Lexical Analysis J

Compiler Design

CSE 504

@ Introduction

© Regular Expressions

© Finite State Automata

@ Generating Lexical Analyzers

Compiler Design Lexical Analysis CSE 504

Introduction

Structure of a Language

Grammars: Notation to succinctly represent the structure of a language.

Example:

Stmt
Stmt
Stmt

Expr

Compiler Design

L

if Expr then Stmt else Stmt
while Expr do Stmt
do Stmt until Expr

Expr + Expr

Lexical Analysis CSE 504 2

Introduction

Grammars

Stmt —— if Expr then Stmt else Stmt

@ Terminal symbols: if, then, else

e Terminal symbols represent group of characters in input language:
Tokens.
e Analogous to words.

@ Nonterminal symbols: Stmt, Expr

o Nonterminal symbols represent a sequence of terminal symbols.
e Analogous to sentences.

Compiler Design Lexical Analysis CSE 504 3/

Introduction

Phases of Syntax Analysis

© Identify the words: Lexical Analysis.
Converts a stream of characters (input program) into a stream of
tokens.
Also called Scanning or Tokenizing.

@ Identify the sentences: Parsing.
Derive the structure of sentences: construct parse trees from a stream
of tokens.

Compiler Design Lexical Analysis CSE 504 4 /53

Introduction

Lexical Analysis

Convert a stream of characters into a stream of tokens.
@ Simplicity: Conventions about “words” are often different from
conventions about “sentences”.

e Efficiency: Word identification problem has a much more efficient
solution than sentence identification problem.

o Portability: Character set, special characters, device features.

Compiler Design Lexical Analysis CSE 504 5/53

Introduction X s N Automata

Terminology

@ Token: Name given to a family of words.

e.g., integer_constant

@ Lexeme: Actual sequence of characters representing a word.
e.g., 32894

@ Pattern: Notation used to identify the set of lexemes represented by a
token.
eg., [0—9]+

Compiler Design Lexical Analysis CSE 504 6/

Introduction

Terminology

A few more examples:

Token Sample Lexemes | Pattern
while while while
integer constant | 32894, -1093, 0 | [0-9]+
identifier buffer_size [a-zA-Z]+

Compiler Design Lexical Analysis CSE 504 7 /53

Introduction

Patterns

How do we compactly represent the set of all lexemes corresponding to a
token?

For instance:
The token integer_constant represents the set of all integers: that
is, all sequences of digits (0-9), preceded by an optional sign (+ or —).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.

Compiler Design Lexical Analysis CSE 504 8 /53

Introduction Regular Expressions

00000000

Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet ¥.

@ a: stands for the set {a} that contains a single string a.
@ a | b: stands for the set {a,b} that contains two strings a and b.
e Analogous to Union.
@ ab: stands for the set {ab} that contains a single string ab.
e Analogous to Product.
o (alb)(alb): stands for the set {aa,ab,ba,bb}.
@ a": stands for the set {¢, a, aa, aaa, ...} that contains all strings of
zero or more a's.
e Analogous to closure of the product operation.

€ stands for the empty string.

Compiler Design Lexical Analysis CSE 504 9 /53

Introduction Regular Expressions

elelele}

Regular Expressions

Examples of Regular Expressions over {a,b}:
@ (a|lb)*: Set of strings with zero or more a's and zero or more b's:
{€,a, b, aa, ab, ba, bb, aaa, aab, . ..}
@ (a*b*): Set of strings with zero or more a's and zero or more b's such
that all a's occur before any b:
{€, a, b, aa, ab, bb, aaa, aab, abb, . . .}

@ (a*b*)*: Set of strings with zero or more a's and zero or more b's:
{€,a, b,aa, ab, ba, bb, aaa, aab, ...}

Compiler Design Lexical Analysis CSE 504 10 / 53

Introduction Regular Expressions

00800000

Language of Regular Expressions

Let R be the set of all regular expressions over 2. Then,
@ Empty String: e € R
@ Unit Strings: a € X = a € R
o Concatenation: n,m € R=nmneR
e Alternative: n,n € R=(n|n)€ER
o Kleene Closure: re R=r*e R

