
CSE 505: Class Notes on Semantics of Logic Programs

In this tutorial, we will concentrate only on propositional logic programs, i.e., logic programs
where all predicates have arity 0. Hereafter, when we say logic programs, we will assume it is
propositional unless otherwise stated.

Let P be a set of propositions. A literal is either p or ¬p where p ∈ P is a proposition. A logic
program, denoted by P, is a set of clauses represented as

p :− α

where p is a proposition symbol, and α is a (possibly empty) comma-separated list of literals. We
say p is the head of the clause and α is its body. When α is empty, the clause is simply represented
as

p.

that is, as a fact.

1 Definite Logic Programs

A program P where no clause body contains a negative literal is called a definite program. In other
words, if every clause in a program is a Horn clause, then it is a definite program.

The least model of a definite logic program P can be computed as the least fixed point of the
immediate consequence operator, TP of P defined as follows.

Definition 1 Let M ⊆ P be a set of propositions. Then M ′ = TP(M), the immediate consequence
of M is the least set such that:

• p ∈M ′ if p ∈M

• p ∈M ′ if p :− q1, q2, . . . qn ∈ P and for all 1 ≤ i ≤ n, qi ∈M .

In other words, given the propositions that are true (in M) TP computes the set of propositions
whose truth follows from the program P.

Example 1 Consider the program P1:

p :− q, r.
p :− s, t.
r :− t.
q.

t.

Let M0 = {}. Then TP1(M0) = {q, t}. Now let M1 = {q, t}. Then TP1(M1) = {q, r, t}. 2

We will use the TP operator to compute the least model of P. Before we describe that result,
we recall the following standard result from lattice theory.

1



Fixed point iterations over lattices Let L = (S,�) be a complete lattice, where S is some
finite set and � is a partial order over S. Let ⊥ be the least element in S according to the
partial order �. A function f : S → S is said to be monotonic over L if for all x, y ∈ S,
x � y ⇒ f(x) � f(y). An element x is a fixed point of function f : S → S if f(x) = x.

Let F be the set of all fixed points of f . Then the least fixed point of f , denoted by µf is an
element x ∈ F such that ∀y ∈ F x � y.

Theorem 1 (Tarski-Knaster) Given a lattice (S,�), the least fixed point of a monotonic func-
tion f : S → S is the limit of the sequence x0, x1, . . . , xi, . . . such that x0 = ⊥ and xi+1 = f(xi) for
all i ≥ 0.

Proof sketch: We first show that the sequence x0, x1, . . . , xi, . . . converges, i.e., there is a N ≥ 0
such that xi+1 = xi for all i ≥ N . For that, we show that xi � xi+1 for all i ≥ 0 by induction on i.
For the base case, note that x0 = ⊥ and hence x0 � x1. Now, as induction hypothesis assume that
xj � xj+1 for some j ≥ 0. By monotonicity of f , we have f(xj) � f(xj+1); but f(xj) = xj+1 and
f(xj+1) = xj+2 from construction of the sequence and hence xj+1 � xj+2, thereby completing the
induction step.

Since S is finite, and xi � xi+1 for all i ≥ 0, there is some N for which xN = xN+1. It then
follows from the definition of the sequence that xi+1 = xi for all i ≥ N . The limit of the sequence
is xN , which is clearly a fixed point of f .

We now show that xN is indeed the least fixed point. For that, consider some arbitrary fixed
point y of f . We now show that xi � y for all i ≥ 0 by induction on i. For the base case, ⊥ � y
and hence x0 � y. As induction hypothesis, assume that xj � y for some j. By monotonicity of f ,
we have f(xj) � f(y). Since y is a fixed point, and f(xj) = xj+1 by definition of the sequence, we
have xj+1 � y, thus completing the induction step. Hence it follows that the limit of the sequence
xN � y, for any fixed point y, meaning that xN is the least fixed point of f . 2

Note: the original Tarski-Knaster theorem is more general and applies to potentially infinite
complete partial orders; it is sufficient to restrict the result to finite lattices for our purposes.

