Finite State Automata

Generating Lexical Analyzers

Lexical Analysis

Compiler Design

CSE 504

- Introduction
- 2 Regular Expressions
- Finite State Automata
- Generating Lexical Analyzers

Last modified: Fri Feb 12 2016 at 12:27:04 EST Version: 1.6 16:58:46 2016/01/29 Compiled at 12:48 on 2016/02/12

CSE 504 1 / 53

Finite State Automata

Generating Lexical Analyzers

Structure of a Language

Grammars: Notation to succinctly represent the structure of a language. Example:

Stmt	\longrightarrow	if Expr then Stmt else Stmt
Stmt	\longrightarrow	while Expr do Stmt
Stmt	\longrightarrow	do Stmt until Expr
÷		
Expr	\longrightarrow	Expr + Expr
÷		

Image: A matrix

A B A A B A

Stmt \longrightarrow if Expr then Stmt else Stmt

- Terminal symbols: if, then, else
 - Terminal symbols represent group of characters in input language: *Tokens*.
 - Analogous to words.
- Nonterminal symbols: Stmt, Expr
 - Nonterminal symbols represent a sequence of terminal symbols.
 - Analogous to sentences.

Image: Image:

Phases of Syntax Analysis

1 Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens.

Also called Scanning or Tokenizing.

Identify the sentences: Parsing.
 Derive the structure of sentences: construct *parse trees* from a stream of tokens.

Image: Image:

- E > - E >

Lexical Analysis

Convert a stream of characters into a stream of tokens.

- Simplicity: Conventions about "words" are often different from conventions about "sentences".
- Efficiency: Word identification problem has a much more efficient solution than sentence identification problem.
- Portability: Character set, special characters, device features.

Image: Image:

.

Terminology

- Token: Name given to a family of words.
 - e.g., integer_constant
- Lexeme: Actual sequence of characters representing a word. e.g., 32894
- Pattern: Notation used to identify the set of lexemes represented by a token.

e.g., [0 - 9] +

(日) (同) (三) (三)

Finite State Automata

Generating Lexical Analyzers

Terminology

A few more examples:

Token	Sample Lexemes	Pattern
while	while	while
integer_constant	32894, -1093, 0	[0-9]+
identifier	$buffer_size$	[a-zA-Z]+

<ロ> (日) (日) (日) (日) (日)

Introduction	Regular Expressions	Finite State Automata	Generating Lexical Analyzers
	0000000 00000	0000000000 0000000	

Patterns

How do we *compactly* represent the set of all lexemes corresponding to a token?

For instance:

The token *integer_constant* represents the set of all integers: that is, all sequences of digits (0-9), preceded by an optional sign (+ or -).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.

Notation to represent (potentially) infinite sets of strings over alphabet Σ .

- a: stands for the set {a} that contains a single string a.
- $a \mid b$: stands for the set $\{a, b\}$ that contains two strings a and b.
 - Analogous to Union.
- *ab*: stands for the set {ab} that contains a single string ab.
 - Analogous to Product.
 - (a|b)(a|b): stands for the set {aa, ab, ba, bb}.
- a^* : stands for the set $\{\epsilon, a, aa, aaa, \ldots\}$ that contains all strings of zero or more a's.
 - Analogous to *closure* of the product operation.
- ϵ stands for the *empty string*.

Image: Image:

- A I I I A I I I I

Examples of Regular Expressions over $\{a, b\}$:

- (a|b)*: Set of strings with zero or more a's and zero or more b's: {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}
- (a*b*): Set of strings with zero or more a's and zero or more b's such that all a's occur before any b:

 $\{\epsilon, a, b, aa, ab, bb, aaa, aab, abb, \ldots\}$

 (a*b*)*: Set of strings with zero or more a's and zero or more b's: {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}

イロト イポト イヨト イヨト

Generating Lexical Analyzers

Language of Regular Expressions

Let *R* be the set of all regular expressions over Σ . Then,

- Empty String: $\epsilon \in R$
- Unit Strings: $\alpha \in \Sigma \Rightarrow \alpha \in R$
- Concatenation: $r_1, r_2 \in R \Rightarrow r_1r_2 \in R$
- Alternative: $r_1, r_2 \in R \Rightarrow (r_1 \mid r_2) \in R$
- Kleene Closure: $r \in R \Rightarrow r^* \in R$