Compiler Design Lexical Analysis CSE 504 11 / 53

Introduction Regular Expressions

000@0000

Regular Expressions
Example: (a| b)*

Ly = {e}

Ll = [_0 . {a,b}
{e} - {a,b}
= {avb}

Ly, = L;-{a,b}
= {a,b}-{a,b}
= {aa,ab,ba,bb}
L3 = Ly-{a,b}
oo
L=JL = {¢,a,b,aa, ab, ba, bb, ...}
i=0

Compiler Design Lexical Analysis CSE 504 12 / 53

Regular Expressions

[e]e]e]e] lelele]

Semantics of Regular Expressions

Semantic Function £ : Maps regular expressions to sets of strings.

) = {e}

) = {o} (a€X)
L(n|n) = Ln)UL(r)

) = L(n)-L(r2)

) = A U(L(r)- L(r))

Compiler Design Lexical Analysis CSE 504 13 / 53

Regular Expressions

00000@00

Compiler Design

)
~—~
\§)
o
N
I

L((alp)(a] b))

{a}

L(a) U L(b)

{a} U{b}

{a,b}
L(a) - L(b)
{a} - {b}

{ab}
L(a|b)-L(a]b)
{a,b} - {a,b}

{aa, ab, ba, bb}

Lexical Analysis CSE 504 14 / 53

Introduction Regular Expressions

000000 @0

Computing the Semantics of Closure

Example: L((a| b)*)
={eyu(L(alb)-L((a] b))

Ly = {¢} Base case

L = {guU({ab}- L)
= {tU({a,b}-{e})
= {e,a,b}

L, = {guU({ab} L)
= {tU({a,b}-{ca,b})

= {¢,a,b,aa, ab,ba,bb}

L((a] b)*) = Lo = {€,a,b,aa,ab,ba,bb,...}

Compiler Design Lexical Analysis CSE 504 15 / 53

Regular Expressions

0000000e

Another Example

L((a*b*)*) :
L(a")
L(b")
L(a"b")

L((ab7)")

Compiler Design

{e,a,aa,...}
{€,b,bb,...}
{€,a,b, aa, ab, bb,
aaa, aab, abb, bbb, ...}
{e}
U{e, a, b, aa, ab, bb,
aaa, aab, abb, bbb, ...}
U{e, a, b, aa, ab, ba, bb,
aaa, aab, aba, abb, baa, bab, bba, bbb, . ..}

{€,a,b,aa,ab,ba,bb,...}

Lexical Analysis CSE 504 16 / 53

Introduction Regular Expressions

00000

Regular Definitions

Assign “names” to regular expressions.
For example,

digit — O|1]---]9
natural — digit digit*

SHORTHANDS:

@ a': Set of strings with one or more occurrences of a.

2 . .
@ a’: Set of strings with zero or one occurrences of a.

Example:
. ? s .t
integer — (+]—)'digit
Lexical Analysis CSE 504 17

Introduction Regular Expressions

Regular Definitions: Examples

float —— 1integer . fraction
integer — (+|-)’ no_leading zero
no_leading zero — (nonzero digit digit*)|O0
fraction —— no_trailing zero exponent?
no_trailing zero — (digit* nonzero digit)|O0
exponent — (E|e) integer
digit — O0[1]---]9
nonzero digit — 1]2]---|9

Compiler Design Lexical Analysis CSE 504 18 / 53

Introduction

[o]e] J

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input
alphabet.

@ They can hence be used to specify the set of lexemes associated with
a token.

@ That is, regular expressions and definitions can be used as the pattern
language

How do we decide whether an input string belongs to the set of strings
specified by a regular expression?

Compiler Design Lexical Analysis CSE 504 19 / 53

Introduction ar Expressions

Using Regular Definitions for Lexical Analysis

Q: Is ababbaabbb in L£(((a*b*)*)?
A: Hm. Well. Let's see.

L@ by = {e
U{¢, a, b, aa, ab, bb,
aaa, aab, abb, bbb, ...}
U{e, a, b, aa, ab, ba, bb,
aaa, aab, aba, abb, baa, bab, bba, bbb, . ..}

=

Compiler Design Lexical Analysis CSE 504 20 / 53

Recognizers

Construct automata that recognize strings belonging to a language.

