Well-Founded and Stationary Models
of
Logic Programs

Teodor C. Przymusinski

Department of Computer Science
University of California
Riverside, CA 92521
(teodor@cs.ucr.edu)*

Table of Contents

1 Introduction 1
2 Clark’s Predicate Completion Semantics and its Drawbacks . 2
2.1 The Negative Recursion Problem: Inconsistency 4

2.2 The Positive Recursion Problem: Insufficient Expressibility . . . b)

3 Eliminating Drawbacks of Clark’s Semantics. 7
3.1 Partial Clark’s Predicate Completion Semantics 7

3.2 Least Models 8
3.3 Perfect Models 9
3.4 Stable Models 10
3.5 Well-Founded Models 11
3.6 Partial Stable or Stationary Models 12

3.7 Relationships Between Different Semantics 12

4 Well-Founded and Stationary Models 13
4.1 Partial Models 13
4.2 Least Partial Models 17
4.3 The Quotient Operator 19
4.4 Well-Founded Models 21
4.5 Stationary Models L oo 26
4.6 Well-Founded Model Coincides with the Smallest Stationary Model 27

4.7 Dynamic Stratification Lo 28
4.8 Non-Herbrand Models 31
4.9 Relationship to Non-Monotonic Formalisms 33
4.10 Procedural Semantics: SLS-resolution 35

5 Conclusion 37
References e e 37

* Partially supported by the National Science Foundation grant #IRI-9313061. To
appear in the Annals of Mathematics and Artificial Intelligence. Revised on June 6,
1994.

1 Introduction

The introduction and subsequent development of the formal foundations of logic
programming and deductive databases has been an outgrowth and an unques-
tionable success of the logical approach to knowledge representation. This ap-
proach is based on the idea of providing intelligent machines with a logical
specification of the knowledge that they possess, thus making it independent
of any particular implementation. Consequently, a precise meaning or semantics
must be associated with any logic or database program P in order to provide its
declarative specification.

Declarative semantics provides a mathematically precise definition of the
meaning of the program in a manner, which is independent of procedural con-
siderations, context-free, and easy to manipulate, exchange and reason about.
Procedural semantics, on the other hand, usually is given by providing a pro-
cedural mechanism that, at least in theory and perhaps under some additional
assumptions, is capable of supplying answers to a wide class of queries. The
performance of such a mechanism (in particular, its correctness) is evaluated by
comparing its behavior to the specification provided by the declarative semantics.
Without a proper declarative semantics the user needs an intimate knowledge
of procedural aspects in order to write correct programs.

Finding a suitable declarative or intended semantics is one of the most impor-
tant and difficult problems in logic programming and deductive databases. The
importance of this problem stems from the declarative character of logic pro-
grams and deductive databases, whereas its difficulty can be largely attributed
to the fact that there does not exist a precisely defined set of conditions that a
‘suitable’ semantics should satisfy. While all researchers seem to agree that any
semantics must reflect the intended meaning of a program or a database and
also be suitable for mechanical computation, there is no agreement as to which
semantics best satisfies these criteria.

One thing, however, appears to be clear. Logic programs and deductive
databases must be as easy to write and comprehend as possible, free from exces-
sive amounts of explicit negative information and as close to natural discourse
as possible. In other words, the declarative semantics of a program or a database
must be determined more by its commonsense meaning than by its purely logical
content. For example, given the information that 1 is a natural number and that
n+ 1 is a natural number if so is n, we should be able to derive a non-monotonic
or commonsense conclusion that neither 0 nor Mickey Mouse is a natural num-
ber. Similarly, from a database of information about teaching assignments, which
only shows that John teaches Pascal and Prolog this semester, it should be pos-
sible to reach a common sense conclusion that John does not teach Calculus.
Clearly, none of these facts follow logically from our assumptions.

Assuming that a logic program P is expressed in some language £ and is
considered to be a theory in some logic Log (e.g., classical predicate logic, three-
valued logic or epistemic logic), the declarative semantics SEM (P) of P is the
set of all sentences in £ which are considered to be true about P. It is natural
to require that SEM (P) be closed under logical consequence in Log and that it

should at a minimum contain all sentences derivable from P in the given logic
Log. However, in general, SEM (P) contains many more sentences describing
the commonsense consequences of P .

The semantics SEM (P) can be specified in various ways, among which the
following two are most common. One that can be called proof-theoretic, associates
with P its extension or completion COM P(P), i.e., a (finite or infinite) theory
in £ extending P. For example, COM P(P) can be Clark’s predicate completion
of P. A sentence S is then said to belong to SEM (P) if and only if it derivable,
in the logic Log, from the completion:

COMP(P) Lo, S.

A closely related method of defining the declarative semantics SEM (P) of a pro-
gram is model-theoretic. The semantics is determined by choosing a set M OD(P)
of intended models of P (in particular, one intended model Mp) in the logic Log.
For example, MOD(P) can be the set of all minimal models of P or the unique
least model of P. A formula S is then said to belong to SEM (P) if and only if
it is satisfied in all intended models, i.e., if

MOD(P) k=104 S (in particular, Mp 104 S).

Although the proof-theoretic approach can be viewed as a special case of the
model-theoretic approach it is often easier or more natural to use than the model-
theoretic one.

2 Clark’s Predicate Completion Semantics and its
Drawbacks

The most commonly used declarative semantics of logic programs, although less
popular in the context of deductive databases, is based on the so called Clark’s
predicate completion comp(P) of a logic program P [Cla78, Llo84].

Clark’s completion of P is obtained by first rewriting every clause in P of the
form:

ZI(K1,---,Kn) (—Ll,...,Lm,

where q is a predicate symbol and Kji,..., K, are terms containing variables
Xi,..., Xk, as a clause

q(T]_,...,Tn) — V,

where T;’s are variables,

V=3X1,.... X i =KiN...ANT, =K, ANLi A...A L)

and then replacing, for every predicate symbol q in the alphabet, the (possibly
empty?) set of all clauses
q(Tla-"aTn) — ‘/1

o(Tr,...,Tn) < Vs

with q appearing in the head, by a single universally quantified logical equiva-
lence
q(Ty,....,T)) & ViV...V V.

Clark’s predicate completion semantics CLARK (P) of a program P is then
defined® as the set of all sentences logically implied by Clark’s completion
comp(P) of P, i.e., as the set of all sentences satisfied in all models of comp(P).

Clark’s approach is mathematically elegant and founded on a natural idea
that in common discourse we often tend to use ‘if’ statements, when we re-
ally mean ‘iff’ statements. For example, we may legitimately use the following
program P; to describe natural numbers:

natural -number(0)
natural number(succ(X)) + natural_number(X).

When interpreted as a self-contained first order theory, the above program P; is
too weak and does not reflect our intended meaning. In particular, it does not
even imply that, say, Mickey Mouse (or anything else for that matter) is not a
natural number. This is because what we really (intuitively) have in mind is the
following theory:

natural number(T) +— T =0V IX (T = succ(X) A natural number(X))

which implies
—natural_number(Mickey M ouse)

and is in fact Clark’s completion comp(P;) of the program P;.

Unfortunately, Clark’s semantics also has some serious drawbacks. More
precisely, while Clark’s predicate completion provides a suitable semantics for
recursion-free programs [AB90], It often fails to provide a proper semantics for
programs involving recursion.

Recursion in logic programming can occur in two essentially different forms,
namely as:

2 If there are no clauses involving the head q(T1,...,T,), then the corresponding dis-
junction is empty and thus always false. The resulting completion contains therefore
a universal negation of q(T4,...,T,).

3 The obtained theory is also augmented with Clark’s Equality Azioms, which include
unique names azioms and equality azioms (see Section 4.8 or [PP90a] for more de-
tails). These axioms are only essential when considering the so called non-Herbrand
models of Clark’s completion and they will not play any role in the discussion that
follows.

Positive recursion, which can be schematically illustrated by the program
p < p, in which the predicate p depends on a positive occurrence of itself;

Negative recursion, which can be schematically illustrated by the program
p < —p, in which p depends on a negative occurrence of itself.

Causes of the inadequate behavior of the Clark completion semantics for
recursive programs are largely dependent on whether the recursion is negative
or positive and therefore they are discussed separately below. We begin by dis-
cussing problems involving negative recursion, which are easier to correct.

2.1 The Negative Recursion Problem: Inconsistency

While Clark’s completion comp(P) is always consistent (and thus well-defined)
for programs P not involving negative recursion (cf. [Cav89]), comp(P) is fre-
quently inconsistent for programs with negative recursion and therefore it does
not provide any reasonable semantics for such programs.

For a trivial example, observe that Clark’s completion of the program P»

a
b+ —a
p<p
is
a; b —a; pe p,
which is inconsistent. As a result, the above program is not given any sensible
meaning by the Clark semantics, in spite of the fact that it clearly should imply
a and —b. This implies that the answer ‘yes’ to the query < a, which would
be returned by any Prolog system, is in fact unsound* with respect to Clark’s
semantics.
The next example is even more pathological. Observe that Clark’s completion
of the program Pis:
a
p<—q,p
is:
a
p ©gA-p
-q
which is inconsistent. However, after adding to P; a clause g < ¢ its completion

becomes:
a

P& —gA-p
q<q
4 Unless we agree to assign Clark’s semantics also to programs P for which comp(P)

is inconsistent, in which case the semantics will include all formulae and thus be
totally useless.

which has a unique model in which a and ¢ are true and p is false. However, the
clause g + g represents a tautology which is clearly ‘meaningless’, i.e., it should
not in any way affect the meaning of the program as it does not add any new
information.

On the other hand, after adding to P; another ‘meaningless’ clause p < p its
completion becomes:

a
p < pV(-gA-p)
-q

which has a unique, yet different, model in which ¢ is false and a and p are true.
As a final example, let us consider the following program P, [Prz91c|:

work <+ —tired
sleep + —work
tired < —sleep
angry < —paid, work
paid <+

Clark’s completion of the above program is:

work <+ —tired

sleep < —work

tired < —sleep

angry < —paid A work
paid

which is easily seen to be inconsistent.

However, while it appears that the first three rules of the program P, describe
only mutual relationships between propositions tired, work and sleep, without
providing sufficient information to determine their truth or falsity, it is clear that,
regardless of the status of propositions tired,work and sleep, the proposition
paid must be true and thus angry, by negation as failure, should be false. These
are also the answers that would be returned by any Prolog system, but again,
in spite of their intuitive naturality, they are essentially unsound with respect to
Clark’s semantics.

2.2 The Positive Recursion Problem: Insufficient Expressibility

As we mentioned before, Clark’s semantics often fails to provide a suitable se-
mantics for programs involving positive recursion. This problem applies both to
standard Clark’s semantics CLARK (P) as well as to its Fitting-Kunen extension
PCLARK (P) discussed later in this chapter. The problem has been extensively
discussed in the literature (see e.g. [She88, She84, Prz89b, VGRS90]). We illus-
trate it on the following three examples.

Ezample 1. Suppose that to the program P; defined before we add a seemingly
meaningless clause:

natural_number(X) < natural_number(X).

Intuitively, the newly obtained program P should have the same semantics.
However, Clark’s completion of the new program PJ is:

natural number(T) «—

(natural_number(T) VT =0V 3X (T = succ(X) A natural_number(X)))

from which it no longer follows that Mickey Mouse (or anything else, for that
matter) is not a natural number. 0

Ezample 2. (Van Gelder) Suppose, that we want to describe which vertices
in a graph are reachable from a given vertex a. We could write the following
positive program Pj:

edge(a,b)

edge(c,d)

edge(d, c)

reachable(a)

reachable(X) < reachable(Y), edge(Y, X).

