (declaration)

- $(\lambda z \cdot(\lambda x \cdot z(x x))(\lambda x \cdot z(x x)))$

Bound and Binding Occurrences

Bound Occurrence (use)
Binding Occurrence (declaration)

- $\begin{aligned} \\ (\lambda z . \\ .(\lambda x . z(x x))(\lambda x . z(x x)))\end{aligned}$

Bound and Binding Occurrences

Bound Occurrence (use)
Binding Occurrence (declaration)

Bound and Binding Occurrences

Bound Occurrence (use)
Binding Occurrence (declaration)

Bound Variables

Formal definition: $b v(t)$, the set of all bound variables of t, is such that:

- t is an abstraction of the form $\lambda x . t^{\prime}$:

Bound Variables

Formal definition: $b v(t)$, the set of all bound variables of t, is such that:

- t is an abstraction of the form $\lambda x . t^{\prime}$:
- $b v(t)=b v\left(t^{\prime}\right) \cup\{x\}$

Bound Variables

Formal definition: $b v(t)$, the set of all bound variables of t, is such that:

- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:
- $b v(t)=b v\left(t^{\prime}\right) \cup\{x\}$
- t is an application of the form $t_{1} t_{2}$:

Bound Variables

Formal definition: $b v(t)$, the set of all bound variables of t, is such that:

- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:
- $b v(t)=b v\left(t^{\prime}\right) \cup\{x\}$
- t is an application of the form $t_{1} t_{2}$:
- $b v(t)=b v\left(t_{1}\right) \cup b v\left(t_{2}\right)$

Bound Variables

Formal definition: $b v(t)$, the set of all bound variables of t, is such that:

- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:
- $b v(t)=b v\left(t^{\prime}\right) \cup\{x\}$
- t is an application of the form $t_{1} t_{2}$:
- $b v(t)=b v\left(t_{1}\right) \cup b v\left(t_{2}\right)$
- Example: $b v((\lambda x . x)(\lambda z .(x z)))$

Bound Variables

Formal definition: $b v(t)$, the set of all bound variables of t, is such that:

- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:
- $b v(t)=b v\left(t^{\prime}\right) \cup\{x\}$
- t is an application of the form $t_{1} t_{2}$:
- $b v(t)=b v\left(t_{1}\right) \cup b v\left(t_{2}\right)$
- Example:

$$
\begin{aligned}
& b v((\lambda x \cdot x)(\lambda z \cdot(x z))) \\
& =b v(\lambda x \cdot x) \cup b v(\lambda z \cdot(x z))
\end{aligned}
$$

Bound Variables

Formal definition: $b v(t)$, the set of all bound variables of t, is such that:

- t is an abstraction of the form $\lambda x . t^{\prime}$:
- $b v(t)=b v\left(t^{\prime}\right) \cup\{x\}$
- t is an application of the form $t_{1} t_{2}$:
- $b v(t)=b v\left(t_{1}\right) \cup b v\left(t_{2}\right)$
- Example:

$$
\begin{aligned}
& b v((\lambda x . x)(\lambda z \cdot(x z))) \\
& =b v(\lambda x \cdot x) \cup b v(\lambda z \cdot(x z)) \\
& =\{x\} \cup\{z\}=\{x, z\}
\end{aligned}
$$

Free Variables

Formal definition: $f v(t)$, the set of all free variables of t, is such that:

- t is a variable of the form x :

Free Variables

Formal definition: $f v(t)$, the set of all free variables of t, is such that:

- t is a variable of the form x :
- $f v(t)=\{x\}$

Free Variables

Formal definition: $f v(t)$, the set of all free variables of t, is such that:

- t is a variable of the form x :
- $f v(t)=\{x\}$
- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:

Free Variables

Formal definition: $f v(t)$, the set of all free variables of t, is such that:

- t is a variable of the form x :
- $f v(t)=\{x\}$
- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:
- $f v(t)=f v\left(t^{\prime}\right)-\{x\}$

Free Variables

Formal definition: $f v(t)$, the set of all free variables of t, is such that:

- t is a variable of the form x :
- $f v(t)=\{x\}$
- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:
- $f v(t)=f v\left(t^{\prime}\right)-\{x\}$
- t is an application of the form $t_{1} t_{2}$:

Free Variables

Formal definition: $f v(t)$, the set of all free variables of t, is such that:

- t is a variable of the form x :
- $f v(t)=\{x\}$
- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:
- $f v(t)=f v\left(t^{\prime}\right)-\{x\}$
- t is an application of the form $t_{1} t_{2}$:
- $f v(t)=f v\left(t_{1}\right) \cup f v\left(t_{2}\right)$

Free Variables

Formal definition: $f v(t)$, the set of all free variables of t, is such that:

- t is a variable of the form x :
- $f v(t)=\{x\}$
- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:
- $f v(t)=f v\left(t^{\prime}\right)-\{x\}$
- t is an application of the form $t_{1} t_{2}$:
- $f v(t)=f v\left(t_{1}\right) \cup f v\left(t_{2}\right)$
- Example: $f v((\lambda x . x)(\lambda z .(x z)))$

Free Variables

Formal definition: $f v(t)$, the set of all free variables of t, is such that:

- t is a variable of the form x :
- $f v(t)=\{x\}$
- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:
- $f v(t)=f v\left(t^{\prime}\right)-\{x\}$
- t is an application of the form $t_{1} t_{2}$:
- $f v(t)=f v\left(t_{1}\right) \cup f v\left(t_{2}\right)$
- Example:

$$
\begin{aligned}
& f v((\lambda x \cdot x)(\lambda z \cdot(x z))) \\
& =f v(\lambda x \cdot x) \cup f v(\lambda z \cdot(x z))
\end{aligned}
$$

Free Variables

Formal definition: $f v(t)$, the set of all free variables of t, is such that:

- t is a variable of the form x :
- $f v(t)=\{x\}$
- t is an abstraction of the form $\lambda x \cdot t^{\prime}$:
- $f v(t)=f v\left(t^{\prime}\right)-\{x\}$
- t is an application of the form $t_{1} t_{2}$:
- $f v(t)=f v\left(t_{1}\right) \cup f v\left(t_{2}\right)$
- Example:

$$
\begin{aligned}
& f v((\lambda x \cdot x)(\lambda z \cdot(x z))) \\
& =f v(\lambda x \cdot x) \cup f v(\lambda z \cdot(x z)) \\
& =\{ \} \cup\{x\}=\{x\}
\end{aligned}
$$

α-Conversion (Renaming)

- Intuition: We can rename a bound variable as long as

α-Conversion (Renaming)

- Intuition: We can rename a bound variable as long as
- the new name is not also the name of a free variable, and

α-Conversion (Renaming)