@ Finite State Automata = Regular Languages
o Finite State — cannot maintain arbitrary counts.
@ Push Down Automata = Context-free Languages

e Stack is used to maintain counter, but only one counter can go
arbitrarily high.

Compiler Design Lexical Analysis CSE 504 21 /53

Introduction

Recognizing Finite Sets of Strings

@ ldentifying words from a small, finite, fixed vocabulary is
straightforward.

@ For instance, consider a stack machine with push, pop, and add
operations with two constants: 0 and 1.

@ We can use the automaton:

\\5 a integer_constant

g n
©

h pop add

push

Compiler Design Lexical Analysis CSE 504 22 /53

Introduction xpressions Finite State Automata

00000000000

Finite State Automata

Represented by a labeled directed graph.

o A finite set of states (vertices).

e Transitions between states (edges).

@ Labels on transitions are drawn from ¥ U {e}.
@ One distinguished start state.

@ One or more distinguished final states.

Compiler Design Lexical Analysis CSE 504 23 /53

Introduction sions Finite State Automata

00000000000

Finite State Automata: An Example

Consider the Regular Expression (a | b)*a(a | b).
L((a| b)*a(a | b)) = {aa, ab, aaa, aab, baa, bab,
aaaa, aaab, abaa, abab, baaa, ...}.

Compiler Design Lexical Analysis CSE 504 24 /53

Introduction X ssions Finite State Automata

0O0@00000000

Finite State Automata: An Example

Consider the Regular Expression (a | b)*a(a | b).
L((a| b)*a(a | b)) = {aa, ab, aaa, aab, baa, bab,
aaaa, aaab, abaa, abab, baaa, ...}.
The following automaton determines whether an input string belongs to
L((a| b)*a(a | b):

a

ﬁ a

@ 03

Compiler Design Lexical Analysis CSE 504 24 /53

Introduction Xp Finite State Automata

(e]e]e}

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

if beginning from the start state

Compiler Design Lexical Analysis CSE 504 25 /53

Introduction xpressions Finite State Automata

00000000000

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

if beginning from the start state

we can trace some path through the automaton

Compiler Design Lexical Analysis CSE 504 25 /53

Introduction xpressions Finite State Automata

00000000000

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

if beginning from the start state
we can trace some path through the automaton

such that the sequence of edge labels spells x

Compiler Design Lexical Analysis CSE 504 25 /53

Introduction Finite State Automata

00000000000

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

if beginning from the start state

we can trace some path through the automaton
such that the sequence of edge labels spells x
and end in a final state.

Compiler Design Lexical Analysis CSE 504 25 /53

Introduction Regular Ex ions Finite State Automata

0O000@000000

Recognition with an NFA

Is abab € L((a | b)*a(a | b))?

a
a
a
S
b b
Input: ‘ a b a b‘Accept?
Pathl: |1 1 1 1 1 |no

Compiler Design Lexical Analysis CSE 504 26 / 53

Introduction ions Finite State Automata

0O000@000000

Recognition with an NFA

Is abab € L((a | b)*a(a | b))?

a

a
a
S
b b
Input: ‘ a b a b ‘ Accept?
Path1: {1 1 1 1 1| no
Path2: |1 1 1 2 3| yes

Compiler Design Lexical Analysis CSE 504 26 / 53

Introduction ions Finite State Automata

0O000@000000

Recognition with an NFA

Is abab € L((a | b)*a(a | b))?

a

a
e
b b
Input: ‘ a b a b ‘ Accept?
Path1: |1 1 1 1 1 |no
Path2: |1 1 1 2 3| yes
Path3: |1 2 3 1 1 |no

Compiler Design Lexical Analysis CSE 504 26 / 53

Introduction X ssions Finite State Automata

0O000@000000

Recognition with an NFA

Is abab € L((a | b)*a(a | b))?

a

a
b b
Input: a b a b | Accept?
Path1: |1 1 1 1 1 |no
Path2: |1 1 1 2 3| yes
Path3: |1 2 3 1 1 |no
YES

Compiler Design Lexical Analysis

CSE504 26 /53

Introduction

Regular Expressions to NFA

Thompson's Construction: For every regular expression r, derive an NFA
N(r) with unique start and final states.