Least model computation using TP The immediate consequence operator maps a set of propo-
sitions to a set of propositions, and hence has the signature TP : 2P → 2P where 2P represents the
powerset of P . Note that (2P ,⊆), the lattice formed by the subsets of P with subset ordering, is
finite if P is finite.

We now consider the sequence M0,M1, . . .Mi, . . . where M0 = {}, the empty set and ∀i ≥
0 Mi+1 = TP(Mi). From definition of TP it is easy to see that it is monotonic with respect to ⊆
ordering. From the Tarski-Kanster theorem, it follows that the sequence of Mi’s converge to the
least fixed point of TP .

All that is left to show is that the least fixed point of TP is also the least model of P.

Theorem 2 M is a model of program P if and only if M is a fixed point of TP .

Proof sketch: To show that every model M of P, is a fixed point of P: assume to the contrary
that there is some model M ′ which is not a fixed point of TP . From definition of TP , M ′ ⊆ TP(M ′).
Hence, there is some p ∈ TP(M ′)−M ′. Since p ∈ TP(M ′), there is some clause p :− q1, . . . qk such
that q1, . . . qk ∈M ′. If M ′ is a model of P, p must be in M ′. Thus every proposition in TP(M ′) is
also in M ′, and hence TP(M ′) = M ′. 2

Hence the least model of a program P is the least fixed point of TP .

2



2 Logic Programs with Stratified Negation

We now consider programs where the clause bodies may contain negative literals. Such programs
are called normal logic programs. Below, we consider a subset of normal logic programs called
stratified programs.

Given a program P, we define its predicate dependency graph GP as follows. The vertices of
GP are the propositions in P. The edges in GP are labelled as either positive or negative. There
is a positive edge from p to r in GP if and only if there is a clause of the form p :− l1, l2, . . . , lk
such that li = r for some i ≤ k. There is a negative edge from p to s in GP if and only if there is a
clause of the form p :− l1, l2, . . . , lk such that li = ¬s for some i ≤ k.

Example 2 Consider the program P2:

p :− p, q.
q :− p.
r :− ¬s.
s :− ¬q.

The vertices of GP2 are {p, q, r, s}. There are three positive edges in GP2: namely, (p, p), (p, q)
and (q, p). There are two negative edges, namely (r, s) and (s, q).

Example 3 Consider the program P3:

p :− ¬q.
q :− ¬r.
r :− p.

The vertices of GP3 are {p, q, r}. There is one positive edge (r, p) and there are two negative
edges (p, q) and (q, r).

There is a path from p to q in GP iff there is a sequence of edges (positive or negative) by which
we can reach q form p.

We say that a program P is stratified iff whenever there is a negative edge in GP from q to
p, there is no path from p to q. In other words, a program is stratified if negative edges in its
predicate dependency graph do not participate in cycles.

Among the above examples, P2 is stratified. However P3 is not stratified, since there is a path
from q to p via r, and there is also a negative edge from p to q.

The word “stratifed” stems from the observation that in such programs it is possible to partition
the set of propositions into different “strata”: sets S0, S1, . . . , Sk such that whenever p ∈ Si and
there is a negative edge in GP from p to q, then q ∈ Sj for some j < i (i.e. a strictly lower stratum).

Given such a stratification, we can partition the clauses in a program P into sets P0,P1, . . .Pk
such that p :− α ∈ P i iff p :− α ∈ P and p ∈ Si. Each of the sets P i in the partition can itself be
considered as a logic program. Note that the clauses in P0 form a definite logic program.

Example 4 Consider the program P2 in Example 2. The set of propositions in P2 can be parti-
tioned into strata S0 = {p, q}, S1 = {s}, and S2 = {r}. The programs corresponding to these strata
are P0

2 = {p :− p, q. q :− p}, P1
2 = {s :− ¬q}, and P2

2 = {r :− ¬s}.

3



We now describe a computational procedure to evaluate what is called as the perfect model of
a stratified logic program.

Definition 2 For any set of propositions S, let P(S) be the program obtained from P by deleting

1. each clause that has a negative literal ¬q in its body such that q ∈ S, and

2. all negative literals in the bodies of the remaining clauses, and

3. each positive literal q in the bodies of the remaining clauses such that q ∈ S.