- Intuition: We can rename a bound variable as long as
- the new name is not also the name of a free variable, and
- we replace every occurrence of the bound variable

α-Conversion (Renaming)

- Intuition: We can rename a bound variable as long as
- the new name is not also the name of a free variable, and
- we replace every occurrence of the bound variable
- Example 1: $(\lambda y . x y)$ is equivalent to $(\lambda z . x z)$

α-Conversion (Renaming)

- Intuition: We can rename a bound variable as long as
- the new name is not also the name of a free variable, and
- we replace every occurrence of the bound variable
- Example 1: $(\lambda y . x y)$ is equivalent to $(\lambda z . x z)$
- Example 2: $(\lambda y . x y)$ is not equivalent to $(\lambda x . x x)$ (the name of new variable is same as that of a free variable)

α-Conversion (Renaming)

- Intuition: We can rename a bound variable as long as
- the new name is not also the name of a free variable, and
- we replace every occurrence of the bound variable
- Example 1: $(\lambda y . x y)$ is equivalent to $(\lambda z . x z)$
- Example 2: $(\lambda y, x y)$ is not equivalent to $(\lambda x . x x)$ (the name of new variable is same as that of a free variable)
- Example 3: $(\lambda y . x y)$ is not equivalent to $(\lambda y . x z)$ (not every occurrence of y has been replaced).

α-Conversion (Renaming)

- Intuition: We can rename a bound variable as long as
- the new name is not also the name of a free variable, and
- we replace every occurrence of the bound variable
- Example 1: $(\lambda y . x y)$ is equivalent to $(\lambda z . x z)$
- Example 2: $(\lambda y . x y)$ is not equivalent to $(\lambda x . x x)$ (the name of new variable is same as that of a free variable)
- Example 3: $(\lambda y . x y)$ is not equivalent to $(\lambda y . x z)$ (not every occurrence of y has been replaced).
- Two terms t and t^{\prime} are said to be " α-equivalent" (denoted by $t \equiv{ }_{\alpha} t^{\prime}$) if they are identical modulo the names of bound variables.

Substitutions (3 $3^{\text {rd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y . t)} & =\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y \text { and } y \notin f v(s) \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) &
\end{array}
$$

Substitutions (3 $3^{\text {rd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y \cdot t)} & =\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y \text { and } y \notin f v(s) \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) &
\end{array}
$$

- The definition is now incomplete! e.g. $[x \mapsto y](\lambda y . x y)=$??

Substitutions (3 $3^{\text {rd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y . t)} & =\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y \text { and } y \notin f v(s) \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) &
\end{array}
$$

- The definition is now incomplete! e.g. $[x \mapsto y](\lambda y . x y)=$??
- This drawback is not serious:

Substitutions (3 $3^{\text {rd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y . t)} & =\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y \text { and } y \notin f v(s) \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) &
\end{array}
$$

- The definition is now incomplete! e.g. $[x \mapsto y](\lambda y . x y)=$??
- This drawback is not serious:
- We can apply a substitution on an α-equivalent term instead.

Substitutions (3 $3^{\text {rd }}$ attempt)

$$
\begin{array}{lll}
{[x \mapsto s] x} & =s & \\
{[x \mapsto s] y} & =y & \text { if } y \neq x \\
{[x \mapsto s](\lambda y . t)} & =\lambda y \cdot[x \mapsto s] t & \text { if } x \neq y \text { and } y \notin f v(s) \\
{[x \mapsto s]\left(t_{1} t_{2}\right)} & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) &
\end{array}
$$

- The definition is now incomplete! e.g. $[x \mapsto y](\lambda y . x y)=$??
- This drawback is not serious:
- We can apply a substitution on an α-equivalent term instead.
- E.g. $[x \mapsto y](\lambda z . x z)=(\lambda z . y z)$

Operational Semantics: Full β-Reduction

$$
\begin{array}{rlrl}
\frac{t_{1}}{t_{1} t_{2}} \rightarrow t_{1}^{\prime} & \text { E-APP1 } \\
\frac{t_{2}}{} \rightarrow t_{2}^{\prime} & & \\
t_{1} t_{2} & \rightarrow t_{1} t_{2}^{\prime} & \text { E-APP2 } \\
\frac{t}{\lambda x \cdot t} \rightarrow t^{\prime} & \text { E-ABS } \\
\left(\lambda x . t_{1}\right) t_{2} & \rightarrow\left[x \mapsto t_{2}\right] t_{1} & \text { E-APPABS }
\end{array}
$$

Operational Semantics: Call-By-Value

$$
\begin{array}{llll}
t & ::= & \text { Terms (all } \lambda \text {-terms) } \\
v & ::= & \lambda x \cdot t & \text { Values }
\end{array}
$$

Evaluation:

$$
\begin{array}{cc}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2}} \rightarrow t_{1}^{\prime} t_{2} & \text { E-APP1 } \\
\frac{t_{2} \rightarrow t_{2}^{\prime}}{v_{1} t_{2}} \rightarrow v_{1} t_{2}^{\prime} & \text { E-APP2 } \\
\left(\lambda x . t_{1}\right) v_{2} \rightarrow\left[x \mapsto v_{2}\right] t_{1} \quad \text { E-APPABS }
\end{array}
$$

Operational Semantics: Call-By-Value

$$
\begin{array}{llll}
t & ::= & \text { Terms (all } \lambda \text {-terms) } \\
v & ::= & \lambda x \cdot t & \text { Values }
\end{array}
$$

Evaluation:

$$
\begin{gathered}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}} \quad \text { E-APP1 } \\
\frac{t_{2} \rightarrow t_{2}^{\prime}}{v_{1} t_{2}} \rightarrow v_{1} t_{2}^{\prime} \\
\left(\lambda x . t_{1}\right) v_{2} \rightarrow\left[x \mapsto v_{2}\right] t_{1} \quad \text { E-APP2 } \\
(1)
\end{gathered}
$$

- In an application of the form $\left(t_{1} t_{2}\right)$, if t_{1} is a λ-abstraction, then t_{2} has to be reduced to a value before the application is done.

Operational Semantics: Call-By-Value

$$
\begin{array}{llll}
t & ::= & \ldots & \text { Terms (all } \lambda \text {-terms) } \\
v & ::= & \lambda x . t & \text { Values }
\end{array}
$$

Evaluation:

$$
\begin{array}{cc}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2}} \rightarrow t_{1}^{\prime} t_{2} & \text { E-APP1 } \\
\frac{t_{2} \rightarrow t_{2}^{\prime}}{v_{1} t_{2}} \rightarrow v_{1} t_{2}^{\prime} & \text { E-APP2 } \\
\left(\lambda x . t_{1}\right) v_{2} \rightarrow\left[x \mapsto v_{2}\right] t_{1} \quad \text { E-APPABS }
\end{array}
$$

- In an application of the form $\left(t_{1} t_{2}\right)$, if t_{1} is a λ-abstraction, then t_{2} has to be reduced to a value before the application is done.
- This corresponds to Call-By-Value parameter passing: evaluate the actual arguments first before passing them as parameters to a called function.