€ M

a€eXx ¥ 20

. N@) %
(r]nr)

Compiler Design Lexical Analysis

CSE 504 27 /53

Introduction Xp Finite State Automata
[e]e]e}

Compiler Design Lexical Analysis CSE 504 28 / 53

Introduction X s Finite State Automata

(e]e]

Example

(a| b)*a(a | b):

Compiler Design Lexical Analysis CSE 504 29 /53

Introduction

Recognition with an NFA

Is abab € £((a | b)*a(a | b))?

a
a
a @ 3
b
Input: a b a b Accept?
Path 1: 1 1 1 1 1

Compiler Design Lexical Analysis CSE 504 30 /53

Introduction

Recognition with an NFA

Is abab € £((a | b)*a(a | b))?

a
a
a @ 3
b b
Input: a b a b Accept?
Path 1: 1 1 1 1 1
Path 2: 1 1 2 3 Accept

Compiler Design Lexical Analysis CSE 504 30 /53

Introduction

Finite State Automata

0O0000000e00

Recognition with an NFA

Is abab € L((a | b)*a(a | b))?

a
a
a @ 3
b b
Input: a b a b Accept?
Path 1: 1 1 1 1
Path 2: 1 1 2 3 Accept
Path 3: 1 2 3 € 1

Compiler Design Lexical Analysis CSE 504 30 /53

Introduction ions Finite State Automata

0O0000000e00

Recognition with an NFA

Is abab € L((a | b)*a(a | b))?

a
a
a @ 3
b b
Input: a b a b Accept?
Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3 Accept
Path 3: 1 2 3 L L

All Paths {1} {1,2} {1,3} {1,2} {1,3} Accept

Compiler Design Lexical Analysis CSE 504 30 /53

Introduction

Recognition with an NFA (contd.)

Is aaab € £((a | b)*a(a | b))?

a
a
a @ 3
b b
Input: a a a b Accept?
Path 1: 1 1 1 1 1

Compiler Design Lexical Analysis CSE 504 31/53

Introduction ions Finite State Automata

00000000080

Recognition with an NFA (contd.)

Is aaab € £((a | b)*a(a | b))?

a
a
a @ 3
b b
Input: a a a b Accept?
Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3 Accept

Compiler Design Lexical Analysis CSE 504 31/53

Introduction ions Finite State Automata

00000000080

Recognition with an NFA (contd.)

Is aaab € £((a | b)*a(a | b))?

a
a
a ()3

b b
Input: a a a b Accept?
Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3 Accept
Path 3: 1 1 2 3 €

Compiler Design Lexical Analysis CSE 504 31/53

Introduction ions Finite State Automata

00000000080

Recognition with an NFA (contd.)

Is aaab € £((a | b)*a(a | b))?

a
a
a ()3

b b
Input: a a a b Accept?
Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3 Accept
Path 3: 1 1 2 3 1
Path 4: 1 2 3 1 1

Compiler Design Lexical Analysis CSE 504 31/53

Introduction X ssions Finite State Automata

00000000080

Recognition with an NFA (contd.)

Is aaab € £((a | b)*a(a | b))?

a
a
a ()3

b b
Input: a a a b Accept?
Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3 Accept
Path 3: 1 1 2 3 1
Path 4: 1 2 3 1 1

All Paths {1} {1,2} {1,2,3} {1,2,3} {1,3} Accept

Compiler Design Lexical Analysis CSE 504 31/53

Introduction

Recognition with an NFA (contd.)

Is aabb € £((a | b)*a(a | b))?

a
a
a @ 3
b b
Input: a a b b Accept?
Path 1: 1 1 1 1 1

Compiler Design Lexical Analysis CSE 504 32 /53

Finite State Automata

Introduction ions
0000000000 e

Recognition with an NFA (contd.)