We clearly expect vertices ¢ and d not to be reachable. However, Clark’s com-
pletion of the predicate ‘reachable’ gives only

reachable(X) +— (X = a Vv 3Y (reachable(Y) A edge(Y, X)))

from which such a conclusion cannot be derived. Here, the difficulty is caused
by the existence of symmetric clauses edge(c,d) and edge(d, ¢). Removal of at
least one of these edges eliminates the problem. O

Example 8. Suppose that program Py is given by the following clauses:

bird(tweety)

Fly(X) + bird(X), —abnormal (X)
abnormal(X) < irregular(X)
irregular(X) < abnormal (X).

The last two clauses merely state that irregularity is synonymous with ab-
normality. Based on the fact that nothing leads us to believe that Tweety is
abnormal, we are justified to expect that Tweety flies, but Clark’s completion
of Py yields

fly(T) > (bird(T) A —~abnormal(T))
abnormal(T) <+— irregular(T),
from which it does not follow that anything flies. On the other hand, without

the last two clauses (or without just one of them) Clark’s semantics produces
correct results. O

The basic problem is that the addition of positive recursion to a program
often leads to a completion, which is too weak to express the intended meaning
of the program, i.e., a completion from which some intuitively obvious conclu-
sions can no longer be derived. In particular, this problem is responsible for the
fact that Clark’s semantics is not sufficiently expressive to naturally represent
transitive closures [Kun88].

The above described behavior of Clark’s completion is bound to be confusing
for a thoughtful logic programmer, who may very well wonder why, for exam-
ple, the addition of a seemingly harmless statement “natural number(X) «
natural number(X)” should change the meaning of the first program. The ex-
planation that will most likely occur to him will be procedural in nature, namely,
the fact that the above added clause may lead to a loop. But it was the idea
of replacing procedural programming by declarative programming that brought
about the concept of logic programming and deductive databases in the first
place, and, therefore it seems that such a procedural explanation contradicts the
very spirit of logic programming and thus should be rejected.

3 Eliminating Drawbacks of Clark’s Semantics

In this section we briefly discuss several recently proposed semantics of logic pro-
grams which attempt to eliminate the drawbacks of Clark’s semantics discussed
above. For a more thorough discussion the reader is referred to [PP90a]. Next
section will be devoted to a detailed study of the well-founded and stationary
semantics.

3.1 Partial Clark’s Predicate Completion Semantics

As shown by [Fit85] and [Kun87], the inconsistency problem for Clark’s se-
mantics, which is caused by negative recursion, can be elegantly eliminated by
replacing Clark’s semantics by its extension PCLARK (P) obtained by consid-
ering all partial models of Clark’s completion comp(P) instead of using only total
models.

More precisely, the idea is to consider interpretations and models in which
the truth values true and false are not necessarily assigned to all (ground) atoms
but only to some of them, leaving the truth value of the remaining atoms unde-
fined. The assignment of truth values given by a partial interpretation I is then
naturally extended to the class of all sentences (closed formulae). For example,
the truth value of a disjunction F'V G is defined as true, if one of F or G is true
in I, false, if both F' and G are false in I and is undefined otherwise. Similarly,
the truth value of —F' is true if F' is false in I, is false if F is true in I and is
undefined otherwise. The equivalence F' <+ @ is defined to be true if both F' and
G have the same truth value and is defined to be false otherwise.

As we have seen above in the case of programs P», P; and Py, a logic pro-
gram may contain predicates whose truth or falsity is not fully determined by the
program (and thus is undefined), in addition to predicates whose truth values

are completely determined by the program. Partial models enable us to assign
sensible semantics to such programs, without loosing potentially valuable infor-
mation contained in them. The need to consider partial models (possible worlds)
to describe our knowledge naturally follows from the fact that our knowledge
about the world is almost always incomplete and therefore we need the ability
to describe possible worlds (models) in which some facts are neither true nor
false and thus their status is undefined.

The partial Clark predicate completion semantics PCLARK (P) of a program
P is defined as the set of all sentences satisfied in all partial models of Clark’s
completion comp(P) of P. In other words, we consider all logical consequences
of Clark’s completion in a suitable 3-valued logic. The new semantics no longer
suffers from the inconsistency problem, caused by negative recursion, because, as
shown in [Fit85], Clark’s completion comp(P) of any logic program P always has
at least one partial model. The partial Clark completion semantics is therefore
well-defined for any logic program P. Since any sentence from PCLARK (P)
must hold in all partial models of comp(P), and thus also in all total models of
comp(P), the partial Clark semantics is weaker than the original Clark semantics,
i.e. for any logic program P we have:

PCLARK (P) C CLARK(P).

For example, Clark’s completion comp(Pz) of the program P, has a unique
partial model® M, in which the proposition a is true and b is false but the status
of p is undefined. Consequently, the partial Clark’s semantics PCLARK (P,) of
P, implies that a is true and b is false but leaves the status of p undefined.

Similarly, Clark’s completion of the program P; has exactly one partial
model, in which a is true and ¢ is false but p is not defined. Therefore, the
semantics PCLARK (P;) of P; implies that a is true, ¢ is false and leaves the
status of p undefined.

Finally, Clark’s completion of the program Py also has a unique partial model
in which paid is true, angry is false and sleep, tired and work are not defined
and therefore, as one would expect, PCLARK (P,) implies paid and —angry,
but it does not determine the status of work, tired and sleep.

As we can see, in those three cases, the meaning assigned by the partial Clark
semantics agrees with our intuitions. The partial Clark completion semantics,
proposed by Fitting and Kunen, not only eliminates the inconsistency problem
but also displays a much more regular behavior than the original semantics and
therefore it may be viewed as the “true” Clark semantics.

Unfortunately, as the reader can easily verify, the partial Clark completion
semantics does not avoid the expressibility problems involving positive recursion
that were discussed in the previous section.

3.2 Least Models

The classical result proved in [VEK76] shows that every positive logic program P,
i.e., a program in which all premises are positive, has a unique least (Herbrand)

5 Here we restrict our attention to Herbrand models only.

model Mp. This important result immediately leads to the definition of the so
called least model semantics LEAST(P) for positive programs. A sentence F'
belongs to LEAST (P) if and only if F is true in the least model Mp of P.

The least model semantics is very intuitive, eliminates the positive recursion
problems suffered by Clark’s semantics, and, since it only applies to positive
programs, it obviously is not affected by the negative recursion problem. The
semantics properly reflects the intended meaning of positive logic programs and
is motivated by the idea that we should minimize positive information as much
as possible, limiting it to facts explicitly implied by P and making everything
else false. In other words, the least model semantics is based on a natural form
of the closed world assumption [Rei78].

Since the least model of a positive program is also a model of Clark’s comple-
tion, the least model semantics is stronger than Clark’s semantics. More precisely,
for any positive program P we have:

CLARK(P) = PCLARK(P) C LEAST(P).

Unfortunately, the least model semantics is well defined only for the class of
positive programs. Programs which are not positive, in general, do not have
least models and therefore the least model semantics is not applicable to such
programs.

3.3 Perfect Models

In [ABW88] and [VG89b] the important class of stratified programs was intro-
duced and a natural semantics for this class of programs was proposed. The class
of stratified programs includes all positive programs and — imprecisely speaking
— consists of those programs in which no predicate symbol depends negatively
on itself. In particular, stratified programs do not allow negative recursion. The
proposed semantics has been further investigated in [Prz88a, Prz89b], where it
was characterized by means of preferred models, given the name of the perfect
model semantics and extended to a broader class of locally stratified programs.
We denote the perfect model semantics of a program P by PERF(P).

The introduction of stratified programs and the perfect model semantics con-
stituted a major breakthrough, by providing a large class of programs, which al-
low negation and positive recursion and yet admit a natural semantics which ex-
tends the least model semantics of positive programs and eliminates the positive
recursion problem present in Clark’s semantics Naturally, the negative recursion
problem does not apply to stratified programs. It appears that the perfect model
semantics has since been almost universally accepted as a correct semantics for
the class of (locally) stratified programs.

The perfect model semantics is based on the idea of constructing an iterated
least model of a program or — in other words — applying the iterated closed world
assumption [GPP89]. It can also be equivalently defined by using the iterated
fixed point approach or the preference relation between predicate symbols. As it
was the case with the least model, the perfect model of a (locally) stratified pro-
gram is also a model of Clark’s completion and thus the perfect model semantics

is stronger than Clark’s semantics. More precisely, for any (locally) stratified
program P we have:

CLARK(P) = PCLARK(P) C PERF(P).

Moreover, for any positive logic program LEAST(P) = PERF(P).

The perfect model semantics is a special case of more general stable, station-
ary and well-founded semantics which are discussed next.

The only drawback of the perfect model semantics is the fact that it is re-
stricted to the class of (locally) stratified programs. Several researchers pointed
out that there exist interesting and useful logic programs with natural intended
semantics, which are not locally stratified [GL88, VGRS90].

3.4 Stable Models

The stable model semantics was introduced in [GL88] in a successful attempt to
extend the perfect model semantics to a class of programs significantly broader
than the class of (locally) stratified programs. The stable model semantics
STABLE(P) has an elegant and simple fixed point definition and is closely
related to the autoepistemic logic. An equivalent definition of stable models
based on default logic was independently introduced in [BF91]. Unfortunately,
while eliminating the positive recursion problem, the stable model semantics
suffers from essentially the same negative recursion problem as Clark’s predicate
completion semantics. Namely, first of all, it is not defined for many programs
involving negative recursion, thus making it impossible to extract from them
all the potentially valuable information. For example, as it was the case with
Clark’s semantics, the stable model semantics is not defined for programs Ps, P3
and P, described in Section 2.1. Moreover, even in those cases when the stable
semantics is defined it does not always lead to the expected (intended) meaning
of the program [VGRS90, PP90a], as shown by the following example.

Ezample 4. [VGRS90] Let P; be given by:

b« —a
a<+ b
p&<p
p < a.

This program has a unique stable model M = {p, b}, which is also the unique
(total) model of Clark’s completion comp(P7), and therefore both the stable
model semantics STABLE(P;) and Clark’s predicate completion semantics
CLARK (P;) imply that p and b are true and a is false. This conclusion is viewed
by many researchers as unintuitive. Indeed, although the first two clauses do not
give any preference to either b or a, the proposition b is made true because:
(1) p must be true because (in 2-valued logic) this is the only way of satisfying
the third clause whose premise is —p; (2) the only way to justify p being true
is to assume that —a, and thus also b, is true. In other words, the reasoning

essentially proceeds backwards, namely, since p must be true we must assume
that a is false. This appears to violate the usual, forward way of reasoning in
logic programming. As a result, it is easy to see that it is impossible to derive b
from P; using any form of Horn-resolution. This is because any Horn-resolution
beginning with the goal b will reach only the first two clauses of P, from which
b cannot be derived.

On the other hand, partial Clark’s semantics PCLARK (P;) of P; has three
models. One of them is the stable model M mentioned above, in the second a is
true, b is false and p is undefined and in the third all a, b and p are undefined.
As a result, the partial Clark semantics remains undecided as far as answers
to queries about a, b and p are concerned, which seems to properly reflect the
incomplete (or uncertain) information contained in the program. O

Stable Semantics is not Cumulative A semantics SEM (P) is called cumu-
lative [Mak88] if, for any program P and atoms A and B, from the fact that
SEM(P) ELog A and SEM(P) Ero4 B it follows that SEM (P U A) Loy B.
The above example illustrates another important drawback of the stable model
semantics, namely, the fact that it is not cumulative. Indeed, even though the
stable model semantics STABLE(P;) of P; implies p and b, the stable model
semantics of the program P} = P; U {p}, obtained by adding p to P;, no longer
implies b. The lack of cumulativity is likely to cause serious maintenance prob-
lems. Indeed, as a result of adding to a program P a fact A derivable from P,
we may be forced to retract another derivable fact B.

