Types

- Types are way to classify terms (programs)
- Meaningful terms (e.g. those that do not get stuck) should have a type
- A typing relation relates terms to types.
- Two ways to define semantics:
 - Curry-style: Define terms and their semantics, then define types to reject those terms whose semantics are problematic.
 - Church-style: Define terms and a typing relation, then define semantics only for well-typed terms.
Typed arithmetic expressions

\[
 t ::= \text{true} \quad \text{Terms} \\
 | \quad \text{false} \\
 | \quad \text{if}(t, t, t) \\
 | \quad 0 \\
 | \quad \text{succ } t \\
 | \quad \text{pred } t \\
 | \quad \text{iszero } t
\]

\[
 T ::= \text{Bool} \quad \text{Types} \\
 | \quad \text{Nat}
\]

Typing relation for arithmetic expressions

The smallest binary relation "::" between types and terms satisfying all instances of the following inference rules:

\[
 \frac{}{0 : \text{Nat}} \quad \text{T-ZERO} \\
 \frac{\text{true} : \text{Bool}}{\text{T-TRUE}} \\
 \frac{\text{false} : \text{Bool}}{\text{T-FALSE}} \\
 \frac{t_1 : \text{Nat}}{\text{T-SUCCE}} \\
 \frac{\text{suc } t_1 : \text{Nat}}{\text{T-PRED}} \\
 \frac{t_1 : \text{Nat}}{\text{T-ISZERO}} \\
 \frac{t_2 : T \quad t_3 : T}{\text{if}(t_1, t_2, t_3) : T} \quad \text{T-IF} \\
 \frac{t_1 : \text{Nat}}{\text{pred } t_1 : \text{Nat}} \\
 \frac{\text{iszero } t_1 : \text{Bool}}
Properties of the typing relation

A term t is said to be well-typed if there is a type T such that $t : T$.

- **Uniqueness of types**: Each term t has at most one type T such that $t : T$.
- **Progress**: For every well-typed term t, either t is a value or there is a t' such that $t \rightarrow t'$.
- **Preservation**: If $t : T$ and $t \rightarrow t'$ then $t' : T$.
- **Safety** = Progress + Preservation

Inversion of the typing relation

- If $\text{true} : R$ then $R = \text{Bool}$
 (similarly, if $\text{false} : R$ then $R = \text{Bool}$)
- If $\text{if}(t_1, t_2, t_3) : R$ then $t_1 : \text{Bool}$, $t_2 : R$ and $t_3 : R$.
- If $0 : R$ then $R = \text{Nat}$
- If $\text{succ } t_1 : R$ then $R = \text{Nat}$ and $t_1 : \text{Nat}$
 (similarly for $\text{pred } t_1 : R$)
- If $\text{iszero } t_1 : R$ then $R = \text{Bool}$ and $t_1 : \text{Nat}$

These results follow from the definition of the typing relation, and are used to prove progress and preservation.
Enriched λ-Calculus

- Recall booleans, numbers and operations on them can be encoded in the pure λ-calculus.
- Nevertheless, it is convenient to include primitive data types in the calculus as well.
- λB is an enriched calculus with boolean data types true and false, and operation if.
 \[
 \lambda x. \lambda y. \text{if}(x, y, x)
 \]
 is a term in λB.
- λNB is a similarly enriched calculus with numbers and booleans.
 \[
 \lambda x. \lambda y. \text{if}(\text{iszero}(x), \text{succ}(y), x)
 \]
 is a term in λNB.

Simply-Typed λ-Calculus

Syntax:

$$
t :: = \begin{array}{l}
\text{T} & \text{Terms} \\
\text{x} & \text{Variable} \\
\lambda x : T. t & \text{Abstraction} \\
t t & \text{Application} \\
\end{array}
$$

$$
T :: = \begin{array}{l}
\text{A} & \text{Base types} \\
T \to T & \text{type of functions} \\
\end{array}
$$

$$
\Gamma :: = \begin{array}{l}
\emptyset & \text{Empty Context} \\
\Gamma, x : T & \text{Variable Binding} \\
\end{array}
$$

Evaluation (Call-By-Value)

Small-Step Evaluation Relation for simply-typed λ-calculus:

\[
\frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2} \quad \text{E-APP1}
\]

\[
\frac{t_2 \rightarrow t_2'}{v_1 \ t_2 \rightarrow v_1 \ t_2'} \quad \text{E-ABS2}
\]

\[(\lambda x : T. \ t_1) \ v_2 \rightarrow [x \mapsto v_2] t_1 \quad \text{E-APPABS}\]

Typing Relation

\[
\frac{x : T \in \Gamma}{\Gamma \vdash x : T} \quad \text{T-VAR}
\]

\[
\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1. \ t_2 : T_1 \rightarrow T_2} \quad \text{T-ABS}
\]

\[
\frac{\Gamma \vdash s : T_1 \rightarrow T_2 \quad \Gamma \vdash t : T_1}{\Gamma \vdash (s \ t) : T_2} \quad \text{T-APP}
\]
Properties of the typing relation

A term t is said to be well-typed in context Γ if there is a type T such that $t : T$.

- **Uniqueness of types:** In a context Γ, each term t has at most one type T such that $t : T$.
- **Progress:** For every closed, well-typed term t, either t is a value or there is a t' such that $t \rightarrow t'$.
- **Preservation under substitution:** If $\Gamma, x : S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.
- **Preservation:** If $\Gamma \vdash t : T$ and $t \rightarrow t'$ then $\Gamma \vdash t' : T$.
- **Safety** = Progress + Preservation

Erasure and Typability

erase is a function that maps simply-typed λ-terms to untyped λ-terms.

$$
\begin{align*}
\text{erase}(x) &= x \\
\text{erase}(\lambda x : T. \ t) &= \lambda x. \text{erase}(t) \\
\text{erase}(t_1 \ t_2) &= \text{erase}(t_1) \ \text{erase}(t_2)
\end{align*}
$$

- If $t \rightarrow t'$ under typed evaluation relation, then $\text{erase}(t) \rightarrow \text{erase}(t')$.
- If $\text{erase}(t) \rightarrow m'$, then there is a simply-typed term t' such that $t \rightarrow t'$ (under typed evaluation relation) and $\text{erase}(t') = m'$.
- An untyped term m is **typable** if there is some simply-typed term t and type T and context Γ such that $\text{erase}(t) = m$ and $\Gamma \vdash t : T$.
- Not every untyped lambda term is typable!
 Example: $(x \ x)$