Image: A matrix

- 4 3 6 4 3 6

00

Finite State Automata

Generating Lexical Analyzers

Regular Expressions

Example: $(a \mid b)^*$

$$L_0 = \{\epsilon\}$$

$$L_1 = L_0 \cdot \{a, b\}$$

$$= \{\epsilon\} \cdot \{a, b\}$$

$$= \{a, b\}$$

$$L_2 = L_1 \cdot \{a, b\}$$

$$= \{a, b\} \cdot \{a, b\}$$

$$= \{aa, ab, ba, bb\}$$

$$L_3 = L_2 \cdot \{a, b\}$$

$$\vdots$$

$$L = \bigcup_{i=0}^{\infty} L_i \qquad = \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$$

Generating Lexical Analyzers

Semantics of Regular Expressions

Semantic Function \mathcal{L} : Maps regular expressions to sets of strings.

$$\begin{aligned} \mathcal{L}(\epsilon) &= \{\epsilon\} \\ \mathcal{L}(\alpha) &= \{\alpha\} \quad (\alpha \in \Sigma) \\ \mathcal{L}(r_1 \mid r_2) &= \mathcal{L}(r_1) \cup \mathcal{L}(r_2) \\ \mathcal{L}(r_1 \mid r_2) &= \mathcal{L}(r_1) \cdot \mathcal{L}(r_2) \\ \mathcal{L}(r^*) &= \{\epsilon\} \cup (\mathcal{L}(r) \cdot \mathcal{L}(r^*)) \end{aligned}$$

(日) (周) (三) (三)

Finite State Automata

Generating Lexical Analyzers

Computing the Semantics

$$\mathcal{L}(a) = \{a\}$$

$$\mathcal{L}(a \mid b) = \mathcal{L}(a) \cup \mathcal{L}(b)$$

$$= \{a\} \cup \{b\}$$

$$= \{a, b\}$$

$$\mathcal{L}(ab) = \mathcal{L}(a) \cdot \mathcal{L}(b)$$

$$= \{a\} \cdot \{b\}$$

$$= \{ab\}$$

$$\mathcal{L}((a \mid b)(a \mid b)) = \mathcal{L}(a \mid b) \cdot \mathcal{L}(a \mid b)$$

$$= \{a, b\} \cdot \{a, b\}$$

$$= \{aa, ab, ba, bb\}$$

Compiler Design

<ロ> (日) (日) (日) (日) (日)

Finite State Automata

Generating Lexical Analyzers

Computing the Semantics of Closure

Example:
$$\mathcal{L}((a \mid b)^*)$$

 $= \{\epsilon\} \cup (\mathcal{L}(a \mid b) \cdot \mathcal{L}((a \mid b)^*))$
 $L_0 = \{\epsilon\} \quad Base \ case$
 $L_1 = \{\epsilon\} \cup (\{a, b\} \cdot L_0)$
 $= \{\epsilon\} \cup (\{a, b\} \cdot \{\epsilon\})$
 $= \{\epsilon, a, b\}$
 $L_2 = \{\epsilon\} \cup (\{a, b\} \cdot L_1)$
 $= \{\epsilon\} \cup (\{a, b\} \cdot \{\epsilon, a, b\})$
 $= \{\epsilon, a, b, aa, ab, ba, bb\}$

$$\mathcal{L}((a \mid b)^*) = L_{\infty} = \{\epsilon, \mathtt{a}, \mathtt{b}, \mathtt{a}\mathtt{a}, \mathtt{b}\mathtt{b}, \ldots\}$$

イロト イヨト イヨト イヨト

Another Example

 $\mathcal{L}((a^*b^*)^*)$:

$$\begin{aligned} \mathcal{L}(a^*) &= \{\epsilon, a, aa, \ldots\} \\ \mathcal{L}(b^*) &= \{\epsilon, b, bb, \ldots\} \\ \mathcal{L}(a^*b^*) &= \{\epsilon, a, b, aa, ab, bb, \\ & aaa, aab, abb, bbb, \ldots\} \\ \mathcal{L}((a^*b^*)^*) &= \{\epsilon\} \\ & \cup\{\epsilon, a, b, aa, ab, bb, \\ & aaa, aab, abb, bbb, \ldots\} \\ & \cup\{\epsilon, a, b, aa, ab, ba, bb, \\ & aaa, aab, abb, baa, bab, bba, bbb, \ldots\} \\ & \vdots \\ &= \{\epsilon, a, b, aa, ab, ba, bb, \ldots\} \end{aligned}$$

<ロ> (日) (日) (日) (日) (日)

Regular Definitions

Assign "names" to regular expressions. For example,

$$\begin{array}{rcl} \text{digit} & \longrightarrow & 0 \mid 1 \mid \cdots \mid 9 \\ \text{natural} & \longrightarrow & \text{digit digit}^* \end{array}$$

Shorthands:

- a⁺: Set of strings with <u>one</u> or more occurrences of a.
- a?: Set of strings with <u>z</u>ero or one occurrences of a.

