Lexical Analysis

Compiler Design

CSE 504

- Introduction
- 2 Regular Expressions
- Finite State Automata
- 4 Generating Lexical Analyzers

Last modified: Fri Feb 12 2016 at 12:27:04 EST Version: 1.6 16:58:46 2016/01/29 Compiled at 12:48 on 2016/02/12

Compiler Design Lexical Analysis CSE 504 1 / 53

Introduction

Structure of a Language

Grammars: Notation to succinctly represent the structure of a language. Example:

Compiler Design Lexical Analysis CSE 504 2 / 53

Grammars

 $Stmt \longrightarrow if Expr then Stmt else Stmt$

- Terminal symbols: if, then, else
 - Terminal symbols represent group of characters in input language: *Tokens*.
 - Analogous to words.
- Nonterminal symbols: Stmt, Expr
 - Nonterminal symbols represent a sequence of terminal symbols.
 - Analogous to sentences.

Compiler Design Lexical Analysis CSE 504 3 / 53

Introduction

Phases of Syntax Analysis

- Identify the words: Lexical Analysis.
 Converts a stream of characters (input program) into a stream of tokens.
 - Also called Scanning or Tokenizing.
- ② Identify the sentences: Parsing.
 Derive the structure of sentences: construct parse trees from a stream of tokens.

Lexical Analysis

Convert a stream of characters into a stream of tokens.

- Simplicity: Conventions about "words" are often different from conventions about "sentences".
- Efficiency: Word identification problem has a much more efficient solution than sentence identification problem.
- Portability: Character set, special characters, device features.

Compiler Design Lexical Analysis CSE 504 5 / 53

Introduction

Terminology

- Token: Name given to a family of words.
 - e.g., integer_constant
- Lexeme: Actual sequence of characters representing a word. e.g., 32894
- Pattern: Notation used to identify the set of lexemes represented by a token.

e.g.,
$$[0-9]+$$

Terminology

A few more examples:

Token	Sample Lexemes	Pattern
while	while	while
integer_constant	32894, -1093, 0	[0-9]+
identifier	buffer_size	[a-zA-Z]+

Compiler Design Lexical Analysis CSE 504 7 / 53

Introduction

Patterns

How do we *compactly* represent the set of all lexemes corresponding to a token?

For instance:

The token $integer_constant$ represents the set of all integers: that is, all sequences of digits (0-9), preceded by an optional sign (+ or -).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.

Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ .

- a: stands for the set {a} that contains a single string a.
- a | b: stands for the set {a,b} that contains two strings a and b.
 - Analogous to *Union*.
- ab: stands for the set {ab} that contains a single string ab.
 - Analogous to Product.
 - (a|b)(a|b): stands for the set {aa, ab, ba, bb}.
- a^* : stands for the set $\{\epsilon, a, aa, aaa, ...\}$ that contains all strings of zero or more a's.
 - Analogous to *closure* of the product operation.

 ϵ stands for the *empty string*.

Compiler Design Lexical Analysis CSE 504 9 / 53

Regular Expressions

Examples of Regular Expressions over {a,b}:

- $(a|b)^*$: Set of strings with zero or more a's and zero or more b's: $\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$
- (a^*b^*) : Set of strings with zero or more a's and zero or more b's such that all a's occur before any b: $\{\epsilon, a, b, aa, ab, bb, aaa, aab, abb, \ldots\}$
- $(a^*b^*)^*$: Set of strings with zero or more a's and zero or more b's: $\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$

Language of Regular Expressions

Let R be the set of all regular expressions over Σ . Then,

- Empty String: $\epsilon \in R$
- Unit Strings: $\alpha \in \Sigma \Rightarrow \alpha \in R$
- Concatenation: $r_1, r_2 \in R \Rightarrow r_1 r_2 \in R$
- Alternative: $r_1, r_2 \in R \Rightarrow (r_1 \mid r_2) \in R$
- Kleene Closure: $r \in R \Rightarrow r^* \in R$

Compiler Design Lexical Analysis CSE 504 11/53

Regular Expressions

Example: $(a \mid b)^*$

$$\begin{array}{lll} L_0 & = & \{\epsilon\} \\ L_1 & = & L_0 \cdot \{a,b\} \\ & = & \{\epsilon\} \cdot \{a,b\} \\ & = & \{a,b\} \\ L_2 & = & L_1 \cdot \{a,b\} \\ & = & \{a,b\} \cdot \{a,b\} \\ & = & \{aa,ab,ba,bb\} \\ L_3 & = & L_2 \cdot \{a,b\} \\ & \vdots \end{array}$$

$$L = \bigcup_{i=0}^{\infty} L_i$$
 = $\{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$

Compiler Design Lexical Analysis CSE 504 12 / 53

Semantics of Regular Expressions

Semantic Function \mathcal{L} : Maps regular expressions to sets of strings.