Operational Semantics: Call-By-Name

$$
\begin{array}{llll}
t & : & := & \ldots \\
v & \text { Terms (all } \lambda \text {-terms) } \\
v & := & \lambda x . t & \text { Values }
\end{array}
$$

Evaluation:

$$
\begin{gathered}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}} \quad \text { E-APP } \\
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
\end{gathered}
$$

Operational Semantics: Call-By-Name

$$
\begin{array}{rlll}
t & : & := & \ldots \\
v & ::= & \text { Terms (all } \lambda \text {-terms) } \\
v & \text { Values }
\end{array}
$$

Evaluation:

$$
\begin{gathered}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}} \quad \text { E-APP } \\
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
\end{gathered}
$$

- In an application of the form $\left(t_{1} t_{2}\right)$, if t_{1} is a λ-abstraction, then t_{1} has to be reduced to a value before the application is done.

Operational Semantics: Call-By-Name

$$
\begin{array}{llll}
t & ::= & \ldots & \text { Terms (all } \lambda \text {-terms) } \\
v & ::= & \lambda x . t & \text { Values }
\end{array}
$$

Evaluation:

$$
\begin{gathered}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}} \quad \text { E-APP } \\
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
\end{gathered}
$$

- In an application of the form $\left(t_{1} t_{2}\right)$, if t_{1} is a λ-abstraction, then t_{1} has to be reduced to a value before the application is done.
- In terms of familiar languages, the actual arguments are passed unevaluated to the called function. They will be evaluated in the called function if needed.

Infinite and Diverging Computations in the λ-Calculus

omega: $(\lambda x . x x)(\lambda x . x x)$

Infinite and Diverging Computations in the λ-Calculus

$$
\text { omega: }(\lambda x . x x)(\lambda x . x x)
$$

Evaluation:

```
omega
\equiv(\lambdax.xx)(\lambdax.xx)
```


Infinite and Diverging Computations in the λ-Calculus

$$
\text { omega : }(\lambda x . x x)(\lambda x . x x)
$$

Evaluation:

$$
\begin{aligned}
& \text { omega } \\
& \equiv \quad(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \rightarrow \quad(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \equiv \quad \text { omega }
\end{aligned}
$$

Infinite and Diverging Computations in the λ-Calculus

$$
\text { omega : }(\lambda x . x x)(\lambda x . x x)
$$

Evaluation:

$$
\begin{aligned}
& \text { omega } \\
& \equiv \quad(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \rightarrow \quad(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \equiv \quad \text { omega } \\
& \rightarrow \text { omega }
\end{aligned}
$$

Infinite and Diverging Computations in the λ-Calculus

omega: $(\lambda x . x x)(\lambda x . x x)$
Evaluation:

$$
\begin{aligned}
& \text { omega } \\
& \equiv \quad(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \rightarrow \quad(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \equiv \quad \text { omega } \\
& \rightarrow \text { omega }
\end{aligned}
$$

Infinite and Diverging Computations in the λ-Calculus

omega: $(\lambda x . x x)(\lambda x . x x) \mid$ inf: $(\lambda x .(x x) x)$
Evaluation:

$$
\begin{aligned}
& \text { omega } \\
& \equiv \quad(\lambda x \cdot x x) \quad(\lambda x \cdot x x) \\
& \rightarrow \quad(\lambda x \cdot x x) \quad(\lambda x \cdot x x) \\
& \equiv \text { omega } \\
& \rightarrow \text { omega }
\end{aligned}
$$

Infinite and Diverging Computations in the λ-Calculus

omega: $(\lambda x . x x)(\lambda x . x x)$ inf: $(\lambda x .(x x) x)$
Evaluation:

$$
\begin{aligned}
& \text { omega } \\
& \equiv \quad(\lambda x \cdot x x) \quad(\lambda x \cdot x x) \\
& \rightarrow \quad(\lambda x \cdot x x) \quad(\lambda x \cdot x x) \\
& \equiv \text { omega } \\
& \rightarrow \text { omega }
\end{aligned}
$$

Infinite and Diverging Computations in the λ-Calculus

omega: $(\lambda x . x x)(\lambda x . x x)$ inf: $(\lambda x .(x x) x)$
Evaluation:

$$
\begin{aligned}
& \text { omega } \\
& \equiv \quad(\lambda x \cdot x x) \quad(\lambda x \cdot x x) \\
& \rightarrow \quad(\lambda x \cdot x x) \quad(\lambda x \cdot x x) \\
& \equiv \text { omega } \\
& \rightarrow \text { omega }
\end{aligned}
$$

Infinite and Diverging Computations in the λ-Calculus

omega: $(\lambda x . x x)(\lambda x . x x)$ inf: $(\lambda x .(x x) x)$
Evaluation:

$$
\begin{aligned}
& \text { omega } \\
& \equiv \quad(\lambda x \cdot x x) \quad(\lambda x \cdot x x) \\
& \rightarrow \quad(\lambda x \cdot x x) \quad(\lambda x \cdot x x) \\
& \equiv \quad \text { omega } \\
& \rightarrow \text { omega }
\end{aligned}
$$

Infinite and Diverging Computations in the λ-Calculus

omega: $(\lambda x . x x)(\lambda x . x x)$ inf: $(\lambda x .(x x) x)$
Evaluation:

$$
\begin{aligned}
& \text { omega } \\
& \equiv \quad(\lambda x \cdot x x) \quad(\lambda x \cdot x x) \\
& \rightarrow \quad(\lambda x \cdot x x) \quad(\lambda x \cdot x x) \\
& \equiv \text { omega } \\
& \rightarrow \text { omega }
\end{aligned}
$$

Recursive Functions in the λ-Calculus

- Consider the function to compute factorial of a natural number, written as follows:

$$
\text { fact } \equiv \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(\text { fact }(\operatorname{dec} n))))
$$

where $d e c$ is the function that decrements a number by 1 .

Recursive Functions in the λ-Calculus

- Consider the function to compute factorial of a natural number, written as follows:

$$
\text { fact } \equiv \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(\text { fact }(\operatorname{dec} n))))
$$

where $d e c$ is the function that decrements a number by 1 .

- Note this is not a proper encoding: fact is being defined in terms of itself!

Recursive Functions in the λ-Calculus

- Consider the function to compute factorial of a natural number, written as follows:

$$
\text { fact } \equiv \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(\text { fact }(\operatorname{dec} n))))
$$

where $d e c$ is the function that decrements a number by 1 .