Example:

$$ext{integer} \longrightarrow (+|-)^? ext{digit}^+$$

イロト イポト イヨト イヨト

Finite State Automata 00000000000 00000000 Generating Lexical Analyzers

Regular Definitions: Examples

integer no_leading_zero		integer . fraction $(+ -)^{?}$ no_leading_zero (nonzero_digit digit*) 0
fraction	\longrightarrow	no_trailing_zero exponent?
no_trailing_zero	\longrightarrow	$(\texttt{digit}^* \texttt{ nonzero_digit}) \mid 0$
exponent	\longrightarrow	$(E \mid e)$ integer
digit	\longrightarrow	0 1 · · · 9
nonzero_digit	\longrightarrow	1 2 · · · 9

イロト イヨト イヨト イヨト

Generating Lexical Analyzers

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions *specify* sets of strings over an input alphabet.

- They can hence be used to specify the set of *lexemes* associated with a *token*.
- That is, regular expressions and definitions can be used as the *pattern* language

How do we decide whether an input string belongs to the set of strings specified by a regular expression?

< □ > < ---->

Generating Lexical Analyzers

Using Regular Definitions for Lexical Analysis

Q: Is <u>ababbaabbb</u> in $\mathcal{L}(((a^*b^*)^*)?$ A: Hm. Well. Let's see.

イロト イヨト イヨト

Recognizers

Construct *automata* that recognize strings belonging to a language.

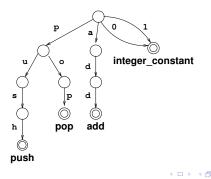
- Finite State Automata \Rightarrow Regular Languages
 - $\bullet\,$ Finite State \rightarrow cannot maintain arbitrary counts.
- Push Down Automata \Rightarrow Context-free Languages
 - Stack is used to maintain counter, but only one counter can go arbitrarily high.

(日) (同) (三) (三)

Generating Lexical Analyzers

Recognizing Finite Sets of Strings

- Identifying words from a small, finite, fixed vocabulary is straightforward.
- For instance, consider a stack machine with push, pop, and add operations with two constants: 0 and 1.
- We can use the *automaton*:



Finite State Automata

Generating Lexical Analyzers

Finite State Automata

Represented by a labeled directed graph.

- A finite set of *states* (vertices).
- *Transitions* between states (edges).
- Labels on transitions are drawn from $\Sigma \cup \{\epsilon\}$.
- One distinguished *start* state.
- One or more distinguished *final* states.

Finite State Automata

Generating Lexical Analyzers

Finite State Automata: An Example

Consider the Regular Expression $(a \mid b)^*a(a \mid b)$. $\mathcal{L}((a \mid b)^*a(a \mid b)) = \{aa, ab, aaa, aab, baa, bab, aaaa, aaab, abaa, abab, baaa, ...\}.$

	esign

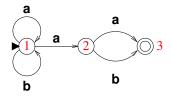
イロト イポト イヨト イヨト

Finite State Automata: An Example

- Consider the Regular Expression $(a \mid b)^*a(a \mid b)$.

aaaa, aaab, abaa, abab, baaa, \ldots }.

The following automaton determines whether an input string belongs to $\mathcal{L}((a \mid b)^* a(a \mid b))$:



(or	nnilei	r Desi	ισn

CSE 504 24 / 53

< 3 > < 3 >

Finite State Automata

Generating Lexical Analyzers

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

... if beginning from the start state

പ	mpil	er I	Desi	σn

Image: A matrix

A B A A B A

Finite State Automata

Generating Lexical Analyzers

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

- ... if beginning from the start state
- ... we can trace some path through the automaton

< □ > < ---->

.

Finite State Automata

Generating Lexical Analyzers

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

- ... if beginning from the start state
- ... we can trace some path through the automaton
- \ldots such that the sequence of edge labels spells x

Image: Image:

Finite State Automata

Generating Lexical Analyzers

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

- ... if beginning from the start state
- ... we can trace some path through the automaton
- \ldots such that the sequence of edge labels spells x
- ... and end in a final state.