The stable model semantics is also computationally intractable. As it was
proven in [MT88], just determining whether a finite datalog program with
negation® has a stable model is NP-complete, whereas the problem of comput-
ing the intersection of all stable models of such simple programs is co-NP-hard
[KS89].

While the stable semantics exhibits good behavior under positive recursion,
its behavior under megative recursion is essentially identical to the behavior of
the (standard) Clark completion semantics CLARK (P). In this sense, the stable
semantics STABLE is dual to the partial Clark semantics PCLARK (P), which
ensures a proper treatment of negative recursion but fails to ensure a proper
treatment of positive recursion.

3.5 Well-Founded Models

The well-founded semantics, W F(P), introduced in [VGRS90], is also an exten-
sion of the perfect model semantics from the class of (locally) stratified logic
programs to the class of normal logic programs. However, in contrast to the
stable semantics, the well-founded semantics is defined for all normal logic pro-
grams. It combines the features of both the stable and partial Clark semantics

6 Ie.,a program which does not use functional symbols, or, more precisely, one whose
ground instantiation is finite.

and thus ensures a proper behavior under both positive and negative recur-
sion. As a result, the well-founded semantics provides a natural and intuitive
semantics for the class of all logic programs. It also shares many of the natural
properties of the perfect model semantics [Prz89a]. Namely, well-founded models
can be equivalently defined as iterated least models and as iterated fixed points.
The well-founded model also leads to a natural notion of dynamic stratification
of an arbitrary logic program.

Well-founded semantics has been shown to have a sound and complete proof
procedure, called SLS-resolution [Prz89a, Ros89], and several natural construc-
tive characterizations [Prz89a, VG89a, Bry89, Prz94b]. Recently, D. S. Warren
introduced the Extended Warren Abstract Machine (XWAM) for this seman-
tics [War89] and developed an elegant interpreter in Prolog [CW92]. For datalog
programs with negation, the computation of well-founded models is quadratic
in the size of the program [VGRS90]. Moreover, the well-founded semantics is
always cumulative [Dix91, LY91].

3.6 Partial Stable or Stationary Models

Stable and well-founded semantics are closely related. In [Prz90, Prz91c] the
author introduced partial stable models of normal logic programs, which were
later renamed stationary models [Prz91b]. Partial stable (or stationary) models
constitute a natural generalization of the (total) stable models and are defined
as fixed points of a program transformation (factorization) which is analogous
to the transformation used in the original definition of stable models [GL88]. It
turns out that the well-founded model always coincides with the smallest partial
stable model and thus every normal logic program P has at least one partial stable
model. It also follows that the well-founded semantics of an arbitrary normal
logic program always coincides with the partial stable semantics, PSTABLE(P),
or — equivalently — with the stationary semantics, ST AT (P), defined as the set
of all sentences true in all partial stable (or all stationary) models of a program
P:
WPF(P) = PSTABLE(P) = STAT(P).

One can thus say that the only difference between the stable and well-founded
semantics is the fact that the former uses only total stable models while the
latter allows all partial stable models. Consequently, the relationship between
the stable semantics STABLE(P) and the partial stable or well-founded se-
mantics PSTABLE(P) = WF(P) is analogous to the relationship between
Clark’s completion semantics CLARK (P) and partial Clark completion seman-
tics PCLARK (P).

Partial stable, and, in particular, well-founded models are also closely related
to non-monotonic formalisms in Al It has been proven in [Prz91d] that partial
stable models of an arbitrary logic program are in a one-to-one correspondence
to natural 3-valued forms of all four major formalizations of non-monotonic
reasoning in Al: McCarthy’s circumscription, Reiter’s closed world assumption,
Moore’s autoepistemic logic and Reiter’s default theory. Recently, the author

showed [Prz94a, Prz91a] that partial stable models can be equivalently defined
(without any reference to partial models) as expansions in autoepistemic logic
and that essentially the only difference between stable and partial stable models
is the fact that the first are based on Reiter’s Closed World Assumption CW A
while the latter are based on Minker’s GCW A (or, equivalently, on McCarthy’s
Circumscription CIRC). Similar results were obtained for default logic [PP94].
The relationship between partial stable models and non-monotonic formalisms
is discussed in more detail in Section 4.9.

Partial stable, and thus also well-founded, models have been recently gener-
alized to the class of all disjunctive logic programs [Prz94b, Prz91b).

3.7 Relationships Between Different Semantics

The following table summarizes the basic features of various semantics discussed
in this section. It specifies whether a given semantics properly handles positive
and negative recursion and describes the class of programs for which the seman-
tics is defined.

Semantics Pos. Recursion|Neg. Recursion| Class of Progs.

Clark No No Restricted

Partial Clark No Yes All
Least Yes Yes Positive
Perfect Yes Yes (Loc.) Stratified
Stable Yes No Restricted

Well-Founded Yes Yes All

(= Partial Stable
= Stationary)

The following inequalities describe the remaining relationships between the
semantics listed above. All of them apply only to those classes of programs
for which they are defined. The notation SEM;|Class = SEM, means that
semantics SEM; coincides with semantics SEM,; in the class Class of programs

WF(P) = STAT(P) = PSTABLE(P) C STABLE(P)
Ul Ul
PCLARK(P) C CLARK(P).
W F(P)|locally stratified = STABLE(P)|locally stratified = PERF(P).
PERF(P)|positive = LEAST (P).

The above table shows that partial Clark’s completion semantics is the weakest
of all semantics considered in here. The table does not contain any relationship
between the Clark completion semantics CLARK (P) and the well-founded se-
mantics WF(P) = PSTABLE(P); the two semantics are in fact incompatible.

It follows from the above tables that the partial Clark predicate comple-
tion semantics PCLARK (P) can be viewed as a natural (and computationally
less expensive) approzimation to the well-founded (or partial stable) semantics
WF(P) = PSTABLE(P) of logic programs, in the sense that any answers given
by PCLARK (P) (in particular, those computed by the SLDNF-resolution) are
correct with respect to the well-founded semantics (but not vice versal). Simi-
larly, the Clark predicate completion semantics CLARK (P) can be viewed as a
natural approzimation to the stable semantics STABLE(P).

4 'Well-Founded and Stationary Models

4.1 Partial Models

In this section we define logic programs and their partial interpretations and
models. We closely follow the approach developed in [Prz89a, PP90a].

By an alphabet A of a first order language £ we mean a (finite or count-
ably infinite) set of constant, predicate and function symbols. In addition, any
alphabet is assumed to contain a countably infinite set of variable symbols, the
connectives A, V, 1, + and quantifiers 3,V and the usual punctuation symbols.
Moreover, we assume that our alphabet also contains propositional symbols ¢,
u and f, denoting the properties of being true (respectively, undefined or false).
The first order language £ over the alphabet A is defined as the set of all well-
formed first order formulae that can be built starting from the atoms and using
connectives, quantifiers and punctuation symbols in a standard way. A literal is
either an atom A or its negation —A. An expression is called ground if it does not
contain any variables. If G is a quantifier-free formula, then by a ground instance
of G we mean any ground formula obtained from G by uniformly substituting
ground terms for all variables. For a given formula G of £ its universal closure
or just closure is obtained by universally quantifying all variables in G which are
not bound by any quantifier.

Definition 1. By a partial Herbrand interpretation I of the language £ we mean
any set of ground literals. We assume that every interpretation I contains ¢ and
—f , but does not contain either 4 or —u . An interpretation is consistent if there
is no atom A such that both A and —A belong to I. Unless stated otherwise all
interpretations will be assumed to be consistent. An interpretation is total if for
every ground atom A (except u) either A or —A belongs to I. O

An interpretation I will be usually written in the form I = Pos(I) U Neg(I),
where Pos(I) contains all positive literals (atoms) in T and Neg(I) contains the
set of all negative literals in I. In other words, Pos(I) represents the set of atoms
which are truein I (i.e., those that belong to I) and Neg(I) represents the set of
atoms which are false in I (i.e., those whose negation belongs to I). Throughout
the paper, we consider only Herbrand interpretations and models, although our
results can be easily extended to non-Herbrand models.

Suppose that I is an interpretation and F' and G are arbitrary closed formulae
(i.e., sentences). We now recursively define what it means for a sentence to be
true or false in I:

— A ground atom A is true in [if it belongs to I and it is false in I if = A
belongs to I.

— —F is true (respectively, false) in I if and only if F if false (respectively,
true) in I.

— F Vv @G is true (respectively, false) in I if and only if either F' or G is true in
I (respectively, if both F' and G are false in I).

— F AG is true (respectively, false) in I if and only if both F' and G are true
in I (respectively, if either F or G is false in I).

— F + @ is true in T if the truth value of F' is greater than or equal to the
truth value of G (with the truth values ordered by f < u < ¢). Otherwise,
F + G isfalsein I.

In other words, F' + G is true if F is true in I whenever G is true in I and
if G is false in I whenever F is false in I. Otherwise, F' < G is false in I.

— Jz F(z) is true in I if one of ground instances of F(x) is true in I and it
is false in I if all of its ground instances are false in I (as usual, we assume
that z is the only free variable in F(z)).

— Vz F(z) is true in [if all ground instances of F(z) are true in I and it is
false in I if one of its ground instances is false in 7.

The connective + represents what we call a constructive implication. It is
easy to see that the formula F' < G is not equivalent to F'V —G. Indeed, F' + G
is always true if G is not true and F' is not false, while F'V =G is true if and
only if either F' is true or G is false. The constructive implication connective +
will be used in the definition of logic programs.

Definition 2. If a closed formula F' is true in a (partial or total) interpretation
M then we write M = F and say that M is a model of F' or that F' is satisfied
in M. By a theory T we mean a (finite or infinite) set of closed formulae. A
(partial or total) interpretation M is a (partial or total) model of a theory T if
all formulae from T are satisfied in M, i.e., if M = F, for all Fin T.

We say that a theory T logically implies a sentence F' in classical (respectively,
3-valued) logic if F is satisfied in all total (respectively, partial) models M of T'.
We denote this fact by T |= F' (respectively, T =, F'). O

Ezample 5. Suppose that I = {4,-C} is an interpretation”. Then:

— AV B, -CV-B and AA—-C are true, AV C and =4 A B are false, but
BV =B and A A B are neither true nor false.

— B+ BB+ u,A+ u,B+ Band A+ B are true, but -4 + B,
C + u and C + A are false. O

" We ignore literals ¢t and —f .

Definition 3. By a logic program we mean a set of universally closed clauses of
the form

A< B AN...AByp A=Ci A...N=Ch,

where m,n > 0 and A, B;’s and C}’s are atoms. O

We allow B;’s and C}’s to be either one of ¢, u or f. Observe, however, that
only the presence of the undefined proposition « is essential, because any clause
containing a false premise f can simply be removed and all true premises ¢ can
always be erased.

Conforming to a standard convention, conjunctions are replaced by commas
and therefore clauses are written in the form

A(—Ll,...,Lk,

where L;’s are literals. A program is called positive if none of its clauses con-
tains negative premises or unknown premises » . Programs not allowing negative
premises but allowing undefined premises u will be called non-negative.