- Note this is not a proper encoding: fact is being defined in terms of itself!
- The solution is to "lift" factorial into a functional:

$$
F \equiv \lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\text { dec } n))))
$$

Recursive Functions in the λ-Calculus

- Consider the function to compute factorial of a natural number, written as follows:

$$
\text { fact } \equiv \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(\text { fact }(\operatorname{dec} n))))
$$

where $d e c$ is the function that decrements a number by 1 .

- Note this is not a proper encoding: fact is being defined in terms of itself!
- The solution is to "lift" factorial into a functional:

$$
F \equiv \lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\text { dec } n))))
$$

- Note that F is well-defined.

Recursive Functions in the λ-Calculus

- Consider the function to compute factorial of a natural number, written as follows:

$$
\text { fact } \equiv \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(\text { fact }(\operatorname{dec} n))))
$$

where $d e c$ is the function that decrements a number by 1.

- Note this is not a proper encoding: fact is being defined in terms of itself!
- The solution is to "lift" factorial into a functional:

$$
F \equiv \lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\text { dec } n))))
$$

- Note that F is well-defined.
- F is a very special function, as we'll see in the next...

Recursive Functions in the λ-Calculus

$$
F \equiv \lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\operatorname{dec} n))))
$$

- Consider facto \equiv F omega:

$$
\begin{aligned}
& \text { fact }_{0} \equiv F \text { omega } \\
& \equiv \quad(\lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\operatorname{dec} n))))) \text { omega } \\
& \rightarrow \quad \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(\text { omega }(\operatorname{dec} n))))
\end{aligned}
$$

Recursive Functions in the λ-Calculus

$$
F \equiv \lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\text { dec } n))))
$$

- Consider fact $0_{0} \equiv F$ omega:

$$
\begin{aligned}
& f_{\text {fact }} \equiv F \text { omega } \\
& \equiv \quad(\lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\operatorname{dec} n))))) \text { omega } \\
& \rightarrow \quad \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(\text { omega }(\operatorname{dec} n))))
\end{aligned}
$$

- When non-strict evaluation is used, fact t_{0} computes the same as fact for 0, but diverges elsewhere.

Recursive Functions in the λ-Calculus

$$
F \equiv \lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\operatorname{dec} n))))
$$

- Now consider fact ${ }_{1} \equiv$ F fact ${ }_{0}$:

$$
\begin{aligned}
& f_{\text {fact }}^{1}
\end{aligned} \equiv F \text { fact }_{0} .
$$

Recursive Functions in the λ-Calculus

$$
F \equiv \lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\text { dec } n))))
$$

- Now consider fact ${ }_{1} \equiv$ F fact ${ }_{0}$:

$$
\begin{aligned}
& f_{\text {fact }}^{1} 1 \\
& \equiv \quad F \text { facto }_{0} \\
& \equiv \quad(\lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\operatorname{dec} n))))) \text { fact }_{0} \\
& \rightarrow \quad \lambda n .\left(\text { if }(\text { iszero } n) 1\left(\text { times } n\left(\text { fact }_{0}(\operatorname{dec} n)\right)\right)\right)
\end{aligned}
$$

- When non-strict evaluation is used, fact r $_{1}$ computes the same as fact for 0 and 1, but diverges elsewhere.

Recursive Functions in the λ-Calculus

- Consider the sequence of functions fact ${ }_{0}$, fact $_{1}, f a c t_{2}, \ldots$ such that $\left.f a c t_{0}=o m e g a, ~ a n d ~ f a c t_{n+1}=(F \text { fact })_{n}\right)$.

Recursive Functions in the λ-Calculus

- Consider the sequence of functions fact ${ }_{0}$, fact $_{1}, f a c t_{2}, \ldots$ such that $f_{a c t}=$ omega, and $f a c t_{n+1}=\left(F\right.$ fact $\left._{n}\right)$.
- None of these functions is same as fact, but as we construct more and more members of this sequence, we get functions that approximate fact closer and closer.

Recursive Functions in the λ-Calculus

- Consider the sequence of functions fact ${ }_{0}, f a c t^{1}, f a c t_{2}, \ldots$ such that $f_{a c t}=$ omega, and $f a c t_{n+1}=\left(F\right.$ fact $\left._{n}\right)$.
- None of these functions is same as fact, but as we construct more and more members of this sequence, we get functions that approximate fact closer and closer.
- fact is indeed the limit of this sequence of functions!

Recursive Functions in the λ-Calculus

- Consider the sequence of functions fact ${ }_{0}$, fact $_{1}, f a c t_{2}, \ldots$ such that $f a c t_{0}=$ omega, and $f a c t_{n+1}=\left(F f_{a c t}\right)$.
- None of these functions is same as fact, but as we construct more and more members of this sequence, we get functions that approximate fact closer and closer.
- fact is indeed the limit of this sequence of functions!
- If only we had a way, in the λ-calculus, to generate such a sequence...

The Y-Combinator

$$
Y=\lambda f .(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

- Consider (Y F):

$$
\begin{aligned}
& (Y F) \equiv(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) F \\
& \rightarrow(\lambda x \cdot F(x x))(\lambda x \cdot F(x x)) \\
& \rightarrow F((\lambda x . F(x x))(\lambda x \cdot F(x x))) \\
& \cong F(Y F)
\end{aligned}
$$

The Y-Combinator

$$
Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

- Consider (Y F):

$$
\begin{aligned}
& (Y F) \equiv(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) F \\
& \rightarrow(\lambda x \cdot F(x x))(\lambda x \cdot F(x x)) \\
& \rightarrow F((\lambda x \cdot F(x x))(\lambda x \cdot F(x x))) \\
& \cong F(Y F)
\end{aligned}
$$

- Recall $F \equiv \lambda f$. λn. (if (iszero $n) 1($ times $n(f(\operatorname{dec} n)))$).

The Y-Combinator

$$
Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

- Consider (Y F):

$$
\begin{aligned}
& (Y F) \equiv(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) F \\
& \rightarrow(\lambda x \cdot F(x x))(\lambda x \cdot F(x x)) \\
& \rightarrow F((\lambda x \cdot F(x x))(\lambda x \cdot F(x x))) \\
& \cong F(Y F)
\end{aligned}
$$

- Recall $F \equiv \lambda f$. λn. (if (iszero n) 1 (times $n(f(\operatorname{dec} n)))$).
- Putting it all together:

```
\((Y F) \cong F(Y F)\)
\(\equiv(\lambda f\). \(\lambda n\). (if (iszero \(n) 1(\) times \(n(f(\operatorname{dec} n)))))(Y F)\)
\(\rightarrow \quad \lambda n\). (if (iszero n) 1 (times \(n((Y F)(\operatorname{dec} n))))\)
```


The Y-Combinator

$$
Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

- Consider (Y F):

$$
\begin{aligned}
& (Y F) \equiv(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) F \\
& \rightarrow(\lambda x \cdot F(x x))(\lambda x \cdot F(x x)) \\
& \rightarrow F((\lambda x \cdot F(x x))(\lambda x \cdot F(x x))) \\
& \cong F(Y F)
\end{aligned}
$$

- Recall $F \equiv \lambda f$. λn. (if (iszero n) 1 (times $n(f(\operatorname{dec} n)))$).
- Putting it all together:

```
\((Y F) \cong F(Y F)\)
\(\equiv(\lambda f . \lambda n\). (if (iszero \(n) 1(\) times \(n(f(\operatorname{dec} n)))))(Y F)\)
\(\rightarrow \quad \lambda n\). (if (iszero n) 1 (times \(n((Y F)(\operatorname{dec} n)))\) )
```

- (Y F) looks like the mythical function fact.