Image: Image:

Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))?$

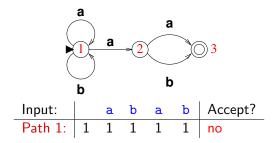


Image: A matrix

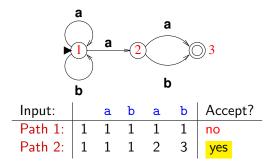
() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))?$



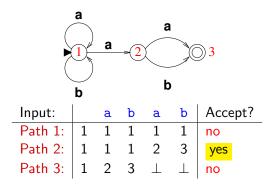
A B A A B A

Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))?$



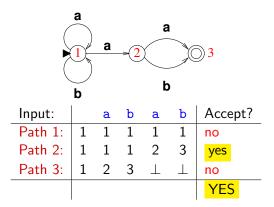
イロト イ団ト イヨト イヨト

Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))?$



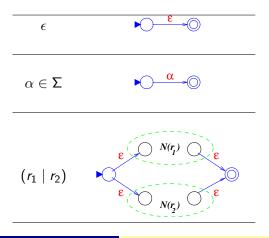
→ 3 → 4 3

Finite State Automata

Generating Lexical Analyzers

Regular Expressions to NFA

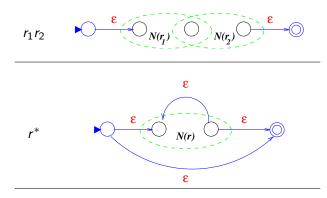
Thompson's Construction: For every regular expression r, derive an NFA N(r) with unique start and final states.



Finite State Automata

Generating Lexical Analyzers

Regular Expressions to NFA (contd.)



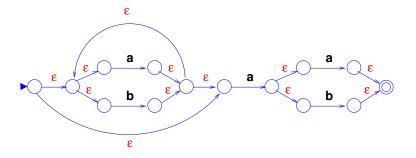
Compi	er I)	esign	

Finite State Automata

Generating Lexical Analyzers

Example

(a | b)*a(a | b):



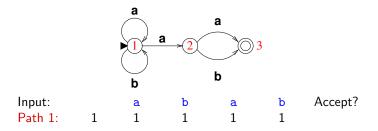
	Design

Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))?$



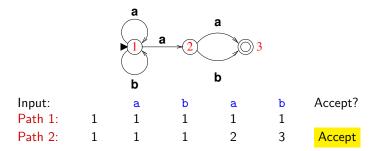
(om	nılı	∍r I.)esign

Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))?$

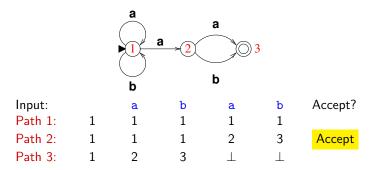


Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))?$

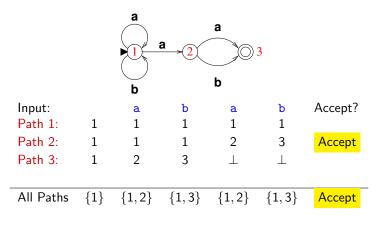


Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))?$

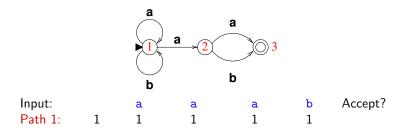


Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA (contd.)

Is <u>aaab</u> $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$



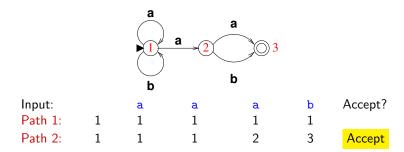
Com	nilei	r I)e	sign

Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA (contd.)

Is <u>aaab</u> $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$

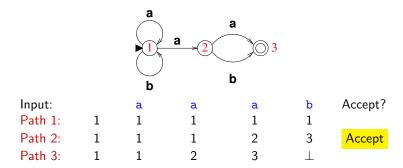


Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA (contd.)

Is <u>aaab</u> $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$

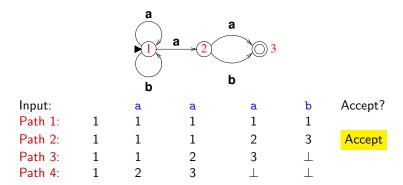


Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA (contd.)