If P is a program then, unless stated otherwise, we assume that the alphabet
A used to write P consists precisely of all the constant, predicate and function
symbols that explicitly appear in P and thus the language A = Ap is completely
determined ® by the program P. The following proposition is immediate.

Proposition4. A (partial or total) interpretation M is a model of a program
P if and only if for all ground instances of its clauses

A(—Ll,...,Lk,

if all L;’s are true in M then A is true in M and if A is false in M then at least
one of the L;’s is also false in M. O

By a ground instantiation of a logic program P we mean the (possibly infinite)
theory consisting of all ground instances of clauses from P. It is easy to see that a
Herbrand interpretation M is a model of a program P if and only if it is a model
of its ground instantiation. Therefore, as long as only Herbrand interpretations
are considered, one can identify any program P with its ground instantiation.
Whenever convenient, we will assume, without further mention, that the program
P has already been instantiated.

There are two natural orderings between interpretations, one of them, =<, is
called the truth ordering and the other, C, is called the information ordering.
The latter coincides with the set-theoretic inclusion.

Definition 5. [Prz89a] Suppose that I = Pos(I) U Neg(I) and J = Pos(J) U
Neg(J) are two interpretations. We define:

I <J if Pos(I) C Pos(J) and Neg(I) D Neg(J);

8 If there are no constants in P then one is added to the alphabet.

and

I CJ if Pos(I) C Pos(J) and Neg(I) C Neg(J).
Models which are least in the sense of the truth ordering < will be simply called
least models. On the other hand, models which are least in the sense of inclusion
C will be called smallest models. O

The two orderings are significantly different. While least models and interpre-
tations M of a program P minimize the degree of truth of atoms, by minimizing
the set Pos(M) of true atoms and maximizing the set Neg(M) of false atoms,
models and interpretations which are smallest in the sense of inclusion mini-
mize the degree of information of their atoms, by jointly minimizing the sets
Pos(M) and Neg(M) of atoms which are defined as either true or false and thus
maximizing the set of atoms, whose truth value is undefined.

For example, the smallest model of the program p < p is obtained when
p is undefined, while its least model is obtained when p is false. Similarly, the
smallest partial interpretation is the empty interpretation Jy = {} in which all
atoms (except ¢t and f) are undefined, while the least partial interpretation is
the interpretation Iy in which all atoms (except ¢t and «) are false.

4.2 Least Partial Models

In this section we introduce the following generalization of the classical Van
Emden - Kowalski result [VEKT76], which states that every non-negative logic
program has a unique least partial model. We use it in Section 4.4 where we
characterize well-founded models as iterated least partial models of logic pro-
grams.

Theorem 6. [Prz91c] Every non-negative logic program P has o unique least
partial model LPM (P). O

The classical Van Emden - Kowalski result [VEK76] states that every positive
logic program has a unique least total model. Due to the fact that non-negative
programs allow the undefined propositional symbol % to occur among premises
of program clauses, they are strictly more general than positive programs. Con-
sequently, least models of non-negative programs may not be total but rather
partial models.

Example 6. Suppose that the non-negative program P is given by:

C
a<+cu
b«bu

The least partial model of P is M = {¢,—b}, i.e., in M the atom c is true,
b is false and a is undefined. The least partial model M minimizes the truth
values of its atoms as much as possible while still satisfying all program clauses.
Observe, that a cannot be made false because the truth value of the conjunction
of premises in the second clause is u and therefore the truth value of a has to be
at least « in order for the second clause to be satisfied in M. O

As it was the case with the Van Emden - Kowalski least total model, the
least partial model LPM (P) can be obtained as the least fixed point of the
following natural immediate consequence operator f, which acts on the set of all
partial interpretations of a program and generalizes the Van Emden-Kowalski
immediate consequence operator T' [VEK76]. The definition below assumes that
the program has already been instantiated.

Definition 7. [Prz91c] Suppose that P is a logic program and I is a partial
interpretation of P. Define T'(I) to be the partial interpretation which contains
a literal:

(i) A if and only if there is a clause A < Ay,..., A, in P, all of whose premises
A; are true in I[;

(ii) —A if and only if for every clause A « A;,..., A, in P, there is a premise
A; which is false in I, i.e., such that =A; belongs to I. O

The following theorem gives a fized-point characterization of least partial
models of non-negative programs. Recall that we denote by Iy the least partial
interpretation, i.e., the interpretation in which all atoms (except ¢ and u) are
false.

Theorem 8. [Prz91c] If P is a non-negative program, then the operator T has
the least fized point which coincides with the least partial model LPM (P) of P,
i.e., LPM(P) is the least interpretation I such that T(I) = 1.

Moreover, LPM(P) can be obtained by iterating the operator T (at most) w
times. More precisely, the sequence I, = fT”(IO), n=20,1,2,...,w, of interpre-
tations obtained by iterating T beginning with the interpretation Iy in which all
atoms are false, is monotonically increasing, with respect to the truth ordering
=, and has a fized point I, = J I, = T (Iy), which coincides with the least
partial model LPM (P).

In addition, if P is a datalog program, i.e., if it does not contain non-ground
functional terms, or - equivalently - if the instantiated program is finite, then the
above described construction of the least partial model of P stops after finitely
many steps and is linear in the size of the program. O

n<w

Example 7. For the above program P:

c +
a+cu
b+« bu

we obtain:
IO frd {—|a’ —|b, _|C};

Il = T(Io) = {"G,_'b, C};
I, =T(L) = {-bck

Iy =T(Iy) = I, = {=b,c};
and therefore the least partial model LPM(P) of P coincides with the least
fixed point Ir = {-b,c} of T O

The following easy proposition describes the simple relationship existing be-
tween the least partial model LPM (P) of a non-negative program P and the
least (total) models LM (P, <—f) and LM (P, 4) of positive programs P, of
(respectively, P, .) obtained from P by replacing all undefined premises u in
P Dby false (respectively, true) premises f (respectively, ¢). It also shows how one
can compute least partial models of P by computing least models of the two
derived positive programs.

Proposition9. For any non-negative logic program the following equalities
hold:

Pos(LPM(P)) = Pos(LM(P, _;))

Neg(LPM(P)) = Neg(LM(P,, , ¢)).0

Consequently, the positive atoms of the least partial model LPM (P) of P
are precisely the positive atoms in the least model LM (P, of) of the program

P, of and the negative atoms of the least partial model LPM (P) of P are

precisely the negative atoms? in the least model LM (P,) of the program

by,

1
1

4.3 The Quotient Operator

Before giving a constructive characterization of well-founded models as iterated
least partial models of logic programs we first have to recall the quotient operator
? defined in [Prz91c] which assigns to any logic program P and to any partial
interpretation I the unique non-negative program P’ = ?. This operator extends
to partial interpretations the Gelfond-Lifschitz transformation defined in [GL88].

Definition 10. [Prz91c] Let P be a logic program and let I be any partial
interpretation. By the gquotient of P modulo I we mean the new program %
obtained from P by replacing in every clause of P all negative premises =C which
are true (respectively, undefined; respectively, false) in I by their corresponding

truth values ¢ (respectively, u or f). O

As we pointed out in Section 4.1, if ¢t appears among the premises of a
given clause then it can be simply erased (ignored) and if f appears among
the premises of a given clause then the whole clause can be erased without
changing anything. On the other hand, the » ’s in general cannot be removed.
This immediately leads to the following important corollary:

Corollary 11. [Prz91c] For any logic program P and any partial interpretation
I the quotient % of P modulo I is always a non-negative program and therefore,
by Theorem 6, it has a unique least partial model:

LPM(;).D

9 ILe., the complement of the set of positive atoms in the least model.

For a fixed program P, we will denote by ¥ the operator assigning to any
partial interpretation I the least partial model LPM (£) of the quotient program
P

o (1) = LPM(?).

Ezxample 8. Consider the program P, discussed in Section 2.1:

a
b+ —a
p<p

and let I be the partial interpretation {a, —b}, i.e., the interpretation in which
a is true, b is false and p is undefined. Then the quotient % of P, modulo I is
given by:

a

b+ f

P u

and since the second clause contains a false premise it can be removed resulting
in the non-negative program:

a

D u.

Observe, that the least partial model LPM (%) of % is I itself. Consequently,
U(I) = I and I is the fized point of the operator ¥.

Recall that we denote by Jy the empty interpretation {}, in which all propo-
sitions (except t and f) are undefined, i.e., the smallest partial interpretation in
the sense of inclusion. The quotient % of P, modulo Jj is given by:

a
b+ u
pu.

and its least partial model LPM (%) is the model {a}, in which a is true and b
and p are undefined. O

The intuition behind the notion of a quotient program ? and the notion
of its least partial model LPM (%) is very simple and natural. Imagine that
the partial interpretation I represents our current, perhaps not yet complete,
knowledge about the program, encoded by specifying propositions about which
we already know that they are true or false in P (initially, we have no such
knowledge at all and therefore the initial interpretation I to start with is the
empty interpretation Jy in which all propositions are undefined).

The construction of the quotient program ? of P modulo I allows us to in-
corporate our current knowledge (encoded in I) into the program P, by means
of replacing all negative premises —=C in P by their corresponding truth values
in I. The computation of the least partial model LPM (?) of the new program

? obtained in this way, allows us to possibly augment our knowledge with new
information, obtained by finding out what additional propositions are now forced
to be true by the information contained in I and which can be assumed false in
view of the information contained in I. The process of determining the proposi-
tions which can be assumed false, the least partial model represents the closed
world assumption, which is indispensable to the proper interpretation of negation
by default —~C in logic programs.

Example 9. Suppose that the program Py is given by:

b+ —a
¢+ b,p
p<< p

Initially, we have no knowledge available about the program. Therefore our initial
knowledge is best represented by the empty interpretation Jo = {}, in which all
propositions are undefined. The quotient % of P modulo Jy is given by:

b+ u

C 4+ u,p

pu

and its least partial model J; = ¥(Jy) = LPM(%) is the model {—-a}, in which
a is false and all the other propositions are undefined. The interpretation Jy
adds a new piece of information about Ps, namely the fact that a can be safely
assumed false, by virtue of the closed world assumption.

We repeat the procedure starting with the interpretation J; which now rep-
resents our current knowledge. The quotient % of Py modulo J; is given by:

b+t
c(—u,p
DU

and its least partial model J, = ¥(J;) = LPM(%) is the model {—a, b},
in which a is false, b is true and the propositions ¢ and p are undefined. The
interpretation J; adds one more piece of information about Pg, namely the fact
that b now has to be true because a is false.

We repeat the procedure again starting with the interpretation J» which now
represents our current knowledge. The quotient % of P3 modulo J5 is given by:

b+t

c«f,p
pu.

Since the second clause can be removed, the least partial model J3 = ¥(J3) =
LPM (%) of the resulting non-negative program is the model {—a, b, —c}, in
which a and ¢ are false, b is true and p is undefined. The interpretation Js further

increments our knowledge about Py, by establishing the fact that also ¢ can be
safely assumed false, by virtue of the closed world assumption.

If we repeat the above procedure starting with the interpretation J3 which
represents our current knowledge, we discover that the quotient % of Pz modulo
J3 is:

b+t

c+f,p
p(—u

and is exactly identical to the one obtained in the previous step. Consequently,
also the least partial model LPM (%) of % is the same, namely J3 itself. We
have therefore reached a fixed point, i.e., J3 = ¥(J3), and we can no longer
add any new information to our knowledge about the program Pg and therefore
we can reasonably view the partial model J3 = {—a, b, —c} as representing as
complete as possible knowledge about the program. O

Observe that the above construction closely resembles the method used to
define perfect models of stratified programs (see [ABW88, VG89b, Prz88al), but,
as we will show in the next section, it works for all logic programs and computes
their well-founded models.