Is aabb € £((a | b)*a(a | b))?

a
a
a ()3
b b
Input: a a b
Path 1: 1 1 1 1
Path 2: 1 1 2 3

Compiler Design Lexical Analysis

Accept?

CSE 504

32/

53

Introduction ions Finite State Automata

0000000000 e

Recognition with an NFA (contd.)

Is aabb € £((a | b)*a(a | b))?

a
a
a ()3

b b
Input: a a b b Accept?
Path 1: 1 1 1 1 1
Path 2: 1 1 2 3 1
Path 3: 1 2 3 €L €

Compiler Design Lexical Analysis CSE 504 32 /53

Introduction X ssions Finite State Automata

0000000000 e

Recognition with an NFA (contd.)

Is aabb € £((a | b)*a(a | b))?

a
a
a ()3

b b
Input: a a b b Accept?
Path 1: 1 1 1 1 1
Path 2: 1 1 2 3 1
Path 3: 1 2 3 €L €

All Paths {1} {1,2} {1,2,3} {1,3} {1} REJECT

Compiler Design Lexical Analysis CSE 504 32 /53

Introduction egular Ex ions Finite State Automata

Determinism
(a | b)*a(a | b):

Nondeterministic:
(NFA)

Deterministic:
(DFA)

Compiler Design Lexical Analysis CSE 504 33 /53

Introduction

Recognition with a DFA

Is abab € L((a | b)*a(a | b))?

Input:‘ a b a b ‘ Accept?
Path: |1 2 4 2 4| YES

Compiler Design Lexical Analysis CSE 504 34 /53

Introduction sions Finite State Automata

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.
@ NFA may have transitions labeled by e.
(Spontaneous transitions)
o All transition labels in a DFA belong to .
@ For some string x, there may be many accepting paths in an NFA.
@ For all strings x, there is one unique accepting path in a DFA.
@ Usually, an input string can be recognized faster with a DFA.

@ NFAs are typically smaller than the corresponding DFAs.

Compiler Design Lexical Analysis CSE 504 35 /53

Introduction 3 ssions ini Automata

NFA vs. DFA (contd.)

R = Size of Regular Expression
N = Length of Input String

NFA | DFA
O(R) | O(2F)

Size of
Automaton
Recognition time
per input string

O(N x R) | O(N)

Compiler Design Lexical Analysis CSE 504 36 / 53

Introduction xpressions Finite State Automata

Converting NFA to DFA

Subset construction
Given a set S of NFA states,

@ compute S, = e-closure(S): S, is the set of all NFA states reachable
by zero or more e-transitions from S.
e compute S, = goto(S, a):
o S’ is the set of all NFA states reachable from S by taking a transition

labeled a.
e S, = eclosure(S).

Compiler Design Lexical Analysis CSE 504 37 /53

Introduction Xp Finite State Automata

000000800

Converting NFA to DFA (contd).

@ Each state in DFA corresponds to a set of states in NFA.

Compiler Design Lexical Analysis CSE 504 38 /53

Introduction sions Finite State Automata

Converting NFA to DFA (contd).

@ Each state in DFA corresponds to a set of states in NFA.
o Start state of DFA = e-closure(start state of NFA).

Compiler Design Lexical Analysis CSE 504 38 /53

Introduction sions Finite State Automata

Converting NFA to DFA (contd).

@ Each state in DFA corresponds to a set of states in NFA.
o Start state of DFA = e-closure(start state of NFA).
@ From a state s in DFA that corresponds to a set of states S in NFA:

Compiler Design Lexical Analysis CSE 504 38 /53

Introduction sions Finite State Automata

Converting NFA to DFA (contd).

@ Each state in DFA corresponds to a set of states in NFA.

o Start state of DFA = e-closure(start state of NFA).

@ From a state s in DFA that corresponds to a set of states S in NFA:
o let S’ = goto(S, a) such that S’ is non-empty.

Compiler Design Lexical Analysis CSE 504 38 /53

Introduction sions Finite State Automata

Converting NFA to DFA (contd).