Is <u>aaab</u> $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$



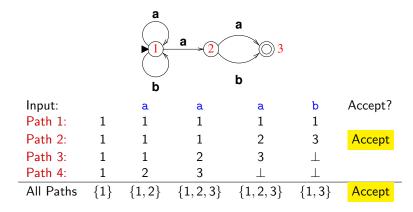
	Design

Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA (contd.)

Is <u>aaab</u> $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$



→ 3 → 4 3

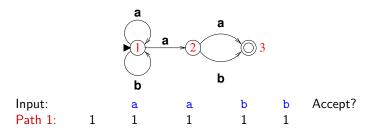
CSE 504 31 / 53

Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA (contd.)

Is <u>aabb</u> $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$

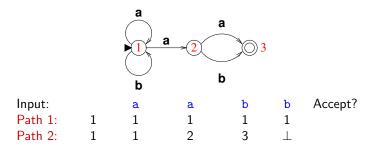


Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA (contd.)

Is <u>aabb</u> $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$

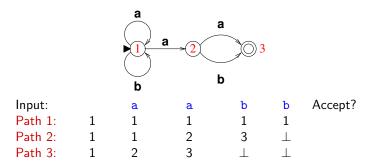


Finite State Automata

Generating Lexical Analyzers

Recognition with an NFA (contd.)

Is <u>aabb</u> $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$

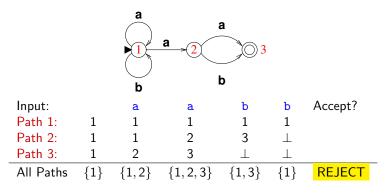


Finite State Automata

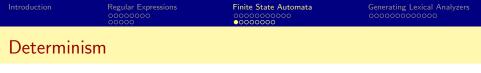
Generating Lexical Analyzers

Recognition with an NFA (contd.)

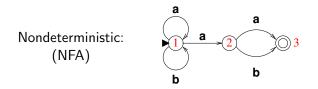
Is <u>aabb</u> $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$

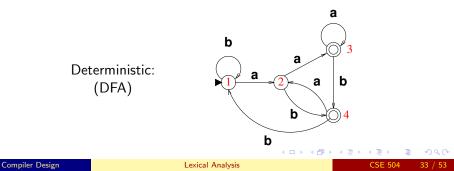


A B F A B F



(a | b)*a(a | b):



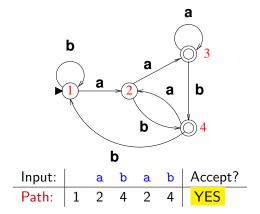


Finite State Automata

Generating Lexical Analyzers

Recognition with a DFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))?$



< ≥ > < ≥

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

- NFA may have transitions labeled by *ε*. (Spontaneous transitions)
- All transition labels in a DFA belong to Σ .
- For some string x, there may be *many* accepting paths in an NFA.
- For all strings x, there is one unique accepting path in a DFA.
- Usually, an input string can be recognized *faster* with a DFA.
- NFAs are typically *smaller* than the corresponding DFAs.

Image: Image:

.

Finite State Automata

Generating Lexical Analyzers

NFA vs. DFA (contd.)

R = Size of Regular Expression N = Length of Input String

	NFA	DFA	
Size of	<i>O</i> (<i>R</i>)	$O(2^R)$	
Automaton	0(1)	0(2)	
Recognition time	$O(N \times R)$	O(N)	
per input string			

Finite State Automata

Generating Lexical Analyzers

Converting NFA to DFA

Subset construction

Given a set S of NFA states,

- compute S_ε = ε-closure(S): S_ε is the set of all NFA states reachable by zero or more ε-transitions from S.
- compute $S_{\alpha} = \text{goto}(S, \alpha)$:
 - S' is the set of all NFA states reachable from S by taking a transition labeled α .
 - $S_{\alpha} = \epsilon$ -closure(S').

- A I I I A I I I I

Finite State Automata

Generating Lexical Analyzers

Converting NFA to DFA (contd).

• Each state in DFA corresponds to a set of states in NFA.

	Desi	

(日) (同) (三) (三)

Finite State Automata

Generating Lexical Analyzers

Converting NFA to DFA (contd).

- Each state in DFA corresponds to a set of states in NFA.
- Start state of DFA = ϵ -closure(start state of NFA).

Image: A matrix

- 4 3 6 4 3 6

Generating Lexical Analyzers

Converting NFA to DFA (contd).