4.4 'Well-Founded Models

In this section we give a constructive definition of well-founded models of logic
programs as iterated least partial models or - equivalently - as iterated fized points
of the immediate consequence operator T' defined in Section 4.2. This generalizes
the approach described in the previous Example 9.

Definition 12 [Prz89a, Prz90]. Let P be an arbitrary logic program and let
Jo be the empty interpretation Jo = {}, in which all propositions are undefined
(the interpretation Jy represents our initial lack of information about the truth
or falsity of propositions appearing in P).

Suppose now that J, has already been defined for any n <m.If m =n+1
then we define:

P
Jny1 = LPM (J—)
or, equivalently:
Jn+1 = W(Jn)
else, if m is a limit ordinal, we define:
Jm=J Jn0O
n<m

As we explained in Example 9, at every consecutive successor step we com-
pute the next iteration J,41 of the interpretation .J, by computing the least
partial model of the quotient program Jﬂ of P modulo J,,, thus possibly adding

new information to our current body of lznowledge encoded in J,,. At limit steps,

we simply take the set-theoretic union of the previously constructed interpreta-
tions J,, thus collecting together the previously deduced knowledge about P.

The following fundamental theorem proves that the above recursively defined
sequence of interpretations J,, is always increasing (in the sense of set-theoretic
inclusion) and thus always has a fixed point J;, with the property that Jy11 = Jg,
or - equivalently - such that J, = ¥(J) = LPM (%) Moreover, this fixed point
coincides with the well-founded model Mp of the program P, as originally defined
in [VGRS90].

Theorem 13. (Well-founded Models as Iterated Least Partial Models)
([Prz89a, BNN90]) The sequence of interpretations J,, described in Definition
12 is always increasing (in the sense of set-theoretic inclusion) and thus always
has a fized point Jj, with the property that

Jrt1 = Ji,

or - equivalently - such that

P
Jr =¥ (Jx) = LPM(=).
J
Moreover, this fixed point Jy, coincides with the well-founded model Mp of the
program P:
Mp = Ji.

In addition, if P is a datalog program, i.e., if it does not contain non-ground
functional terms, or - equivalently - if the instantiated program is finite, then the
above described iterative construction of the well-founded model of P stops after
finitely many steps and is quadratic in the size of the program. O

Remark. The characterization of well-founded models given above is formally
identical to the characterization first given (without proof) in ([Prz89al; Theorem
3.2). It is, however, stated here in a simpler and more natural way using the
concepts of the least partial model and the quotient operator introduced earlier
in [Prz91c]. Our formulation has been largely inspired by the paper written by
Bonnier, Nilsson and Naslund [BNN90] where another formally identical, yet
technically more complex, characterization of well-founded models as iterated
least partial models was obtained.]

The above characterization shows that well-founded models are simply iter-
ated least partial models of logic programs. Since least partial models are least
fixed points of the immediate consequence operator T defined in Section 4.2,
well-founded models can also be viewed as iterated least fized points of the im-
mediate consequence operator 7.

This constructive characterization of well-founded models is very important
from the procedural point of view. Since it iterates the computation of least
partial models, it constitutes a sequence of linear computations. Naturally, if
the fixed point is attained at a transfinite step, only an approximation of the

well-founded model can be obtained in finite time. We recall that the original
definition of well-founded models given in [VGRS90] was not constructive and
that there is no satisfactory constructive definition of stable models.

Definition 14. The well-founded semantics W F(P) of a program P is defined
as the set of all sentences satisfied in the unique well-founded model Mp of P.
O

Example 10. As explained in Example 9, the well-founded model of the program
Ps:

b+ —a

c+ —b,p

p << p,
is Mp = {—a, b, —¢}. We note that this program does not have any stable
models. O

Example 11. Consider the program Py discussed in Section 2.1:

work <+ —tired
sleep <+ —~work
tired < —sleep
angry < —paid, work
paid <+

Initially, we have no knowledge available about the program. Therefore our initial
knowledge is best represented by the empty interpretation Jo = {}, in which all
propositions are undefined. The quotient % of Py modulo Jj is given by:

work — u

sleep <+ u

tired — u
angry < u ,work
paid

and its least partial model J; = ¥(Jp) = LPM(%) is the model {paid}, in
which paid is true and the remaining propositions are undefined.

We repeat the procedure starting with the interpretation J; which now rep-
resents our current knowledge. The quotient % of Py, modulo J; is given by:

work <+ u
sleep + u
tired < u
angry + f,work
paid <+

and its least partial model Jo = ¥(J;) = LPM(%) is the model {paid, —angry},
in which paid is true, angry is false and the remaining propositions are undefined.

If we repeat the above procedure starting with the interpretation Js which
represents our current knowledge, we discover that the quotient % of Py modulo
Jo is exactly the same as before and therefore its least partial model ¥(J;) =
LPM (%) is Jy itself. We have therefore reached a fixed point ¥(J2) = Jo, i.e.,
we can no longer add any new information to our knowledge about the program
Py, and therefore the model J, = {paid, —~angry} is the well-founded model
Mp, of Py. We note that this program does not have any stable models. O

Ezample 12. [GL88] Consider the program Py given by:

p(1,2) +
9(X) «p(X,Y),—~q(Y).

After instantiating, Py takes the form:

The quotient % of Py modulo Jy is given by:

p(1,2) «

and its least partial model J, = ¥(Jp) = LPM(%’) is the model

{r(1,2), -p(1,1), -p(2,2), -p(2,1), —q(2)}.

Now, we repeat the procedure starting with the interpretation J; which now
represents our current knowledge. The quotient %’ of Py modulo Jj is given by:

p(1,2)

q(1) «p(1,2),t
q(1) < p(1,1),u
q(2) < p2,2),t
q(2) < p2,1),u

and its least partial model Jo = ¥(J;) = LPM(%) is the model
{p(1,2), =p(1,1), -p(2,2), =p(2,1), (1), —q(2)}.

If we repeat the above procedure starting with the interpretation J; which rep-
resents our current knowledge, we discover that the quotient % of Py modulo
J2 is:

p(1,2) +
q(1) «p(1,2),t
q(2) «p(2,2),t

and the least partial model LPM (%’) of %’ is J5 itself. We have therefore reached
a fixed point Jo = ¥(J3) and therefore the model

Jo = {p(l,?), _‘p(lal)a _'p(2a2)7 _‘p(271)7 q(l), _'Q(Z)}

is the well-founded model Mp, of Py. The program is not locally stratified, but
since its well-founded model is total, by Theorem 16, it coincides with the unique
stable model of Py. O

Ezxample 13. Finally, consider the program P; discussed in Example 4:

b« —a
a+ b
b p
P < a.

Again, initially, we have no knowledge available about the program. Therefore
our initial knowledge is best represented by the empty interpretation Jo = {}.
The quotient % of P; modulo Jp is given by:

be—u
a+u
p+u
P+ u.

and its least partial model J; = ¥(Jy) = LPM (%) is again the empty inter-
pretation Jo = {}. Since we have reached a fixed point, the well-founded model
Mp, of P; is the empty model in which all propositions are undefined. As we
pointed out in Example 4 this model is different from the unique stable model
of P; and appears to be more intuitive. O

The following theorem follows immediately from the characterization of well-
founded models as iterated least partial models:

Theorem 15. An interpretation M is the well-founded model of a logic program
P if and only if M is the smallest (in the sense of inclusion) fized point of the
operator . O

Thus well-founded models can also be viewed as smallest fixed points of
a natural minimal model operator ¥(I) = LPM(%). In the next section we
specifically study the class of all fixed points of ¥.

Finally, we recall here the basic result proved in [VGRS90] relating the well-
founded semantics to the perfect model semantics.

Theorem 16. [VGRS90] For all (locally) stratified programs P the well-founded
model Mp of P coincides with the perfect model of P. O

4.5 Stationary Models

In this section we define stationary or partial stable models originally introduced
in [Prz91c]. The class of stationary (or partial stable) models includes the class
of stable models defined in [GL88]. Stationary models are defined as fixed points
of the operator ¥ described in the previous section:

Definition 17 Stationary Models. [Prz91c] A partial interpretation M of a
logic program P is called a stationary or a partial stable model of P if it is a
fixed point of the least model operator ¥:

M = w(M).

Thus M is a stationary model of P if and only if M is the least partial model
of %:

P

A

The stationary or partial stable semantics STAT(P) = PSTABLE(P) of a
program P is determined by the set of all stationary models of P, i.e., a sentence
F is true in STAT(P) if and only if it is true in all stationary models of P. O

M =LPM(

It is easy to see that any stationary model of P is always a minimal partial
model of P with respect to the truth ordering <. Moreover, stationary models
extend the class of stable models:

Proposition 18. [Prz91c] For any logic program P, stable models coincide with
total stationary models. O

In general, a logic program may have more than one stationary model. For
example, one can easily verify that the program:

a<+ b
b+ —a

has three stationary models, two of which are total. In one of them a is true
and b false, in the other b is true and a false and in the third both a and b
are undefined. When originally defining the stable model semantics, Gelfond
and Lifschitz considered only those programs which have a unique (total) stable
model. We do not make any such assumption.

4.6 Well-Founded Model Coincides with the Smallest Stationary
Model

It follows immediately from Theorem 15 that well-founded models always coin-
cide with smallest stationary (or partial stable) models.

Corollary 19. [Prz91c] The well-founded model of an arbitrary logic program P
always coincides with the smallest (in the sense of inclusion) stationary model
of P. O

In other words, the well-founded model Mp is the smallest stationary model
of P, in the sense that, of all stationary models, Mp contains the least num-
ber of true or false facts, and, thus, the largest set of undefined facts. We can
say, borrowing from Horty and Thomasson’s inheritance network terminology
[HTT87], that the well founded model is the most skeptical stationary model or
possible world for P. For example, if P is given by a < —b, b + —a, then, as we
have seen before, P has three stationary models. One, in which a is true and b
is false, the second, exactly opposite, and the third in which both a and b are
undefined. The last model, the most ‘skeptical’ one, is the well-founded model
of P. Similarly, if P is the program from Example 4, then the ‘most undefined’
stationary model of P is well-founded. This can be explained by saying that the
well-founded semantics ‘believes’ only in those things which hold in all possible
worlds (i.e., stationary or partial stable models) of the program.

Observe that although the above characterization of well founded models as
smallest stationary models is mathematically elegant it does not provide any
constructive way of finding such models. Constructive definition of well-founded
models was given in the previous section.

Since the well-founded model is a set-theoretic intersection of all stationary
models, we immediately obtain:

Corollary 20. [VGRS90] If a program P has a total well-founded model Mp
then it also has a unique stable model and the two coincide. O

Since the stationary or partial stable semantics ST AT (P) = PSTABLE(P)
of a program P is determined by the class of all stationary or partial stable
models and since the well-founded model is the smallest stationary model, it
immediately follows that the well-founded semantics of any program P always
coincides with the stationary semantics of P.

Theorem 21. The well-founded semantics of an arbitrary logic program P co-
incides with the stationary (or partial stable) semantics of P in the sense that
for any sentence F' (not containing the connective “7”):

WF({P)=F = STAT(P)eF = PSTABLE(P)E FO

The above result immediately implies that the well-founded semantics is, in
general, weaker than the stable semantics ST ABLE(P) which is based only on
(total) stable models.