@ Each state in DFA corresponds to a set of states in NFA.
o Start state of DFA = e-closure(start state of NFA).
@ From a state s in DFA that corresponds to a set of states S in NFA:

o let S’ = goto(S, a) such that S’ is non-empty.
e add an a-transition to state s’ that corresponds S’ in NFA,

Compiler Design Lexical Analysis CSE 504 38 /53

Introduction sions Finite State Automata

Converting NFA to DFA (contd).

@ Each state in DFA corresponds to a set of states in NFA.
o Start state of DFA = e-closure(start state of NFA).
@ From a state s in DFA that corresponds to a set of states S in NFA:

o let S’ = goto(S, a) such that S’ is non-empty.
e add an a-transition to state s’ that corresponds S’ in NFA,

@ S contains a final NFA state, and s is the corresponding DFA state

Compiler Design Lexical Analysis CSE 504 38 /53

Introduction sions Finite State Automata

Converting NFA to DFA (contd).

@ Each state in DFA corresponds to a set of states in NFA.
o Start state of DFA = e-closure(start state of NFA).
@ From a state s in DFA that corresponds to a set of states S in NFA:

o let S’ = goto(S, a) such that S’ is non-empty.
e add an a-transition to state s’ that corresponds S’ in NFA,

@ S contains a final NFA state, and s is the corresponding DFA state
= s is a final state of DFA

Compiler Design Lexical Analysis CSE 504 38 /53

Introduction

000

NFA — DFA: An Example

e-closure({1}) = {1}

Compiler Design Lexical Analysis CSE 504 39 /53

Introduction

000

NFA — DFA: An Example

e-closure({1}) = {1}
goto({1}, a) = {1,2}

Compiler Design Lexical Analysis CSE 504 39 /53

Introduction

NFA — DFA: An Example

a
a
a ()3
b b
e-closure({1}) = {1}
goto({1},) = {1,2}

goto({1},b) {1}

Compiler Design Lexical Analysis CSE 504 39 /53

Introduction

a
a
a ()3

b b
e-closure({1}) = {1}
goto({1}, a) = {1,2}
goto({1},b) = {1}
goto({1,2},2) = {1,2,3}

Lexical Analysis

Introduction

Finit ate Automata

NFA — DFA: An Example

a
a
a ()3

b b
e-closure({1}) = {1}
gOto({l}va) = {152}
goto({1},b) = {1}
goto({1,2},a) = {1,2,3}
gOto({]'?z}?b) = {173}

Compiler Design

Lexical Analysis

CSE 504 39 /53

Introduction

a
a ()3

b b
e-closure({1}) = {1}
gOto({l}va) = {152} goto({1,2,3},a) = {1’2’3}
goto({1},b) = {1}
goto({1,2},a) = {1,2,3}
gOto({]'?z}?b) = {173}

Compiler Design Lexical Analysis CSE 504 39 /53

Introduction

a
a ()3

b b
e-closure({1}) = {1}
gOto({l}va) = {152} goto({1,2,3},a) = {1’2’3}
goto({1},b) = {1} goto({1,2,3},b) = {1,3}
goto({1,2},a) = {1,2,3}
gOto({]'?z}?b) = {173}

Compiler Design

CSE 504 39 /53

Lexical Analysis

Introduction

a
a ()3

b b
e-closure({1}) = {1}
gOto({l}va) = {152} goto({1,2,3},a) = {1’2’3}
goto({1},b) = {1} goto({1,2,3},b) = {1,3}
goto({1,2},a) = {1,2,3} goto({1,3},a) = {1,2}
gOto({]'?z}?b) = {173}

Compiler Design

Lexical Analysis

CSE 504 39 /53

Introduction

a
a ()3

b b
e-closure({1}) = {1}
goto({1}, a) = {1,2} goto({1,2,3},a) = {1,2,3}
goto({1},b) = {1} goto({1,2,3},b) = {1,3}
goto({1,2},a) = {1,2,3} goto({1,3},a) = {1,2}
goto({1,2},b) = {1,3} goto({1,3},b) = {1}

Compiler Design Lexical Analysis CSE 504 39 /53

Introduction

NFA — DFA: An Example (contd.)

eclosure({1}) = {1}

goto({1}, a) = {1,2} goto({1,2,3},a) = {1,2,3}
goto({1},b) = {1} goto({1,2,3},b) = {1,3}
goto({1,2},a) = {1,2,3} goto({1,3},) = {1,2}
goto({1,2},b) = {1,3} goto({1,3},b) = {1}

Compiler Design Lexical Analysis CSE 504 40 / 53

Introduction xpressions ma Generating Lexical Analyzers
ole O 9000000000000

Construction of a Lexical Analyzer

@ Regular Expressions and Definitions are used to specify the set of
strings (lexemes) corresponding to a token.