- Each state in DFA corresponds to a set of states in NFA.
- Start state of DFA = ϵ -closure(start state of NFA).
- From a state s in DFA that corresponds to a set of states S in NFA:

< □ > < ---->

Generating Lexical Analyzers

Converting NFA to DFA (contd).

- Each state in DFA corresponds to a set of states in NFA.
- Start state of DFA = *ϵ*-closure(start state of NFA).
- From a state s in DFA that corresponds to a set of states S in NFA:
 - let $S' = \text{goto}(S, \alpha)$ such that S' is non-empty.

Image: Image:

Converting NFA to DFA (contd).

- Each state in DFA corresponds to a set of states in NFA.
- Start state of DFA = ϵ -closure(start state of NFA).
- From a state s in DFA that corresponds to a set of states S in NFA:
 - let $S' = \text{goto}(S, \alpha)$ such that S' is non-empty.
 - add an α -transition to state s' that corresponds S' in NFA,

Converting NFA to DFA (contd).

- Each state in DFA corresponds to a set of states in NFA.
- Start state of DFA = ϵ -closure(start state of NFA).
- From a state s in DFA that corresponds to a set of states S in NFA:
 - let $S' = \text{goto}(S, \alpha)$ such that S' is non-empty.
 - add an α -transition to state s' that corresponds S' in NFA,
- S contains a final NFA state, and s is the corresponding DFA state

Image: Image:

Converting NFA to DFA (contd).

- Each state in DFA corresponds to a set of states in NFA.
- Start state of DFA = ϵ -closure(start state of NFA).
- From a state s in DFA that corresponds to a set of states S in NFA:
 - let $S' = \text{goto}(S, \alpha)$ such that S' is non-empty.
 - add an α -transition to state s' that corresponds S' in NFA,
- S contains a final NFA state, and s is the corresponding DFA state

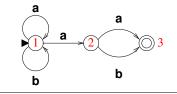
 \Rightarrow *s* is a final state of DFA

Image: Image:

Finite State Automata

Generating Lexical Analyzers

NFA \rightarrow DFA: An Example



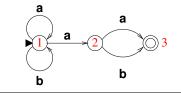
 ϵ -closure({1}) = {1}

Com		

Finite State Automata

Generating Lexical Analyzers

NFA \rightarrow DFA: An Example



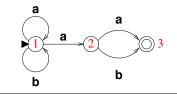
$$\epsilon$$
-closure({1}) = {1}
goto({1}, a) = {1,2}

Compiler Design

Finite State Automata

Generating Lexical Analyzers

NFA \rightarrow DFA: An Example

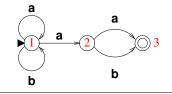


$$\begin{array}{rcl} \epsilon\text{-closure}(\{1\}) & = & \{1\} \\ \text{goto}(\{1\}, a) & = & \{1, 2\} \\ \text{goto}(\{1\}, b) & = & \{1\} \end{array}$$

Finite State Automata

Generating Lexical Analyzers

NFA \rightarrow DFA: An Example

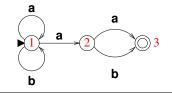


$$\begin{array}{rcl} \epsilon\text{-closure}(\{1\}) &=& \{1\}\\ \texttt{goto}(\{1\},\texttt{a}) &=& \{1,2\}\\ \texttt{goto}(\{1\},\texttt{b}) &=& \{1\}\\ \texttt{goto}(\{1,2\},\texttt{a}) &=& \{1,2,3\} \end{array}$$

Finite State Automata

Generating Lexical Analyzers

NFA \rightarrow DFA: An Example

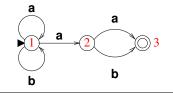


$$\begin{array}{rcl} \epsilon\text{-closure}(\{1\}) & = & \{1\}\\ \text{goto}(\{1\}, a) & = & \{1, 2\}\\ \text{goto}(\{1\}, b) & = & \{1\}\\ \text{goto}(\{1, 2\}, a) & = & \{1, 2, 3\}\\ \text{goto}(\{1, 2\}, b) & = & \{1, 3\} \end{array}$$