4.7 Dynamic Stratification

We will now use the iterated least partial model definition of the well-founded
model Mp given in the Section 4.4 to introduce the dynamic stratification of an
arbitrary logic program P. This will show that well-founded models share the
important property of perfect models, namely the fact that they are iterated
least models of logic programs with respect to their stratification.

Recall that according to Definition 12 the well-founded model Mp is defined
as the fixed point Ji, k > 0, of a strictly increasing sequence of interpretations
(iterated least partial models) J,:

J(]C...CJnC...CJk:Jk_H,

starting with the empty interpretation Jy = {}. The interpretations .J,, represent
our increasing knowledge about the truth values of ground atoms in the (instan-
tiated) program P, i.e., they describe the set of ground atoms currently known
to be either true or false in J,,.

The dynamic stratification {D,} of P is a decomposition of the Herbrand
base Hp of P, i.e., a decomposition of the set of all ground atoms, into disjoint
sets D, 1 <n < k+1, which are called dynamic strata. For any n < k, the n-th
stratum D,, is defined as the set of those ground atoms, whose truth or falsity
has been precisely determined at the level n. The last stratum D1 contains all
the remaining ground atoms, i.e., those ground atoms which are undefined in
Mp = Ji. Below we give a formal definition:

Definition 22. Let P be an arbitrary logic program and let J,, 0 < k be
the strictly increasing sequence of interpretations (iterated least partial models)
defining the well-founded model Mp = Jj, of P.

For any 1 < n < k, we define the n-th dynamic stratum D,, of P to be the
set of those ground atoms which are either true or false in the interpretation J,,,
but are undefined in all previous interpretations J,,, with m < n.

The last, k + 1-st dynamic stratum Dyy1 is defined as the set of all the
remaining ground atoms, i.e., those ground atoms which are undefined in the
well-founded model Mp = J,. O

Clearly, the well-founded model Mp is total if and only if the last stratum
Dy41 is empty.

Ezample 1. (see Example 9) According to the discussion in Example 9, the
dynamic stratification of the program Ps:

b+ ~a
c 4 ~b,p
p& ~p
is given by: ()
D1 =10
D, = {b}
D3 = {c}
Dy = {p}.

(see Example 11) The dynamic stratification of the program P;:

work < ~tired
sleep « ~work
tired < ~sleep
angry < ~paid, work
paid <+

is given by:
Dy = {paid}
Dy = {angry}
D3 = {sleep, work, tired}.

(see Example 12) The dynamic stratification of the program Py:

p(1,2)
q(1) <+ p(1,2),—q(2)
q(1) <+ p(1,1),—¢(1)
q(2) <+ p(2,2),7q(2)
q(2) <« p(2,1),—q(1).
is given by:
Dl = {p(]-JZ)a p(lal)a p(2a 1)7 p(272a)7 q(2)}
Dy = {q(1)}
D3 ={}

In this case the last stratum D3 is empty, because Mp is total.
(see Example 13) The dynamic stratification of the program P;:

b+ ~a

a+ ~b

p<~p

P ~a.
is given by:

Dl = {a7 ba p}

In this case the last stratum D; contains all ground atoms, because Mp is
empty. O

When restricted to the class of (locally) stratified programs, dynamic stratifi-
cation is essentially the same as standard stratifications, but the two notions, in
general, do not coincide. The causes of this discrepancy can be easily explained.

First of all, dynamic stratification, as opposed to standard stratifications,
is uniquely defined for any program P. Secondly, standard stratifications are
determined statically, based on the syntactical form of the program or — more
precisely — on its dependency graph [ABW88, VG89b]. Therefore they do not
depend in any way on the truth or falsity of the atoms appearing in the graph.
This makes them very simple and natural to use, but, at the same time, limits
their applicability to a relatively narrow class of programs.

On the other hand, dynamic stratification — as the name indicates — is gen-
erated dynamically. This means that, in the process of stratification, irrelevant
dependencies between atoms (i.e. those that can never be satisfied) are elimi-
nated. As a result, we obtain a stratification that may be considered preferable
to the standard ones in the sense described by the following theorem.

Theorem 23. [Prz89a] Suppose that P is a (locally) stratified program. Let {S,}
be any of its standard stratifications and let {D,} be its dynamic stratification.
For every ground atom A,

(AeD, N AeS,) =m<n0O

Appendix.

In other words, the levels that the dynamic stratification assigns to ground
atoms are less than or equal to those assigned by standard stratifications. One
can say that dynamic stratification is the tightest of all stratifications. The idea
of dynamic stratification originated in [PP90b].

To illustrate the phenomenon discussed above, consider the following exam-
ple.

Ezxample 15. Let Pig be given by:

a
b+ —a
C —1b,—|a.

This program is stratified and its (standard) stratification is given by: S; = {a},
Sy = {b}, Ss = {c}. On the other hand, we have:

Ji ={a}; D, = {a};
Ja = {a, -b, =c}; Dy = {b,c};
J3:J2:Mp; Dgz{}

The last stratum D3 is empty because the well-founded (perfect) model Mp =
{a, —b, —c} of the program Py is total. O

Consequently, dynamic stratification requires only two strata instead of three
required by the standard stratification. This is caused by the fact that, in the
process of constructing the second dynamic stratum, D», we observe that one
of the premises of the third clause, namely —a, is already known to be false.
Therefore, the third clause is at this point irrelevant. Consequently, ¢ does not
need to be put into a higher stratum, because it does not really depend negatively
on b.

Remark. It is easy to see that — if one is to ignore undefined atoms — the dif-
ferences between dynamic stratification and static stratifications are caused ex-
clusively by the existence of some (ground instances) of program clauses, which
affect the dependency graph and thus influence standard stratifications, but are
irrelevant from the point of view of dynamic stratification, because they contain
some premises which are false in the well-founded model. The third clause in the
previous example illustrates this point. If it were replaced by the clause:

C < a

then the resulting stratified program P{, would be semantically equivalent to
the original program P, and the (dynamic or static) stratification of P{;, would
coincide with the dynamic stratification of the original program Pyg.

One can show that a similar construction can be performed for an arbitrary
(instantiated) logic program P, whose well-founded model is total, leading to a
semantically equivalent stratified program P’, with the property that the dy-
namic stratification of P coincides with the static stratification of P’. One may
therefore view programs with total well-founded models as ‘stratified programs
in disguise’,; because they only ‘pretend’ not to be stratified, by including some
irrelevant clauses which destroy their standard stratification.

4.8 Non-Herbrand Models

Throughout the paper, with the exception of Clark’s semantics and its extension,
due to Fitting and Kunen, we restricted ourselves to Herbrand interpretations
and models. This approach is very convenient, in most cases leads to semantics
based on one intended Herbrand model and is often quite suitable for deductive
database applications. However, from the point of view of logic programming,
the Herbrand approach has an important drawback, which was identified as the
universal query problem in [Prz89b].

Suppose that our program P consists of a trivial clause p(a). The program is
positive and has only one Herbrand model Mp = {p(a)}. Therefore all model-
theoretic semantics of P based on Herbrand models coincide and are determined
by the model Mp. Consequently, all such semantics imply VX p(X), because

Mp | VX p(X).

In addition to not being very intuitive, this conclusion causes at least two
negative consequences:

— Since VX p(X) is a positive formula, not implied by P itself, all semantics
based on Herbrand models of P violate the principle that no new positive
information should be introduced by the semantics of positive programs, which
— as argued in [Prz89b] — seems to be a natural and important requirement
in logic programming.

— They also seem to a priori prevent standard unification-based computational
mechanisms, typically used in logic programming, from being complete with
respect to this semantics.

Indeed, when we ask the query p(X) in logic programming, we not only want
to have an answer to the question ‘is there an X for which p(X) holds?’, but, in
fact, we are interested in obtaining all most general bindings (or substitutions)
6 for which our semantics implies VX p(X)6. Therefore, in this case, if we ask «
p(X), we should expect simply the answer ‘yes’ indicating that p(X) is satisfied
for all X’s or — in other words — signifying, that the empty substitution is a correct
answer substitution. Unfortunately, standard unification-based computational

mechanisms will be only capable of returning the special case substitution 8 =
{X|a}.

It is sometimes argued that logic programming should only be concerned
with Herbrand models rather than with general models of P. This conclusion is
motivated by the belief that the role of logic programming is to answer existen-
tial queries and by the well-known fact that an existential formula F is derivable
from a given (universal) theory T if and only if it is satisfied in all Herbrand
models of T. This argument is only partially correct. In reality, logic program-
ming is not only concerned with answering existential queries, but it is primarily
concerned with providing ‘most general’ bindings (substitutions) for the answers.
For example, if our program is

parent(X, father(X))
parent(X, mother(X))
grand_parent(X,Y) <+ parent(X,Z),parent(Z,Y)

and we ask < grand_parent(X,Y’), we expect to obtain answers:
Y = mother(father(X)), Y = mother(mother(X))
etc., signifying that

VX grand_parent(X,mother(father(X)))
VX grand_parent(X,mother(mother(X))),...

In other words, we expect to obtain ‘most general’ substitutions for which the
given query holds and, as a result, we are in fact interested in answers to universal
queries, like ‘Is it true that, for every X, grandparent(X,mother(father(X)))?’,
to which general models and Herbrand models often provide different answers,
as it was illustrated above.

There are two natural solutions to the universal query problem:

1. One can stick to Herbrand models of the program, but in addition:

— either extend the language of the program by asserting the existence of
infinitely many function symbols (or constants) (see e.g. [Kun&7));

— or extend the language by asserting the existence of one or more ‘dummy’
functions (see e.g. [VGRS90]), which exist in the language, but are not
used in the program.

From the semantic point of view these two approaches are essentially equiva-
lent, but they also share a common problem, namely in some cases they may
not be very natural. The reason is that one may not wish to automatically
assume the existence of objects that are not mentioned ezplicitly in the pro-
gram. Such an assumption can be called an infinite domain assumption and
can be viewed as being in some sense opposite to the closed world assump-
tion. In its presence, if we only know that p(a) holds, then we are forced
to conclude that there are many x’s for which p(z) is false, which may not
always be desirable.

2. Another approach (see [Prz89bl]) is to extend the definitions of intended mod-

els to include non-Herbrand models, thus leading to the definitions of non-
Herbrand perfect models (respectively, non-Herbrand stable models, non-
Herbrand well-founded models, etc.). One then defines the corresponding
semantics to be determined by the set M OD(P) of all, not necessarily Her-
brand, perfect models (respectively, stable models, well founded models, etc.).
Using this approach and knowing only that p(a) holds, the answer to the
query ‘Does there exist an x for which p(x) is false?’ is undefined, which in
many contexts may seem most natural.
The extension of the definition of intended models, so that they include non-
Herbrand models, is usually quite straightforward. For the perfect model
semantics it has been done in [Prz89b] and for the other semantics it can be
done in an analogous way.

However, when using non-Herbrand models in the context of logic program-
ming, one has to additionally assume that they satisfy to so called Clark’s Equa-
tional Theory (CET) [Kun87]:

CET1. X =X ;

CET2. X=Y=Y=X;

CET3. X=YAY=Z= X =7

CET4. X; = Vi A AXm = Yy = F(Xiyeo, Xn) = f(Y1,..., Vi), for any
function f;

CET5. X1 =Y1 A ...AXp =Y = (p(X1, -, Xim) = p(Y1, ..., Yy)), for predi-
cate p;

CET6. f(X1,..,Xm) # g(Y1,...,Yy,), for any two different function symbols f
and g;

CETT. f(X1, ... Xm) = f(V1,-,Ym) = X1 = Vi A ... A Xy, = Yy, for any
function f;

CETS8. t[X] # X, for any term t[X] different from X, but containing X.