@ An automaton (DFA/NFA) is built from the above specifications.

@ Each final state is associated with an action: emit the corresponding

token.

CSE 504 41 /53

Compiler Design Lexical Analysis

Introduction

Generating Lexical Analyzers
0@00000000000

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence
of digits separated by a decimal point).

[0-9]+ { emit (INTEGER_CONSTANT); }

[0-9]+"."[0-9]+ { emit (FLOAT_CONSTANT); }

0-9
7 INTEGER_CONSTANT
0-9\ /) -
€
0-9 0-9

8 _ Q "ww —

09" o 9@

RN

FLOAT CONSTANT

Lexical Analysis

CSE 504 42 /53

Introduction xpressions mata Generating Lexical Analyzers

00e0000000000

Lex

@ Tool for building lexical analyzers.
@ Input: lexical specifications (.1 file)

@ Output: C function (yylex) that returns a token on each invocation.

@ Example:
yAA
[0-9]+ { return(INTEGER_CONSTANT); }
[0-9]+"."[0-9]+ { return(FLOAT_CONSTANT); }

o Tokens are simply integers (#define’s).

Compiler Design Lexical Analysis CSE 504 43 /53

Introduction ons S . mata Generating Lexical Analyzers

000@000000000

Lex Specifications

w{

C header statements for inclusion
%}
Regular Definitions e.g.:
digit [0-9]
YA

Token Specifications e.g.:
{digit}+ { return(INTEGER_CONSTANT); }

Dot
Support functions in C

Compiler Design Lexical Analysis CSE 504 44 / 53

Introduction sions on Generating Lexical Analyzers
O 0000@00000000

Lex/Flex Regular Expressions

Adds “syntactic sugar’ to regular expressions:

e Range: [0-7]: Integers from 0 through 7 (inclusive)
[a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q.

@ Exception: ["/]: Any character other than /.
o Definition: {digit}: Use the previously specified regular definition

digit.
@ Special characters: Connectives of regular expression, convenience

features.

eg: | x°

Compiler Design Lexical Analysis CSE 504 45 / 53

Generating Lexical Analyzers
00000@0000000

Introduction

Special Characters in Lex/Flex

* + 7 () Same as in regular expressions
] Enclose ranges and exceptions
} Enclose “names” of regular definitions

Used to negate a specified range (in Exception)
. Match any single character except newline
\ Escape the next character
\n, \t Newline and Tab

For literal matching, enclose special characters in double quotes (") e.g.:

II*ll

Or use “\" to escape. e.g.: *

Compiler Design Lexical Analysis CSE 504 46 / 53

Generating Lexical Analyzers

0000008000000

Examples

for Sequence of £, o,

Compiler Desi Lexical Analysis CSE

Introduction X s ata Generating Lexical Analyzers

0000008000000

Examples

for Sequence of £, o,
" C-style OR operator (two vert. bars)

Compiler Design Lexical Analysis CSE 504

Introduction X s ata Generating Lexical Analyzers

0000008000000

Examples
for Sequence of £, o,
" C-style OR operator (two vert. bars)
Lk Sequence of non-newline characters

Compiler Design Lexical Analysis CSE 504

Introductio X s Automata Generating Lexical Analyzers

0000008000000

Examples
for Sequence of £, o,
" C-style OR operator (two vert. bars)
Lk Sequence of non-newline characters
["*/1+ Sequence of characters except * and /