The Z-Combinator

- $(Y F) \cong F(Y F)$
- With call-by-name evaluation strategy, the next steps in reduction will first substitute the formal parameter of F with $(Y F)$.
- With call-by-value strategy, $F(Y F)$ will first reduce ($Y ~ F$), which result in:

$$
\begin{aligned}
& \rightarrow^{*} \quad F(F(Y F)) \\
& \rightarrow^{*} \\
& \rightarrow^{*}
\end{aligned}
$$

- For call-by-value strategy, we should use the Z combinator instead:

$$
Z=\lambda f .(\lambda x \cdot f(\lambda y . x x y))(\lambda x . f(\lambda y . x x y))
$$

Recursive Functions in the λ-Calculus

$$
\begin{aligned}
Y & =\lambda f .(\lambda x . f(x x))(\lambda x . f(x x)) \\
F & =\lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\text { dec } n)))) \\
\text { fact } & =(Y F)
\end{aligned}
$$

- Note that the definitions of Y, F and fact are all non-recursive.

Recursive Functions in the λ-Calculus

$$
\begin{aligned}
Y & =\lambda f .(\lambda x . f(x x))(\lambda x . f(x x)) \\
F & =\lambda f . \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\text { dec } n)))) \\
\text { fact } & =(Y F)
\end{aligned}
$$

- Note that the definitions of Y, F and fact are all non-recursive.
- The above recipe can be used for writing any recursive function.

Recursive Functions in the λ-Calculus

$$
\begin{aligned}
Y & =\lambda f \cdot(\lambda x . f(x x))(\lambda x . f(x x)) \\
F & =\lambda f \cdot \lambda n \cdot(\text { if }(\text { iszero } n) 1(\text { times } n(f(\text { dec } n)))) \\
\text { fact } & =(Y F)
\end{aligned}
$$

- Note that the definitions of Y, F and fact are all non-recursive.
- The above recipe can be used for writing any recursive function.
- Say, we have a mythical recursive definition $f=\lambda x$. e where e uses f.

Recursive Functions in the λ-Calculus

$$
\begin{aligned}
Y & =\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x . f(x x)) \\
F & =\lambda f \cdot \lambda n .(\text { if }(\text { iszero } n) 1(\text { times } n(f(\text { dec } n)))) \\
\text { fact } & =(Y F)
\end{aligned}
$$

- Note that the definitions of Y, F and fact are all non-recursive.
- The above recipe can be used for writing any recursive function.
- Say, we have a mythical recursive definition $f=\lambda x$. e where e uses f.
- We simply rewrite the definition as $f=(Y(\lambda f . \lambda x . e))$.

Nameless Representation of Terms

- Consider variables in a λ-term as named "holes" to be filled in.
- Instead of using symbolic names for variables, one can name the holes w.r.t. the λ that binds them.

Examples:

Nameless Representation of Terms

- Consider variables in a λ-term as named "holes" to be filled in.
- Instead of using symbolic names for variables, one can name the holes w.r.t. the λ that binds them.

Examples:

- $\lambda x . x$ can be written as
λx
14
x

Nameless Representation of Terms

- Consider variables in a λ-term as named "holes" to be filled in.
- Instead of using symbolic names for variables, one can name the holes w.r.t. the λ that binds them.

Examples:

- $\lambda x . x$ can be written as

λx	λ
14	14
x	0

Nameless Representation of Terms

- Consider variables in a λ-term as named "holes" to be filled in.
- Instead of using symbolic names for variables, one can name the holes w.r.t. the λ that binds them.

Examples:

λx	λ
14	14
x	0

- $\lambda x . x$ can be written as
$\lambda .0$

Nameless Representation of Terms

- Consider variables in a λ-term as named "holes" to be filled in.
- Instead of using symbolic names for variables, one can name the holes w.r.t. the λ that binds them.

Examples:

- $\lambda x . x$ can be written as $\lambda .0$
- $\lambda x . \lambda y . x$ can be written
as

Nameless Representation of Terms

- Consider variables in a λ-term as named "holes" to be filled in.
- Instead of using symbolic names for variables, one can name the holes w.r.t. the λ that binds them.

Examples:

- $\lambda x . x$ can be written as $\lambda .0$
- $\lambda x . \lambda y . x$ can be written
as

Nameless Representation of Terms

- Consider variables in a λ-term as named "holes" to be filled in.
- Instead of using symbolic names for variables, one can name the holes w.r.t. the λ that binds them.

Examples:

- $\lambda x . x$ can be written as $\lambda .0$
- $\lambda x . \lambda y . x$ can be written as $\lambda . \lambda .1$

Nameless Representation of Terms

- Consider variables in a λ-term as named "holes" to be filled in.
- Instead of using symbolic names for variables, one can name the holes w.r.t. the λ that binds them.

Examples:

- $\lambda x . x$ can be written as $\lambda .0$
- $\lambda x . \lambda y . x$ can be written as $\lambda . \lambda .1$
- $\lambda x \cdot \lambda y \cdot x(y x)$ can be written as

Nameless Representation of Terms

- Consider variables in a λ-term as named "holes" to be filled in.
- Instead of using symbolic names for variables, one can name the holes w.r.t. the λ that binds them.

Examples:

- $\lambda x . x$ can be written as $\lambda .0$
- λx. $\lambda y . x$ can be written as $\lambda . \lambda .1$
- λx. λy. $x(y x)$ can be written as

Nameless Representation of Terms

- Consider variables in a λ-term as named "holes" to be filled in.
- Instead of using symbolic names for variables, one can name the holes w.r.t. the λ that binds them.