The first five axioms describe the usual equality axioms and the remaining
three axioms are called unique names axioms or freeness azioms. The significance
of these axioms to logic programming is widely recognized [Llo84, Kun87].

The equality axioms (CET1) — (CETS5) ensure that we can always assume
that the equality predicate = is interpreted as identity in all models. Conse-
quently, in order to satisfy the CET axioms, we just have to restrict ourselves
to those models in which the equality predicate — when interpreted as identity
— satisfies the unique names axioms (CET6) — (CETS).

For more information about the relationship between approaches based on
Herbrand and non-Herbrand models see [GPP88, Prz89b].

4.9 Relationship to Non-Monotonic Formalisms

Non-monotonic reasoning and logic programming are closely related. On the one
hand, the non-monotonic character of the “negation by default” operator used

in logic programming allows us to view logic programs as special, fairly simple
and yet quite expressive, non-monotonic theories. Consequently, the problem of
finding a suitable semantics for logic programs can be viewed as the problem of
formalizing the type of non-monotonic reasoning used in logic programming.

On the other hand, logic programs constitute an important class of non-
monotonic theories which, due to their relative simplicity, can be conveniently
used to test the behavior of various non-monotonic formalisms and can also give
rise to new non-monotonic formalisms based on the ideas originating in logic
programming. Finally, logic programs, equipped with a suitable semantics, can
be used as relatively efficient inference engines for non-monotonic reasoning.

In spite of the close relationship between non-monotonic reasoning and logic
programming, in the past, these research areas have been developing largely
independently of one another and the exact nature of their relationship has
not been closely investigated or understood. One possible explanation of this
phenomenon is the fact that, traditionally (see [L1084]), the declarative semantics
of logic programs has been based on the Clark predicate completion (see Section
2). Clark’s formalism is not sufficiently general to be applied beyond the realm
of logic programming and therefore it does not play a significant role in non-
monotonic reasoning.

The situation has changed significantly with the introduction of stratified
logic programs and the perfect model semantics (see Section 3.3). For locally
stratified logic programs, the perfect model semantics has been shown (see
[Prz88b] for an overview) to be equivalent to natural forms of all four major
formalizations of non-monotonic reasoning in Al:

— McCarthy’s circumscription [Prz89b, Lif88];
— Reiter’s default theory [BF87, MT89];

— Moore’s autoepistemic logic [Gel87];
— Reiter’'s CWA [GPP89].

The stable model semantics [GL88], discussed in Section 3.4, extends the
perfect model semantics and is also closely related to non-monotonic formalisms.
Gelfond proved in [Gel87] that there is a one-to one correspondence between
stable models of a logic program P and stable autoepistemic expansions of its
translation P into Moore’s autoepistemic logic [Moo85]. Bidoit and Froidevaux
showed in [BF91] that there also exists a one-to one correspondence between
stable models of a logic program P and default extensions of its translation P
into Reiter’s default theory [Rei80].

The original definition of well-founded semantics given in [VGRS90] did not
seem to provide any clues as far as its relationship to non-monotonic formalisms
is concerned. However, Przymusinski has shown in [Prz91d] that the well-founded
semantics is in fact also equivalent to natural forms of all four major formaliza-
tions of non-monotonic reasoning. However, in order to achieve this equivalence,
3-valued extensions of non-monotonic formalisms had to be introduced.

Recently, Przymusinski [Prz94a, Prz94b] introduced the notion of a static au-
toepistemic expansion in which beliefs are based on McCarthy’s Circumscription

CIRC [McC80], or - equivalently - on Minker’s Generalized Closed World As-
sumption GCW A [Min82], rather than on Reiter’s CW A, as in Moore’s original
autoepistemic expansions. He proved that there is a one-to one correspondence
between stationary (or partial stable) models of a logic program P and static
autoepistemic expansions of its translation P into autoepistemic logic. In par-
ticular, there is a one-to one correspondence between the well-founded model of
a logic program P and the least static autoepistemic expansion of P. This result
shows that well-founded models, and, more generally, stationary models of logic
programs can also be defined in terms of autoepistemic logic.

Similarly, Przymusinska and Przymusinski [PP94] introduced the notion of
a stationary default extension of Reiter’s default theories and showed that there
is a one-to one correspondence between stationary (or partial stable) models of
a logic program P and stationary default extensions of its translation P into
default theory. In particular, there is a one-to one correspondence between the
well-founded model of a logic program P and the least stationary default exten-
sion of P. This result shows that stationary models can as well be defined in the
language of default theory [LY91, BS91].

4.10 Procedural Semantics: SLS-resolution

One of the important strengths of the well-founded semantics is the existence
of a sound and complete!® querry evaluation procedure naturally extending the
well-known SLDN F — resolution. It is called SLS-resolution and was originally
defined in [Prz89a, Prz89b] (see also [Ros89]). The definition presented here is
slightly different, however, as it does not require the advance knowledge of the
stratification of the program.

Suppose that P is any logic program. By a goal G we mean a headless clause
< Ly ,..., L, where k>0 and L;’s are literals. We also write, G =« (Q, where
Q = Ly ,..., Ly is called a query.

Let us choose an arbitrary computation rule R (see [L1o87]), i.e., a rule that
selects exactly one literal from any non-empty goal. We will define the SLS-tree,
SLS(G), for a goal G by constructing a sequence:

{SLS3(G)}p>0, SLSL(G) X SLS3(G), for a < g,

of SLS-trees of rank 8, with SLS,(G) being a subtree of SLS3(G), for a < f3,
and with SLS(G) defined as the largest element (or the union) of the sequence.

Some of the leaves of the so constructed SLS-trees SLSg will be labeled as
success, failure and flounder leaves, respectively. A leaf which is not labeled will
be called a non-labeled leaf. We will use the following definition:

Definition 24. (Successful, Failed and Floundered SLS-trees.) An SLS-
tree for a goal G is successful if it has a successful derivation, i.e., a derivation
ending in a success leaf. It is failed if all of its branches are either infinite or
end in a failure leaf. It is floundered if it contains a flounder leaf and is not
successful. O

10 For non-floundering querries.

We now define SLS-trees of rank 3. The SLS-tree, SLSy(G), of rank 8 = 0
consists only of the non-labeled root node G. Suppose now that 8 > 0 and
assume that SLS-trees, SLS,(G), of rank « have been already defined for all
0 < a < f and for all goals G.

If B is a limit ordinal then the SLS-tree of rank g is defined as the union of
all the previously constructed trees SLS,(G), for a < g:

SLS3(G) = | SLSa(G).

a<lf

Otherwise, 8 = a + 1 and we define the SLS-tree SLS,1(G) by extending the
previously constructed SLS-tree of rank a by possibly adding some descendants
to (or by labeling) some of the non-labeled leaves of SLS,(G):

Definition 25. (SLS-trees of rank a+ 1) The SLS-tree, SLS,+1(G), of rank
a + 1 consists of all nodes (and labels) of the previously constructed SLS-tree,
SLS,(G), of rank « together with all nodes (and labels) obtained by recursively
applying the following resolution rules to all non-labeled leaves of SLS,(G) and
to their descendants.

Let H =« Ly,...,L; be an arbitrary non-labeled leaf of SLS,(G) (or a
descendent thereof) and let L be the literal selected from H by the computation
rule R. The immediate descendants (successors) of H in the tree SLS,,1(G) are
defined as follows:

(i) If H is empty then it has no descendants and is a success leaf.

(ii) If L = A is a positive literal then the immediate descendants of H are — as
usual — all goals K that can be obtained from the goal H by resolving H
with (a variant of) one of the program clauses upon the atom A, using most
general unifiers.

If there are no such K’s, then H has no descendants and is a failure leaf;

(iii) If L = —A is negative then we consider four cases:

o If Ais ground and the SLS-tree SLS,(+ A) is failed then H has precisely
one descendent, namely, the node K = H — {L} obtained by removing
L from H;

o If Ais ground and the SLS-tree SLS,(+ A) is successful then the node
H has no descendants and is called a failure leaf,

e If A is not ground or if the SLS-tree SLS,(+ A) is floundered then the
node H has no descendants and is a flounder leaf,

e Otherwise, we mark the literal L in H as skipped and use the computation
rule!! R to select, if possible, a new literal L' and subsequently apply
the resolution steps (i) and (iii) to the goal H, with L' now acting as
the literal selected by R.

If all literals in the goal H were already marked as skipped then the node
H has no descendants in SLS,+1(G) (and is not labeled). O

11 Applied to the goal H from which all literals marked as skipped were removed.

It follows immediately from the definition that for any goal G the sequence
{SLS3(G)}p>0 of SLS-trees of rank 3 is non-decreasing, i.e.,

SLS,(G) 2 SLSp(G), for a< g,

and therefore, due to the countability of the language, it must have a fixed point,
i.e., there must exist a § such that:

SLS5(G) = SLS5+1(G).
We define the SLS-tree SLS(G) for the goal G as its SLS-tree of rank §:
SLS(G) = SLS5(G).
We define SLS-computed answer substitutions in the usual way:

Definition 26. (SLS-computed answer substitutions) If the SLS-tree for a
goal G has a successful derivation then the accumulated substitution 6, restricted
to the variables in G, is called the SLS-computed answer substitution for G. O

The following result originally stated in [Prz89a] (see also [Ros89]) shows
that SLS-resolution is sound and complete (for non-floundering queries) w.r.t.
the well-founded semantics:

Theorem 27 Soundness and Completeness of SLS-resolution. [PP592]
Suppose that P is a logic program, R is a computation rule and G =+ @Q is
a goal. If the SLS-tree for G is non-floundered then:

(i) WF(P) = 3(Q) iff the SLS-tree for « Q is successful;
(ii)) WE(P) = Y(Q0) iff there exists an SLS-computed answer substitution for
— @ more general than the substitution 0;
(i1i)) WF(P) = —3(Q) iff the SLS-tree for + Q is failed. O

5 Conclusion

In this paper we discussed the class of stationary or partial stable models of
normal logic programs. This important class of models includes all (total) stable
models and the well-founded model is always its smallest member. They have
several natural fixed-point definitions and can be equivalently obtained as ex-
pansions or extensions of suitable autoepistemic or default theories. By taking a
particular subclass of this class of models one can obtain different semantics of
logic programs, including the stable semantics and the well-founded semantics.
Stationary models can be also naturally extended to the class of all disjunctive
logic programs (see [Prz94b, Prz91b]. These features of stationary models desig-
nate them as an important class of models with applications reaching far beyond
the realm of logic programming.

References

[AB9O]

[ABWSS]

[BF87]

[BF91]

[BNN9O]

[Bry89]

[BS91]

[Cav89]

[Cla78]
[CW92]

[Dix91]

[Fit85]

[Gel87]

[GL8S]

[GPPSS]

K.R. Apt and M. Bezem. Acyclic programs. In D.H.D. Warren and
P. Szeredi, editors, Proceedings of the Seventh International Conference on
Logic Programming, pages 617-633. The MIT Press, 1990.

K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowl-
edge. In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 89-142. Morgan Kaufmann, Los Altos, CA., 1988.

N. Bidoit and C. Froidevaux. Minimalism subsumes default logic and cir-
cumscription in stratified logic programming. In IEEE Symposium on Logic
in Computer Science, pages 89-97, Ithaca, New York, USA, June 1987.