Finite State Automata

Generating Lexical Analyzers

NFA \rightarrow DFA: An Example



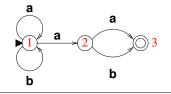
$$\begin{array}{rcl} \epsilon\text{-closure}(\{1\}) & = & \{1\} \\ \text{goto}(\{1\}, \mathbf{a}) & = & \{1, 2\} \\ \text{goto}(\{1\}, \mathbf{b}) & = & \{1\} \\ \text{goto}(\{1, 2\}, \mathbf{a}) & = & \{1, 2, 3\} \\ \text{goto}(\{1, 2\}, \mathbf{b}) & = & \{1, 3\} \end{array}$$

$$goto(\{1,2,3\},a) = \{1,2,3\}$$

Finite State Automata

Generating Lexical Analyzers

NFA \rightarrow DFA: An Example



$$goto(\{1,2,3\},a) = \{1,2,3\}$$

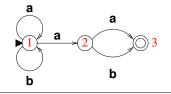
 $goto(\{1,2,3\},b) = \{1,3\}$

<ロ> (日) (日) (日) (日) (日)

Finite State Automata

Generating Lexical Analyzers

NFA \rightarrow DFA: An Example



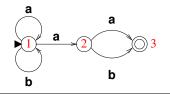
$$\begin{array}{rcl} \epsilon\text{-closure}(\{1\}) & = & \{1\} \\ \texttt{goto}(\{1\}, \texttt{a}) & = & \{1, 2\} \\ \texttt{goto}(\{1\}, \texttt{b}) & = & \{1\} \\ \texttt{goto}(\{1, 2\}, \texttt{a}) & = & \{1, 2, 3\} \\ \texttt{goto}(\{1, 2\}, \texttt{b}) & = & \{1, 3\} \end{array}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Finite State Automata

Generating Lexical Analyzers

NFA \rightarrow DFA: An Example

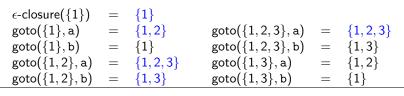


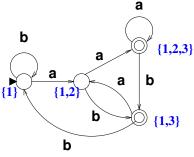
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

◆ ■ ▶ ■ のへの CSE 504 39 / 53

Introduction	Regular Expressions 0000000 00000	Finite State Automata ○○○○○○○○○ ○○○○○○○●	Generating Lexical Analyzer

NFA \rightarrow DFA: An Example (contd.)





→ 3 → 4 3

Construction of a Lexical Analyzer

- Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a *token*.
- An automaton (DFA/NFA) is built from the above specifications.
- Each final state is associated with an *action*: emit the corresponding token.

Image: Image:

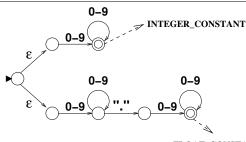
< 3 > < 3 >

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).

[0-9]+ { emit(INTEGER_CONSTANT); }

[0-9]+"."[0-9]+ { emit(FLOAT_CONSTANT); }



FLOAT CONSTANT

<u> </u>		D 1
Com	biler	Design

Lexical Analysis

CSE 504 42 / 53

Lex

- Tool for building lexical analyzers.
- Input: lexical specifications (.1 file)
- Output: C function (yylex) that returns a token on each invocation.
- Example:

%% [0-9]+	<pre>{ return(INTEGER_CONSTANT); }</pre>
[0-9]+"."[0-9]+	<pre>{ return(FLOAT_CONSTANT); }</pre>

• Tokens are simply integers (#define's).

~		D	
Cor	npile	r De	esign

< □ > < 同 >

Lex Specifications

```
%{
    C header statements for inclusion
%}
  Regular Definitions
                       e.g.:
             [0-9]
    digit
%%
  Token Specifications
                        e.g.:
    {digit}+
                                { return(INTEGER_CONSTANT); }
%%
  Support functions in C
```

Image: Image:

Lex/Flex Regular Expressions

Adds "syntactic sugar" to regular expressions:

- Range: [0-7]: Integers from 0 through 7 (inclusive) [a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q.
- Exception: [^/]: Any character other than /.
- Definition: {digit}: Use the previously specified regular definition digit.
- Special characters: Connectives of regular expression, convenience features.

e.g.: | * ^

イロト イポト イヨト イヨト

Finite State Automata

Generating Lexical Analyzers

Special Characters in Lex/Flex

* + ? () [] { }	Same as in regular expressions Enclose ranges and exceptions Enclose "names" of regular definitions Used to negate a specified range (in Exception) Match any single character except newline
\mathbf{N}	Escape the next character
\n, \t	Newline and Tab

For literal matching, enclose special characters in double quotes (") *e.g.:* "*"

Or use "\" to escape. e.g.: *

(日) (周) (三) (三)