Examples:

- $\lambda x . x$ can be written as $\lambda .0$
- $\lambda x . \lambda y . x$ can be written as $\lambda . \lambda .1$
- $\lambda x . \lambda y . x(y x)$ can be written as $\lambda . \lambda .1\binom{0}{1}$

n-Terms

De Bruijn terms are defined by a family of sets (each set being a set of terms) $\left\{\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots\right\}$ such that \mathcal{T}_{n} represents λ-terms with n or fewer free variables

Formally, \mathcal{T} is the smallest family of sets $\left\{\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots\right\}$ such that

- $k \in \mathcal{T}_{n}$ whenever $0 \leq k<n$
- if $t_{1} \in \mathcal{T}_{n}$ then $\lambda . t_{1} \in \mathcal{T}_{n-1}$
- if $t_{1}, t_{2} \in \mathcal{T}_{n}$ then $\left(t_{1} t_{2}\right) \in \mathcal{T}_{n}$
α-equivalent closed λ-terms will have the same de Bruijn representation.

Naming Context

- When a λ-term has free variables, we need information on their relative positions.
- E.g. given $\{v \mapsto 2, w \mapsto 1, x \mapsto 0\}$:

Naming Context

- When a λ-term has free variables, we need information on their relative positions.
- E.g. given $\{v \mapsto 2, w \mapsto 1, x \mapsto 0\}$:

Naming Context

- When a λ-term has free variables, we need information on their relative positions.
- E.g. given $\{v \mapsto 2, w \mapsto 1, x \mapsto 0\}$:

- $v(w x)$ can be written as

Naming Context

- When a λ-term has free variables, we need information on their relative positions.
- E.g. given $\{v \mapsto 2, w \mapsto 1, x \mapsto 0\}$:

- $v\left(\begin{array}{l}w\end{array}\right)$ can be written as $2(10)$

Naming Context

- When a λ-term has free variables, we need information on their relative positions.
- E.g. given $\{v \mapsto 2, w \mapsto 1, x \mapsto 0\}$:

- $v\left(\begin{array}{ll}w & x\end{array}\right)$ can be written as $2(10)$
- λy. w y can be written as

Naming Context

- When a λ-term has free variables, we need information on their relative positions.
- E.g. given $\{v \mapsto 2, w \mapsto 1, x \mapsto 0\}$:

- $v\left(\begin{array}{ll}w & x\end{array}\right)$ can be written as $2(10)$
- λy. w y can be written as $\lambda .20$

Naming Context

- When a λ-term has free variables, we need information on their relative positions.
- E.g. given $\{v \mapsto 2, w \mapsto 1, x \mapsto 0\}$:

- $v\left(\begin{array}{ll}w & x\end{array}\right)$ can be written as $2(10)$
- λy. w y can be written as $\lambda .20$
- $\lambda y . \lambda c . v$ can be written as

Naming Context

- When a λ-term has free variables, we need information on their relative positions.
- E.g. given $\{v \mapsto 2, w \mapsto 1, x \mapsto 0\}$:

- $v\left(\begin{array}{ll}w & x\end{array}\right)$ can be written as $2(10)$
- λy. w y can be written as $\lambda .20$
- $\lambda y . \lambda c . v$ can be written as λ. $\lambda .4$

Naming Context

- When a λ-term has free variables, we need information on their relative positions.
- E.g. given $\{v \mapsto 2, w \mapsto 1, x \mapsto 0\}$:

- $v\left(\begin{array}{l} \\ w\end{array}\right)$ can be written as $2(10)$
- λy. w y can be written as $\lambda .20$
- $\lambda y . \lambda c . v$ can be written as λ. $\lambda .4$
- Naming contexts are often written as a sequence, where $x_{n}, x_{n-1}, \ldots, x_{1}, x_{0}$, represents a context where each x_{i} has de Bruijn index i.

Substitution

- Term $(\lambda y$. $\lambda z .(x y)(w z))$ under naming context v, w, x has the following de Bruijn representation:

$$
\lambda . \lambda .\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0
\end{array}\right)
$$

Substitution

- Term $(\lambda y . \lambda z .(x y)(w z))$ under naming context v, w, x has the following de Bruijn representation:

$$
\lambda . \lambda .\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0
\end{array}\right)
$$

- Term (v w) under naming context v, w, x has the following de Bruijn representation:
(2 1)

Substitution

- Term $(\lambda y . \lambda z .(x y)(w z))$ under naming context v, w, x has the following de Bruijn representation:

$$
\lambda . \lambda .\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0
\end{array}\right)
$$

- Term ($v w$) under naming context v, w, x has the following de Bruijn representation:
(2 1)
- Substitution $[x \mapsto(v w)](\lambda y . \lambda z .(x y)(w z))$ will yield the term

$$
\lambda y \cdot \lambda z \cdot((v w) y)(w z)
$$

Substitution

- Term $(\lambda y . \lambda z .(x y)(w z))$ under naming context v, w, x has the following de Bruijn representation:

$$
\lambda . \lambda .\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0
\end{array}\right)
$$

- Term ($v w$) under naming context v, w, x has the following de Bruijn representation:
(21)
- Substitution $[x \mapsto(v w)](\lambda y . \lambda z .(x y)(w z))$ will yield the term

$$
\lambda y \cdot \lambda z \cdot((v w) y)(w z)
$$

- Assuming the naming context is v, w, x, the above term has the following de Bruijn representation: $(\lambda . \lambda$. ((4) 1) (30))

Substitution

- Term $(\lambda y . \lambda z .(x y)(w z))$ under naming context v, w, x has the following de Bruijn representation:

$$
\lambda . \lambda .\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0
\end{array}\right)
$$

- Term (v w) under naming context v, w, x has the following de Bruijn representation:
(21)
- Substitution $[x \mapsto(v w)](\lambda y . \lambda z .(x y)(w z))$ will yield the term

$$
\lambda y . \lambda z \cdot((v w) y)(w z)
$$

- Assuming the naming context is v, w, x, the above term has the following de Bruijn representation: ($\lambda . \lambda$. ((4) 1) (30))
- Hence, when carrying out substitution, we need to renumber the indices of free variables in the replacement term, and retain the indices of bound variables.
This will be done using the shifting operation, defined next. $\bar{\equiv}$ 研

Shifting

For substitution, we need to

- renumber the indices of free variables (say, by d), and
- retain the indices of bound variables (say, those numbered below c).

This is done using the shifting operation, defined as follows:

$$
\begin{aligned}
\uparrow_{c}^{d}(k) & = \begin{cases}k & \text { if } k<c \\
k+d & \text { if } k \geq c\end{cases} \\
\uparrow_{c}^{d}\left(\lambda . t_{1}\right) & =\lambda \cdot \uparrow_{c+1}^{d}\left(t_{1}\right) \\
\uparrow_{c}^{d}\left(t_{1} t_{2}\right) & =\left(\uparrow_{c}^{d} t_{1} \uparrow_{c}^{d} t_{2}\right) \\
\uparrow^{d}(t) & =\uparrow_{0}^{d}(t)
\end{aligned}
$$

Shifting

For substitution, we need to

- renumber the indices of free variables (say, by d), and
- retain the indices of bound variables (say, those numbered below c).