Intuitively, given a program P and set of propositions S, P(S) is the program obtained by
“plugging in” the values of literals as prescribed by S. It is important to note that P(S) will
always be a definite logic program.

Definition 3 Let P be a stratified program, and S0, S1, . . . Sk be sets of predicates in the corre-
sponding strata. Let M0,M1, . . .Mk+1 be a sequence such that

1. M0 = {} and

2. Mi+1 = Mi ∪ µTPi(Mi) for all i ≤ k.

Then Mk+1 is the perfect model of P.

From the above definition it is clear that M1 is the least model of the program P0. At each
stratum, we “plug the values” of predicates defined in the lower strata and evaluate the least model
of the resultant program. Note that P i(Mi), the resultant program at stratum i+1 is a definite logic
program. Consequently, the immediate consequence operator applied in each stratum is monotonic
and hence its least fixed point is well defined.

Example 5 The least model of P2 in Example 2 is evaluated as follows. (using the strata in
Example 4).

M0 = {}.
M1 = M0 ∪ µTP0(M0) = µTP ′ = {}
M2 = M1 ∪ µTP1(M1) = µT{s.} = {s}
M3 = M2 ∪ µTP2(M2) = {s} ∪ µT{} = {s}

It is easy to see that the perfect model of a definite program coincides with its least model.

3 Normal Logic Programs and Stable Model Semantics

While most logic programs that are written to express a given computation procedure are stratified,
the same is not true for many logic programs that are used to represent knowledge. For instance,
consider the following example, taken from Przymusinski’s paper that appeared in Annals of Math-
ematics and Artificial Intelligence in 1994.

4



Example 6 Consider the following program P5:

work :− ¬tired .
sleep :− ¬work .
tired :− sleep.

angry :− ¬paid ,work .
paid .

This program is non-stratified due to the cycles containing negation involving work, sleep and tired.
However, since paid is a fact, angry is always false.

The semantics we have defined so far do not give a meaning to the above program, and hence
cannot substantiate why angry should be false.

Stable models are a well-accepted semantics for non-stratified programs. They are computed
based on a quotient operator defined as follows:

Definition 4 (Quotient) For any set of propositions S, let PS be the program obtained from P by
deleting

1. each clause that has a negative literal ¬q in its body such that q ∈ S, and

2. all negative literals in the bodies of the remaining clauses,

The program P
S is called the quotient of P with respect to S.

The operation for obtaining the quotient of a program with respect to a set of propositions
is called the Gelfond-Lifschitz transformation. Note the similarity between the “plug-in” operator
P(S) defined earlier for stratified programs, and the quotient operator above: the quotient operator
“plugs-in” th evalues only for negative literals. Note that the quotient is always a definite logic
program.

Example 7 Consider S1 = {work} and the program P5 from the previous example. The quotient
P5
S1

is

work .
tired :− sleep.

angry :− work .
paid .

Let S2 = {paid}. The quotient P5
S2

is

work .
sleep.
tired :− sleep.
paid .

Let S3 = {work , paid}. The quotient P5
S3

is

work .
tired :− sleep.
paid .

5



Definition 5 (Stable Model) A set of predicates M is a stable model of P if and only if M =
µT P

M
.

In other words, a set of predicates is a stable model iff it is also the least model of the quotient
program. For example, the set {work} is not a stable model of P5 since the least model of its
corresponding quotient is {work , angry , paid}. On the other hand, the set S3 = {work , paid} is a
stable model since the least model of P5

S3
is {work , paid}.

Programs may not always have stable models. For instance the program {p :− ¬p.} has no
stable model. Programs may have more than one stable model. For instance, program P5 has
another stable model {tired , sleep, paid}.

Every stratified program has a unique stable model which coincides with its perfect model.
Consequently, the least model of a definite logic program coincides with its unique stable model.

For more on Stable Models, see the paper by Gelfond and Lifschitz in the “Online Resources”
page of the course web site.

6