N. Bidoit and C. Froidevaux. General logical databases and programs: De-
fault logic semantics and stratification. Journal of Information and Com-
putation, pages 15-54, 1991.

S. Bonnier, U. Nilsson, and T. Naslund. A simple fixed point characteriza-
tion of three-valued stable model semantics. Research report, University of
Linkoping, 1990.

F. Bry. Logic programming as constructivism: A formalization and its ap-
plication to databases. In Proceedings of the Symposium on Principles of
Database Systems, pages 34-50. ACM SIGACT-SIGMOD, 1989.

C. Baral and V.S. Subrahmanian. Dualities between alternative seman-
tics for logic programming and non-monotonic reasoning. In A. Nerode,
W. Marek, and V.S. Subrahmanian, editors, Proceedings of the First Inter-
national Workshop on Logic Programming and Non-monotonic Reasoning,
Washington, D.C., July 1991, pages 69-86, Cambridge, Mass., 1991. MIT
Press.

L. Cavedon. Consistency and completeness properties for logic programs.
In G. Levi and M. Martelli, editors, Proceedings of the Sizth International
Logic Programming Conference, Lisbon, Portugal, pages 571-584, Cam-
bridge, Mass., 1989. Association for Logic Programming, MIT Press.

K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 293-322. Plenum Press, New York, 1978.

W. Chen and D. S. Warren. A practical approach to computing the well-
founded semantics. Research report, SUNY at Stony Brook, 1992.

J. Dix. Classifying semantics of logic programs. In A. Nerode, W. Marek,
and V.S. Subrahmanian, editors, Proceedings of the First International
Workshop on Logic Programming and Non-monotonic Reasoning, Washing-
ton, D.C., July 1991, pages 166-180, Cambridge, Mass., 1991. MIT Press.
M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic
Programming, 2(4):295-312, 1985.

M. Gelfond. On stratified autoepistemic theories. In Proceedings AAAI-
87, pages 207-211, Los Altos, CA, 1987. American Association for Artificial
Intelligence, Morgan Kaufmann.

M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth Logic
Programming Symposium, pages 1070-1080, Cambridge, Mass., 1988. Asso-
ciation for Logic Programming, MIT Press.

M. Gelfond, H. Przymusinska, and T. Przymusinski. Minimal model seman-
tics vs. negation as failure: A comparison of semantics. In Proceedings of the

[GPP8Y)

[HTT87]

[KS89]

[Kun87]

[Kun88|

[Lif88]

[Llo84]
[L1087]
[LY91]

[Mak88]

[McC80]

[Min82]

[Moo85]
[MTSS]

[MT89]

[PP90a]

[PP90b]

International Symposium on Methodologies for Intelligent Systems, pages
335-343. ACM SIGART, 1988.

M. Gelfond, H. Przymusinska, and T. Przymusinski. On the relationship
between circumscription and negation as failure. Journal of Artificial Intel-
ligence, 38:75-94, 1989.

J. Horty, R. Thomason, and D. Touretzky. A skeptical theory of inheritance
in non-monotonic semantic nets. In Proceedings AAAI-87, Los Altos, CA,
1987. American Association for Artificial Intelligence, Morgan Kaufmann.
H. A. Kautz and B. Selman. Hard problems for simple default logics. In
R. Brachman, H. Leveque, and R. Reiter, editors, Proceedings of the First
International Conference on Principles of Knowledge Representation and
Reasoning (KR’89), Toronto, Canada, pages 189-197. Morgan Kaufmann,
1989.

K. Kunen. Negation in logic programming. Journal of Logic Programming,
4(4):289-308, 1987.

K. Kunen. Some remarks on the completed database. In R. Kowalski and
K. Bowen, editors, Proceedings of the Fifth Logic Programming Symposium,
pages 978-992, Cambridge, Mass., 1988. Association for Logic Programming,
MIT Press.

V. Lifschitz. On the declarative semantics of logic programs with nega-
tion. In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 177-192. Morgan Kaufmann, Los Altos, CA., 1988.
J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, New York,
N.Y., first edition, 1984.

J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, New York,
N.Y., second edition, 1987.

L. Li and J.H. You. Making default inferences from logic programs. Journal
of Computational Intelligence, 7:142-153, 1991. In print.

D. Makinson. General theory of cumulative inference. In Proceedings of the
Second Workshop on Non-monotonic Reasoning, Munich, July 1988, pages
1-18. Springer Verlag, 1988.

J. McCarthy. Circumscription — a form of non-monotonic reasoning. Jour-
nal of Artificial Intelligence, 13:27-39, 1980.

J. Minker. On indefinite data bases and the closed world assumption. In
Proc. 6-th Conference on Automated Deduction, pages 292-308, New York,
1982. Springer Verlag.

R.C. Moore. Semantic considerations on non-monotonic logic. Journal of
Artificial Intelligence, 25:75-94, 1985.

W. Marek and M. Truszczynski. Autoepistemic logic. Research report, Uni-
versity of Kentucky, University of Kentucky, 1988.

W. Marek and M. Truszczynski. Relating autoepistemic and default logics.
In R. Brachman, H. Leveque, and R. Reiter, editors, Proceedings of the First
International Conference on Principles of Knowledge Representation and
Reasoning (KR’89), Toronto, Canada, pages 189-197. Morgan Kaufmann,
1989.

H. Przymusinska and T. C. Przymusinski. Semantic issues in deductive
databases and logic programs. In R. Banerji, editor, Formal Techniques
in Artificial Intelligence, pages 321-367. North-Holland, Amsterdam, 1990.
H. Przymusinska and T. C. Przymusinski. Weakly stratified logic programs.
Fundamenta Informaticae, 13:51-65, 1990.

[PP94]

[PPS92]

[Prz88a]

[Prz88D]

[Prz89a]

[Prz89b]
[Prz90]

[Prz91a]

[Prz91b]

[Prz91c]

[Prz91d]

[Prz94a)

H. Przymusinska and T. C. Przymusinski. Stationary default extensions.
Fundamenta Informaticae, 20:(In print.), 1994. Special issue devoted to the
Fourth Workshop on Non-monotonic Reasoning, Plymouth, Vermont, 1992.
H. Przymusinska, T. Przymusinski, and H. Seki. Soundness and complete-
ness of partial deductions for well-founded semantics. In A. Voronkov, edi-
tor, Logic Programming and Automated Reasoning, St. Petersburg, Russia,
July 1992. (Lecture Notes in Artificial Intelligence, vol. 624), pages 1-12.
Springer Verlag, 1992.

T. C. Przymusinski. On the declarative semantics of stratified deductive
databases and logic programs. In J. Minker, editor, Foundations of Deduc-
tive Databases and Logic Programming, pages 193—-216. Morgan Kaufmann,
Los Altos, CA., 1988.

T. C. Przymusinski. On the relationship between non-monotonic reasoning
and logic programming. In Proceedings AAAI-88, pages 444-448, Los Altos,
CA, 1988. American Association for Artificial Intelligence, Morgan Kauf-
mann. [The full version appeared in: T. C. Przymusinski. Non-Monotonic
Reasoning vs. Logic Programming: A New Perspective. In The Foundations
of Artificial Intelligence. A Sourcebook, D. Partridge and Y. Wilks, editors,
Cambridge University Press, London, 1990, 49-71.].

T. C. Przymusinski. Every logic program has a natural stratification and
an iterated fixed point model. In Proceedings of the Eighth Symposium
on Principles of Database Systems, pages 11-21. ACM SIGACT-SIGMOD,
1989.

T. C. Przymusinski. On the declarative and procedural semantics of logic
programs. Journal of Automated Reasoning, 5:167-205, 1989.

T. C. Przymusinski. The well-founded semantics coincides with the three-
valued stable semantics. Fundamenta Informaticae, 13(4):445-464, 1990.
T. C. Przymusinski. Autoepistemic logics of closed beliefs and logic pro-
gramming. In A. Nerode, W. Marek, and V.S. Subrahmanian, editors, Pro-
ceedings of the First International Workshop on Logic Programming and
Non-monotonic Reasoning, Washington, D.C., July 1991, pages 320, Cam-
bridge, Mass., 1991. MIT Press.

T. C. Przymusinski. Semantics of disjunctive logic programs and deductive
databases. In C. Delobel, M. Kifer, and Y. Masunaga, editors, Proceedings
of the Second International Conference on Deductive and Object-Oriented
Databases DOOD’91, pages 85-107, Munich, Germany, 1991. Springer Ver-
lag.

T. C. Przymusinski. Stable semantics for disjunctive programs. New Gener-
ation Computing Journal, 9:401-424, 1991. (Extended abstract appeared in:
Extended stable semantics for normal and disjunctive logic programs. Pro-
ceedings of the 7-th International Logic Programming Conference, Jerusalem,
pages 459-477, 1990. MIT Press.).

T. C. Przymusinski. Three-valued non-monotonic formalisms and semantics
of logic programs. Journal of Artificial Intelligence, 49:309-343, 1991. (Ex-
tended abstract appeared in: Three-valued non-monotonic formalisms and
logic programming. Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning (KR’89), Toronto,
Canada, pages 341-348, Morgan Kaufmann, 1989.).

T. C. Przymusinski. A knowledge representation framework based on au-
toepistemic logic of minimal beliefs. In Proceedings of the Twelfth National

Conference on Artificial Intelligence, AAAI-94, Seattle, Washington, Au-
gust 1994, page (in print), Los Altos, CA, 1994. American Association for
Artificial Intelligence, Morgan Kaufmann.

[Prz94b] T. C. Przymusinski. Static semantics for normal and disjunctive logic pro-
grams. Annals of Mathematics and Artificial Intelligence, 1994. (in print).

[Rei78] R. Reiter. On closed-world data bases. In H. Gallaire and J. Minker, edi-
tors, Logic and Data Bases, pages 55-76. Plenum Press, New York, 1978.

[Rei80] R. Reiter. A logic for default theory. Journal of Artificial Intelligence,
13:81-132, 1980.

[Ros89] K. Ross. A procedural semantics for well founded negation in logic pro-
grams. In Proceedings of the Eighth Symposium on Principles of Database
Systems, pages 22-33. ACM SIGACT-SIGMOD, 1989.

[She84] J. Shepherdson. Negation as finite failure: A comparison of Clark’s com-
pleted data bases and Reiter’s closed world assumption. Journal of Logic
Programming, 1:51-79, 1984.

[She88] J.C. Shepherdson. Negation in logic programming. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming, pages 19-88.
Morgan Kaufmann, Los Altos, CA., 1988.

[VEK76] M. Van Emden and R. Kowalski. The semantics of predicate logic as a pro-
gramming language. Journal of the ACM, 23(4):733-742, 1976.

[VG89a] A. Van Gelder. The alternating fixpoint of logic programs with negation.
In Proceedings of the Symposium on Principles of Database Systems, pages
1-10. ACM SIGACT-SIGMOD, 1989.

[VG89b] A. Van Gelder. Negation as failure using tight derivations for general logic
programs. Journal of Logic Programming, 6(1):109-133, 1989. Preliminary
versions appeared in Third IEEE Symposium Logic Programming (1986), and
Foundations of Deductive Databases and Logic Programming, J. Minker, ed.,
Morgan Kaufmann, 1988.

[VGRS90] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 1990. (to appear). Pre-
liminary abstract appeared in Seventh ACM Symposium on Principles of
Database Systems, March 1988, pp. 221-230.

[War89] David S. Warren. The XWAM: A machine that integrates Prolog and de-
ductive database query evaluation. Technical report #25, SUNY at Stony
Brook, 1989.

This article was processed using the IATRX macro package with LLNCS style