This is done using the shifting operation, defined as follows:

$$
\begin{aligned}
\uparrow_{c}^{d}(k) & = \begin{cases}k & \text { if } k<c \\
k+d & \text { if } k \geq c\end{cases} \\
\uparrow_{c}^{d}\left(\lambda \cdot t_{1}\right) & =\lambda \cdot \uparrow_{c+1}^{d}\left(t_{1}\right) \\
\uparrow_{c}^{d}\left(t_{1} t_{2}\right) & =\left(\uparrow_{c}^{d} t_{1} \uparrow_{c}^{d} t_{2}\right) \\
\uparrow^{d}(t) & =\uparrow_{o}^{d}(t)
\end{aligned}
$$

Examples

- $\uparrow^{2}(\lambda . \lambda .1(02))=$

Shifting

For substitution, we need to

- renumber the indices of free variables (say, by d), and
- retain the indices of bound variables (say, those numbered below c).

This is done using the shifting operation, defined as follows:

$$
\begin{aligned}
\uparrow_{c}^{d}(k) & = \begin{cases}k & \text { if } k<c \\
k+d & \text { if } k \geq c\end{cases} \\
\uparrow_{c}^{d}\left(\lambda \cdot t_{1}\right) & =\lambda \cdot \uparrow_{c+1}^{d}\left(t_{1}\right) \\
\uparrow_{c}^{d}\left(t_{1} t_{2}\right) & =\left(\uparrow_{c}^{d} t_{1} \uparrow_{c}^{d} t_{2}\right) \\
\uparrow^{d}(t) & =\uparrow_{o}^{d}(t)
\end{aligned}
$$

Examples

- $\uparrow^{2}(\lambda . \lambda .1(02))=\lambda . \lambda .1(04)$

Shifting

For substitution, we need to

- renumber the indices of free variables (say, by d), and
- retain the indices of bound variables (say, those numbered below c).

This is done using the shifting operation, defined as follows:

$$
\begin{aligned}
\uparrow_{c}^{d}(k) & = \begin{cases}k & \text { if } k<c \\
k+d & \text { if } k \geq c\end{cases} \\
\uparrow_{c}^{d}\left(\lambda . t_{1}\right) & =\lambda \cdot \uparrow_{c+1}^{d}\left(t_{1}\right) \\
\uparrow_{c}^{d}\left(t_{1} t_{2}\right) & =\left(\uparrow_{c}^{d} t_{1} \uparrow_{c}^{d} t_{2}\right) \\
\uparrow^{d}(t) & =\uparrow_{o}^{d}(t)
\end{aligned}
$$

Examples

- $\uparrow^{2}(\lambda . \lambda .1(02))=\lambda . \lambda .1(04)$
- $\uparrow^{2}(\lambda .01(\lambda .012))=$

Shifting

For substitution, we need to

- renumber the indices of free variables (say, by d), and
- retain the indices of bound variables (say, those numbered below c).

This is done using the shifting operation, defined as follows:

$$
\begin{aligned}
\uparrow_{c}^{d}(k) & = \begin{cases}k & \text { if } k<c \\
k+d & \text { if } k \geq c\end{cases} \\
\uparrow_{c}^{d}\left(\lambda . t_{1}\right) & =\lambda \cdot \uparrow_{c+1}^{d}\left(t_{1}\right) \\
\uparrow_{c}^{d}\left(t_{1} t_{2}\right) & =\left(\uparrow_{c}^{d} t_{1} \uparrow_{c}^{d} t_{2}\right) \\
\uparrow^{d}(t) & =\uparrow_{o}^{d}(t)
\end{aligned}
$$

Examples

- $\uparrow^{2}(\lambda . \lambda .1(02))=\lambda . \lambda .1(04)$
- $\uparrow^{2}(\lambda .01(\lambda .012))=\lambda .03(\lambda .014)$

Substitution using Shifting

$$
\begin{aligned}
{[j \mapsto s] k } & = \begin{cases}s & \text { if } k=j \\
k & \text { otherwise }\end{cases} \\
{[j \mapsto s]\left(\lambda . t_{1}\right) } & =\lambda \cdot\left[j+1 \mapsto \uparrow^{1}(s)\right] t_{1} \\
{[j \mapsto s]\left(t_{1} t_{2}\right) } & =\left([j \mapsto s] t_{1}[j \mapsto s] t_{2}\right)
\end{aligned}
$$

Examples:

- $[0 \mapsto 1](0(\lambda . \lambda .2))=$

Substitution using Shifting

$$
\begin{aligned}
{[j \mapsto s] k } & = \begin{cases}s & \text { if } k=j \\
k & \text { otherwise }\end{cases} \\
{[j \mapsto s]\left(\lambda . t_{1}\right) } & =\lambda \cdot\left[j+1 \mapsto \uparrow^{1}(s)\right] t_{1} \\
{[j \mapsto s]\left(t_{1} t_{2}\right) } & =\left([j \mapsto s] t_{1}[j \mapsto s] t_{2}\right)
\end{aligned}
$$

Examples:

- $[0 \mapsto 1](0(\lambda . \lambda .2))=1(\lambda . \lambda .3)$

Substitution using Shifting

$$
\begin{aligned}
{[j \mapsto s] k } & = \begin{cases}s & \text { if } k=j \\
k & \text { otherwise }\end{cases} \\
{[j \mapsto s]\left(\lambda . t_{1}\right) } & =\lambda \cdot\left[j+1 \mapsto \uparrow^{1}(s)\right] t_{1} \\
{[j \mapsto s]\left(t_{1} t_{2}\right) } & =\left([j \mapsto s] t_{1}[j \mapsto s] t_{2}\right)
\end{aligned}
$$

Examples:

- $[0 \mapsto 1](0(\lambda . \lambda .2))=1(\lambda . \lambda .3)$
- $[0 \mapsto(1(\lambda .2))](0(\lambda .1))=$

Substitution using Shifting

$$
\begin{aligned}
{[j \mapsto s] k } & = \begin{cases}s & \text { if } k=j \\
k & \text { otherwise }\end{cases} \\
{[j \mapsto s]\left(\lambda \cdot t_{1}\right) } & =\lambda \cdot\left[j+1 \mapsto \uparrow^{1}(s)\right] t_{1} \\
{[j \mapsto s]\left(t_{1} t_{2}\right) } & =\left([j \mapsto s] t_{1}[j \mapsto s] t_{2}\right)
\end{aligned}
$$

Examples:

- $[0 \mapsto 1](0(\lambda . \lambda .2))=1(\lambda . \lambda .3)$
- $[0 \mapsto(1(\lambda .2))](0(\lambda .1))=(1(\lambda .2))(\lambda(2(\lambda .3)))$

