Types

- Types are a way to classify terms (programs).
- Meaningful terms (e.g., those that do not get stuck) should have a type.
- A typing relation relates terms to types.
- Two ways to define semantics:
 - Curry-style: Define terms and their semantics, then define types to reject those terms whose semantics are problematic.
 - Church-style: Define terms and a typing relation, then define semantics only for well-typed terms.
Typed arithmetic expressions

\[
t ::= \text{true} \quad \text{Terms} \\
| \text{false} \\
| \text{if}(t, t, t) \\
| 0 \\
| \text{succ } t \\
| \text{pred } t \\
| \text{iszero } t
\]

\[
T ::= \text{Bool} \quad \text{Types} \\
| \text{Nat}
\]

Typing relation for arithmetic expressions

The smallest binary relation “::” between types and terms satisfying all instances of the following inference rules:

- **T-TRUE**
 \[
 \text{true} : \text{Bool} \quad \text{T-TRUE}
 \]

- **T-FALSE**
 \[
 \text{false} : \text{Bool} \quad \text{T-FALSE}
 \]

- **T-IF**
 \[
 t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T \\
 \text{if}(t_1, t_2, t_3) : T
 \]

- **T-ZERO**
 \[
 0 : \text{Nat} \quad \text{T-ZERO}
 \]

- **T-SUCCE**
 \[
 t_1 : \text{Nat} \\
 \text{succ } t_1 : \text{Nat}
 \]

- **T-PRED**
 \[
 t_1 : \text{Nat} \\
 \text{pred } t_1 : \text{Nat}
 \]

- **T-ISZERO**
 \[
 t_1 : \text{Nat} \\
 \text{iszero } t_1 : \text{Bool}
 \]
Properties of the typing relation

A term t is said to be well-typed if there is a type T such that $t : T$.

- **Uniqueness of types:** Each term t has at most one type T such that $t : T$.
- **Progress:** For every well-typed term t, either t is a value or there is a t' such that $t \rightarrow t'$.
- **Preservation:** If $t : T$ and $t \rightarrow t'$ then $t' : T$.
- Safety = Progress + Preservation

Simply-Typed λ-Calculus

Enriched λ-Calculus

- Recall booleans, numbers and operations on them can be encoded in the pure λ-calculus
- Nevertheless, it is convenient to include primitive data types in the calculus as well
- λB is an enriched calculus with boolean data types true and false, and operation if.
 \[\lambda x. \lambda y. \text{if}(x, y, x) \] is a term in λB.
- λNB is a similarly enriched calculus with numbers and booleans
 \[\lambda x. \lambda y. \text{if}(\text{iszero}(x), \text{succ}(y), x) \] is a term in λNB
Simply-Typed λ-Calculus

Syntax:

$$t ::= \begin{array}{ll}
\text{Terms} & \\
\text{Variable} & x \\
\text{Abstraction} & \lambda x : T. \\ t \\
\text{Application} & t \ t \\
\end{array}$$

$$T ::= \begin{array}{ll}
\text{Types} & \\
\text{Base types} & A \\
\text{Type of functions} & T \to T \\
\end{array}$$

$$\Gamma ::= \begin{array}{ll}
\text{Contexts} & \\
\text{Empty Context} & \emptyset \\
\text{Variable Binding} & \Gamma, x : T \\
\end{array}$$

Evaluation (Call-By-Value)

Small-Step Evaluation Relation for simply-typed λ-calculus:

$$
\frac{t_1 \to t'_1}{t_1 \ t_2 \to t'_1 \ t_2} \quad \text{E-APP1}
$$

$$
\frac{t_2 \to t'_2}{v_1 \ t_2 \to v_1 \ t'_2} \quad \text{E-ABS2}
$$

$$
(\lambda x : T. \ t_1) \ v_2 \to [x \mapsto v_2]t_1 \quad \text{E-APPABS}
$$
Simply-Typed \(\lambda \)-Calculus

Typing Relation

\[
\begin{align*}
\frac{x : T \in \Gamma}{\Gamma \vdash x : T} & \quad \text{T-VAR} \\
\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1. \ t_2 : T_1 \to T_2} & \quad \text{T-ABS} \\
\frac{\Gamma \vdash s : T_1 \to T_2 \quad \Gamma \vdash t : T_1}{\Gamma \vdash (s \ t) : T_2} & \quad \text{T-APP}
\end{align*}
\]

Properties of the typing relation

A term \(t \) is said to be \textit{well-typed} in context \(\Gamma \) if there is a type \(T \) such that \(t : T \).

- **Uniqueness of types:** In a context \(\Gamma \), each term \(t \) has at most one type \(T \) such that \(t : T \).
- **Progress:** For every closed, well-typed term \(t \), either \(t \) is a value or there is a \(t' \) such that \(t \to t' \).
- **Preservation under substitution:** If \(\Gamma, x : S \vdash t : T \) and \(\Gamma \vdash s : S \), then \(\Gamma \vdash [x \mapsto s]t : T \)
- **Preservation:** If \(\Gamma \vdash t : T \) and \(t \to t' \) then \(\Gamma \vdash t' : T \).
- **Safety = Progress + Preservation**
Erasure and Typability

`erase` is a function that maps simply-typed \(\lambda \)-terms to untyped \(\lambda \)-terms.

\[
\begin{align*}
\text{erase}(x) &= x \\
\text{erase}(\lambda x : T. \ t) &= \lambda x. \text{erase}(t) \\
\text{erase}(t_1 \ t_2) &= \text{erase}(t_1) \ \text{erase}(t_2)
\end{align*}
\]

- If \(t \rightarrow t' \) under typed evaluation relation, then \(\text{erase}(t) \rightarrow \text{erase}(t') \)
- If \(\text{erase}(t) \rightarrow m' \), then there is a simply-typed term \(t' \) such that \(t \rightarrow t' \) (under typed evaluation relation) and \(\text{erase}(t') = m' \)
- An untyped term \(m \) is **typable** if there is some simply-typed term \(t \) and type \(T \) and context \(\Gamma \) such that \(\text{erase}(t) = m \) and \(\Gamma \vdash t : T. \)
- **Not every untyped lambda term is typable!**
 Example: \((x \ x)\)