Compiler Design Lexical Analysis CSE 504 47 / 53

Introduction Xp t Automata Generating Lexical Analyzers

0000008000000

Examples
for Sequence of £, o,
" C-style OR operator (two vert. bars)
Lk Sequence of non-newline characters
["*/1+ Sequence of characters except * and /
\" [T\ Sequence of non-quote characters

beginning and ending with a quote

Compiler Design Lexical Analysis CSE 504 47 / 53

Introduction sions) ata Generating Lexical Analyzers

0000008000000

Examples
for Sequence of £, o,
" C-style OR operator (two vert. bars)
Lk Sequence of non-newline characters
["*/1+ Sequence of characters except * and /
\" [T\ Sequence of non-quote characters

beginning and ending with a quote
({letter}|" ") ({letter}|{digit}|"_")*
C-style identifiers

Compiler Design Lexical Analysis CSE 504 47 / 53

Introduction Xp nit ata Generating Lexical Analyzers

0000000e00000

Actions

Actions are attached to final states.
Actions:

Distinguish the different final states.
Are used to return tokens.

Can be used to set attribute values.

In Lex/Flex: action is a fragment of C code (blocks enclosed by ‘{’
and ‘}).

Compiler Design Lexical Analysis CSE 504 48 / 53

Introduction Xp nit ata Generating Lexical Analyzers

00000000 e0000

PLY

PLY is a Yacc/Lex-like parser/lexer framework in Python.
(See http://www.dabeaz.com/ply/)

. . .y Example:
@ List of tokens is declared a priori. P

o Each token T with an action is import ply.lex as lex

specified by a Python function t_T:
o Regular expression patterns, specified | tokens = (’NUMBER’, ’PLUS’,
as Python docstrings, describe sets of "MINUS”)
lexemes. # Tokens without actions.
e Function body describes the action to | t_PLUS = r’\+’
be performed when input matches the | t-MINUS = r’->

List of token names.

pattern. # A token with action.
@ Action-less token T is specified by def t_NUMBER(t):
- . . I"\d+’
defining variable t_T with the regular t.value = int(t.value)
expression pattern as its value. return t

Compiler Design Lexical Analysis CSE 504 49 / 53

http://www.dabeaz.com/ply/

Generating Lexical Analyzers

0000000008000

Mechanics

@ The returned tokens are instances of class LexToken, with attributes
type, value, lineno and lexpos.

@ Line numbers have to be maintained explicitly by setting the 1lineno
attribute of the lexer.
e To ignore a lexeme (i.e. not return a token),

e end its action with a pass instead of return, or
e name the rule as t_ignore

e Error handling (for characters not matching any pattern) can be
specified as function t_error.

@ PLY'’s lexer can handle regular definitions, as well as conditional
analysis (a /a lex) where matching can be controlled by explicitly
maintained conditions. See PLY documentation for details.

Compiler Design Lexical Analysis CSE 504 50 / 53

Introduction Xp nit ata Generating Lexical Analyzers

0000000000800

Priority of matching

o Patterns for tokens with actions are matched in the order they are
specified.

@ Regular expressions for action-less tokens are sorted, and matched
longest-expression first.

Compiler Design Lexical Analysis CSE 504 51 /53

Generating Lexical Analyzers

0000000000080

Constructing Lexers using PLY

o Easy way:
o lex.lex() to create the lexer:;
e lex.input() to specify the input string to be scanned;
e repeated invocation of lex.token() to generate tokens.
o Alternative (better) way:
o Put lexer specifications in a separate module, say proto2lex.py.
o lexer = lex.lex(module=proto2lex) to create a lexer (referenced
from variable lexer).
e lexer.input(...) to specify its input
o lexer.token() to generate tokens, one at a time.
@ The alternative way works even when there are multiple instances of
the same lexer in an application.

Compiler Design Lexical Analysis CSE 504 52/

53

Introduction Xp nit ata Generating Lexical Analyzers

000000000000 e

Lexical Analysis: Summary

Convert a stream of characters into a stream of tokens.

@ Make rest of compiler independent of character set
@ Strip off comments

@ Recognize line numbers

@ Ignore white space characters

@ Process macros (definitions and uses)

@ Interface with symbol table (also called “name table™”).

Compiler Design Lexical Analysis CSE 504 53 /53