Substitution using Shifting

$$
\begin{aligned}
{[j \mapsto s] k } & = \begin{cases}s & \text { if } k=j \\
k & \text { otherwise }\end{cases} \\
{[j \mapsto s]\left(\lambda \cdot t_{1}\right) } & =\lambda \cdot\left[j+1 \mapsto \uparrow^{1}(s)\right] t_{1} \\
{[j \mapsto s]\left(t_{1} t_{2}\right) } & =\left([j \mapsto s] t_{1}[j \mapsto s] t_{2}\right)
\end{aligned}
$$

Examples:

- $[0 \mapsto 1](0(\lambda . \lambda .2))=1(\lambda . \lambda .3)$
- $[0 \mapsto(1(\lambda .2))](0(\lambda .1))=(1(\lambda .2))(\lambda(2(\lambda .3)))$
- $[0 \mapsto 1](\lambda .(02))=\lambda$. 0 2)

Evaluation

In the calculus with symbolic term representation:

$$
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
$$

Evaluation

In the calculus with symbolic term representation:

$$
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
$$

In the calculus with de Bruijn representation:

$$
\left(\lambda . t_{1}\right) t_{2} \rightarrow \uparrow^{-1}\left(\left[0 \mapsto \uparrow^{1}\left(t_{2}\right)\right] t_{1}\right) \quad \text { E-AppABS }
$$

Evaluation

In the calculus with symbolic term representation:

$$
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
$$

In the calculus with de Bruijn representation:

$$
\left(\lambda . t_{1}\right) t_{2} \rightarrow \uparrow^{-1}\left(\left[0 \mapsto \uparrow^{1}\left(t_{2}\right)\right] t_{1}\right) \quad \text { E-AppABS }
$$

- The outer λ is removed after application, so the indices have to shift down by 1 .

Evaluation

In the calculus with symbolic term representation:

$$
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
$$

In the calculus with de Bruijn representation:

$$
\left(\lambda . t_{1}\right) t_{2} \rightarrow \uparrow^{-1}\left(\left[0 \mapsto \uparrow^{1}\left(t_{2}\right)\right] t_{1}\right) \quad \text { E-AppABS }
$$

- The outer λ is removed after application, so the indices have to shift down by 1 .
- Indices in argument (t_{2}) should not be changed in the end, so we shifting them up by 1 first.

Evaluation

In the calculus with symbolic term representation:

$$
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
$$

In the calculus with de Bruijn representation:

$$
\left(\lambda . t_{1}\right) t_{2} \rightarrow \uparrow^{-1}\left(\left[0 \mapsto \uparrow^{1}\left(t_{2}\right)\right] t_{1}\right) \quad \text { E-AppABS }
$$

- The outer λ is removed after application, so the indices have to shift down by 1 .
- Indices in argument (t_{2}) should not be changed in the end, so we shifting them up by 1 first.
- Consider ($\lambda x . w x v)(\lambda y .(w y))$, whose de Bruijn representation is ($\lambda .102$) ($\lambda .10$) (assuming naming context v, w).

Evaluation

In the calculus with symbolic term representation:

$$
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-AppABS }
$$

In the calculus with de Bruijn representation:

$$
\left(\lambda . t_{1}\right) t_{2} \rightarrow \uparrow^{-1}\left(\left[0 \mapsto \uparrow^{1}\left(t_{2}\right)\right] t_{1}\right) \quad \text { E-AppABS }
$$

- The outer λ is removed after application, so the indices have to shift down by 1 .
- Indices in argument (t_{2}) should not be changed in the end, so we shifting them up by 1 first.
- Consider ($\lambda x . w x v)(\lambda y .(w y))$, whose de Bruijn representation is ($\lambda .102$) ($\lambda .10$) (assuming naming context v, w).
- The result of the application is $w(\lambda y, w y) v$.

Evaluation

In the calculus with symbolic term representation:

$$
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
$$

In the calculus with de Bruijn representation:

$$
\left(\lambda . t_{1}\right) t_{2} \rightarrow \uparrow^{-1}\left(\left[0 \mapsto \uparrow^{1}\left(t_{2}\right)\right] t_{1}\right) \quad \text { E-AppABS }
$$

- The outer λ is removed after application, so the indices have to shift down by 1 .
- Indices in argument (t_{2}) should not be changed in the end, so we shifting them up by 1 first.
- Consider $(\lambda x . w x v)(\lambda y .(w y))$, whose de Bruijn representation is ($\lambda .102$) ($\lambda .10$) (assuming naming context v, w).
- The result of the application is $w(\lambda y . w y) v$.
- $\uparrow^{1}(\lambda .10)=\lambda .20$

Evaluation

In the calculus with symbolic term representation:

$$
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
$$

In the calculus with de Bruijn representation:

$$
\left(\lambda . t_{1}\right) t_{2} \rightarrow \uparrow^{-1}\left(\left[0 \mapsto \uparrow^{1}\left(t_{2}\right)\right] t_{1}\right) \quad \text { E-AppABS }
$$

- The outer λ is removed after application, so the indices have to shift down by 1 .
- Indices in argument (t_{2}) should not be changed in the end, so we shifting them up by 1 first.
- Consider ($\lambda x . w x v)(\lambda y .(w y))$, whose de Bruijn representation is ($\lambda .102$) ($\lambda .10$) (assuming naming context v, w).
- The result of the application is $w(\lambda y, w y) v$.
- $\uparrow^{1}(\lambda .10)=\lambda .20$
- $[0 \mapsto(\lambda .20)]\left(\begin{array}{lll}1 & 0 & 2\end{array}\right)=1(\lambda .20) 2$

Evaluation

In the calculus with symbolic term representation:

$$
\left(\lambda x . t_{1}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{1} \quad \text { E-APPABS }
$$

In the calculus with de Bruijn representation:

$$
\left(\lambda . t_{1}\right) t_{2} \rightarrow \uparrow^{-1}\left(\left[0 \mapsto \uparrow^{1}\left(t_{2}\right)\right] t_{1}\right) \quad \text { E-AppABS }
$$

- The outer λ is removed after application, so the indices have to shift down by 1 .
- Indices in argument (t_{2}) should not be changed in the end, so we shifting them up by 1 first.
- Consider ($\lambda x . w x v)(\lambda y .(w y))$, whose de Bruijn representation is ($\lambda .102$) ($\lambda .10$) (assuming naming context v, w).
- The result of the application is $w(\lambda y, w y) v$.
- $\uparrow^{1}(\lambda .10)=\lambda .20$
- $[0 \mapsto(\lambda .20)]\left(\begin{array}{ll}1 & 0\end{array}\right)=1(\lambda .20) 2$
- $\uparrow^{-1}(1(\lambda .20) 2)=0(\lambda .10) 1$

