Q1. Let S be a set, and R be a binary relation over S (i.e., $\subseteq S \times S$). Consider the following three definitions, all attempting to define the transitive closure of R:

R^+_I: The inductive transitive closure of R, denoted by R^+_I, is the smallest set such that:
1. if $(s_1, s_2) \in R$ then $(s_1, s_2) \in R^+_I$.
2. if $(s_1, s_2) \in R$ and $(s_2, s_3) \in R^+_I$, then $(s_1, s_3) \in R^+_I$.

R^+_C: The constructive transitive closure of R, denoted by R^+_C, is the union of all T_i, $i \geq 0$ (i.e. $R^+_C = \bigcup_{i \geq 0} T_i$), where:

$$
T_0 = \emptyset
$$

$$
T_{i+1} = \left\{ \begin{array}{l} R \\ \cup \{(s_1, s_3) | \exists (s_1, s_2) \in R, (s_2, s_3) \in T_i \} \end{array} \right.
$$

R^+_D: The recursive doubling transitive closure of R, denoted by R^+_D, is the union of all V_i, $i \geq 0$ (i.e. $R^+_D = \bigcup_{i \geq 0} V_i$) where:

$$
V_0 = \emptyset
$$

$$
V_{i+1} = \left\{ \begin{array}{l} R \\ \cup \{(s_1, s_3) | \exists (s_1, s_2) \in V_i, (s_2, s_3) \in V_i \} \end{array} \right.
$$

Q1. (a) Show that $R^+_I = R^+_C$.
(b) Show that $R^+_C = R^+_D$.

Q2. Consider the language B_N of Boolean expressions from the text whose syntax and single-step operational semantics are given below.

<table>
<thead>
<tr>
<th>Terms and Values:</th>
<th>Evaluation Rules:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t ::= \begin{align*} \text{true} \ \text{false} \ \text{nand}(t, t) \end{align*}$</td>
<td>$\begin{align*} \text{nand}(\text{false}, t_2) & \rightarrow \text{true} & \text{E-False} \ \text{nand}(\text{true}, \text{false}) & \rightarrow \text{true} & \text{E-TrueFalse} \ \text{nand}(\text{true}, \text{true}) & \rightarrow \text{false} & \text{E-TrueTrue} \end{align*}$</td>
</tr>
<tr>
<td>$v ::= \begin{align*} \text{true} \ \text{false} \end{align*}$</td>
<td>$\begin{align*} \frac{t_2 \rightarrow t'_2}{\text{nand}(\text{true}, t_2) \rightarrow \text{nand}(\text{true}, t'_2)} & \text{E-True} \ \frac{t_1 \rightarrow t'_1}{\text{nand}(t_1, t_2) \rightarrow \text{nand}(t'_1, t_2)} & \text{E-Nand} \end{align*}$</td>
</tr>
</tbody>
</table>

Q2. (a) Does determinacy hold for B_N? That is, for all t, t', t'', if $t \rightarrow t'$ and $t \rightarrow t''$ then $t' = t''$? Justify.

(b) Does uniqueness of normal forms hold in B_N? That is, for all t, v, v', if $t \rightarrow^* v$ and $t \rightarrow^* v'$ then $v = v'$? Justify.

(c) Does termination hold in B_N? Justify.

For all three parts above, your justification should be as follows. If the property holds, give a formal proof. If the property does not hold give a completely-specified counter example, and explain how it is a counter example.