In					

Finite State Automata

Generating Lexical Analyzers

Examples

for Sequence of f, o, r

	Desi	

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction	Regular Expressions	Finite State Automata	Gene
	0000000	0000000000 0000000	000

Generating Lexical Analyzers

Examples

_

for	Sequence of f, o, r
" "	C-style OR operator (two vert. bars)

▲口> ▲圖> ▲屋> ▲屋>

Intro		

Finite State Automata

Generating Lexical Analyzers

Examples

for	Sequence of f, o, r
" "	C-style OR operator (two vert. bars)
.*	Sequence of non-newline characters

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Examples

for	Sequence of f, o, r
" "	C-style OR operator (two vert. bars)
.*	Sequence of non-newline characters
[^*/]+	Sequence of characters except * and /

<ロ> (日) (日) (日) (日) (日)

Examples

for	Sequence of f, o, r
" "	C-style OR operator (two vert. bars)
.*	Sequence of non-newline characters
[^*/]+	Sequence of characters except * and /
\"[^"]*\"	Sequence of non-quote characters
	beginning and ending with a quote

<ロ> (日) (日) (日) (日) (日)

Examples

for	Sequence of f, o, r
" "	C-style OR operator (two vert. bars)
.*	Sequence of non-newline characters
[^*/]+	Sequence of characters except * and /
\"[^"]*\"	Sequence of non-quote characters
	beginning and ending with a quote
({letter} "_")({letter} {digit} "_")*	
C-style identifiers	

<ロ> (日) (日) (日) (日) (日)

Actions

Actions are attached to final states. Actions:

- Distinguish the different final states.
- Are used to return *tokens*.
- Can be used to set *attribute values*.
- In Lex/Flex: action is a fragment of C code (blocks enclosed by '{' and '}').

.

Finite State Automata

Generating Lexical Analyzers

PLY

PLY is a Yacc/Lex-like parser/lexer framework in Python. (See http://www.dabeaz.com/ply/)

- List of tokens is declared a priori.
- Each token T with an action is specified by a Python function t₋T:
 - Regular expression patterns, specified as Python docstrings, describe sets of lexemes.
 - Function body describes the action to be performed when input matches the pattern.
- Action-less token T is specified by defining variable t₋T with the regular expression pattern as its value.

Example:

import ply.lex as lex

```
# List of token names.
tokens = ('NUMBER', 'PLUS',
'MINUS')
```

```
# Tokens without actions.
t_PLUS = r'\+'
t_MINUS = r'-'
```

```
# A token with action.
def t_NUMBER(t):
    r'\d+'
    t.value = int(t.value)
    return t
```

- 4 3 6 4 3 6

Image: Image:

CSE 504 49 / 53

Mechanics

- The returned tokens are instances of class LexToken, with attributes type, value, lineno and lexpos.
- Line numbers have to be maintained explicitly by setting the lineno attribute of the lexer.
- To ignore a lexeme (i.e. not return a token),
 - end its action with a pass instead of return, or
 - $\bullet\,$ name the rule as t_ignore
- Error handling (for characters not matching any pattern) can be specified as function t_error.
- PLY's lexer can handle regular definitions, as well as conditional analysis (*a la* lex) where matching can be controlled by explicitly maintained conditions. See PLY documentation for details.

Image: Image:

Finite State Automata

Generating Lexical Analyzers

Priority of matching

- Patterns for tokens with actions are matched in the order they are specified.
- Regular expressions for action-less tokens are sorted, and matched longest-expression first.

Image: Image:

Generating Lexical Analyzers

Constructing Lexers using PLY

• Easy way:

- lex.lex() to create the lexer;
- lex.input() to specify the input string to be scanned;
- repeated invocation of lex.token() to generate tokens.
- Alternative (better) way:
 - Put lexer specifications in a separate module, say proto2lex.py.
 - lexer = lex.lex(module=proto2lex) to create a lexer (referenced from variable lexer).
 - lexer.input(...) to specify its input
 - lexer.token() to generate tokens, one at a time.
- The alternative way works even when there are multiple instances of the same lexer in an application.

Image: Image:

Finite State Automata

Generating Lexical Analyzers

Lexical Analysis: Summary

Convert a stream of characters into a stream of tokens.

- Make rest of compiler independent of character set
- Strip off comments
- Recognize line numbers
- Ignore white space characters
- Process macros (definitions and uses)
- Interface with symbol table (also called "name table").