$$\mathcal{L}(\epsilon) = \{\epsilon\}$$

$$\mathcal{L}(\alpha) = \{\alpha\} \quad (\alpha \in \Sigma)$$

$$\mathcal{L}(r_1 \mid r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$$

$$\mathcal{L}(r_1 \mid r_2) = \mathcal{L}(r_1) \cdot \mathcal{L}(r_2)$$

$$\mathcal{L}(r^*) = \{\epsilon\} \cup (\mathcal{L}(r) \cdot \mathcal{L}(r^*))$$

Compiler Design Lexical Analysis CSE 504 13 / 53

Computing the Semantics

$$\mathcal{L}(a) = \{a\}$$
 $\mathcal{L}(a \mid b) = \mathcal{L}(a) \cup \mathcal{L}(b)$
 $= \{a\} \cup \{b\}$
 $= \{a, b\}$
 $\mathcal{L}(ab) = \mathcal{L}(a) \cdot \mathcal{L}(b)$
 $= \{a\} \cdot \{b\}$
 $= \{ab\}$
 $\mathcal{L}((a \mid b)(a \mid b)) = \mathcal{L}(a \mid b) \cdot \mathcal{L}(a \mid b)$
 $= \{a, b\} \cdot \{a, b\}$
 $= \{aa, ab, ba, bb\}$

Compiler Design Lexical Analysis CSE 504 14 / 53

Computing the Semantics of Closure

Example:
$$\mathcal{L}((a \mid b)^*)$$

 $= \{\epsilon\} \cup (\mathcal{L}(a \mid b) \cdot \mathcal{L}((a \mid b)^*))$
 $L_0 = \{\epsilon\} \quad Base \ case$
 $L_1 = \{\epsilon\} \cup (\{a,b\} \cdot L_0)$
 $= \{\epsilon\} \cup (\{a,b\} \cdot \{\epsilon\})$
 $= \{\epsilon,a,b\}$
 $L_2 = \{\epsilon\} \cup (\{a,b\} \cdot L_1)$
 $= \{\epsilon\} \cup (\{a,b\} \cdot \{\epsilon,a,b\})$
 $= \{\epsilon,a,b,aa,ab,ba,bb\}$
 \vdots

$$\mathcal{L}((a \mid b)^*) = \mathcal{L}_{\infty} = \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$$

Compiler Design

Lexical Analysis

CSE 504

15 / 53

Regular Expressions Expressions & Meaning

Another Example

$$\mathcal{L}((a^*b^*)^*)$$
:

```
 \mathcal{L}(a^*) = \{\epsilon, a, aa, \ldots\} 
 \mathcal{L}(b^*) = \{\epsilon, b, bb, \ldots\} 
 \mathcal{L}(a^*b^*) = \{\epsilon, a, b, aa, ab, bb, 
 aaa, aab, abb, bbb, \ldots\} 
 \mathcal{L}((a^*b^*)^*) = \{\epsilon\} 
 \cup \{\epsilon, a, b, aa, ab, bb, 
 aaa, aab, abb, bab, bb, 
 aaa, aab, ab, ba, bb, 
 aaa, aab, aba, abb, baa, bab, bba, bbb, \ldots\} 
 \vdots 
 = \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}
```

Compiler Design Lexical Analysis CSE 504 16 / 53

Regular Definitions

Assign "names" to regular expressions. For example,

$$\begin{array}{ccc} \text{digit} & \longrightarrow & 0 \mid 1 \mid \cdots \mid 9 \\ \text{natural} & \longrightarrow & \text{digit digit}^* \end{array}$$

SHORTHANDS:

- a+: Set of strings with one or more occurrences of a.
- a?: Set of strings with zero or one occurrences of a.

Example:

integer
$$\longrightarrow$$
 $(+|-)^{?}$ digit⁺

Compiler Design Lexical Analysis CSE 504 17 / 53

Regular Expressions Regular Definitions

Regular Definitions: Examples

Compiler Design Lexical Analysis CSE 504 18 / 53

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet.

- They can hence be used to specify the set of *lexemes* associated with a token.
- That is, regular expressions and definitions can be used as the pattern language

How do we decide whether an input string belongs to the set of strings specified by a regular expression?

Compiler Design Lexical Analysis CSE 504 19 / 53

Regular Expressions Regular Definitions

Using Regular Definitions for Lexical Analysis

```
Q: Is <u>ababbaabbb</u> in \mathcal{L}(((a^*b^*)^*)?
A: Hm. Well. Let's see.
              \mathcal{L}((a^*b^*)^*) = \{\epsilon\}
                                         \cup \{\epsilon, \mathtt{a}, \mathtt{b}, \mathtt{aa}, \mathtt{ab}, \mathtt{bb},
                                             aaa, aab, abb, bbb, ...}
                                         \cup \{\epsilon, a, b, aa, ab, ba, bb,
                                             aaa, aab, aba, abb, baa, bab, bba, bbb, . . . }
                                   = ???
```

Compiler Design Lexical Analysis CSE 504 20 / 53

Recognizers

Construct automata that recognize strings belonging to a language.

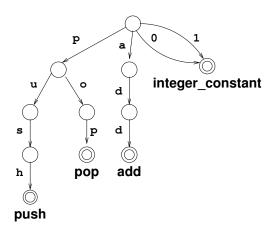
- Finite State Automata ⇒ Regular Languages
 - ullet Finite State o cannot maintain arbitrary counts.
- Push Down Automata ⇒ Context-free Languages
 - Stack is used to maintain counter, but only one counter can go arbitrarily high.

Compiler Design Lexical Analysis CSE 504 21 / 53

Finite State Automata Recogni

Recognizing Finite Sets of Strings

- Identifying words from a small, finite, fixed vocabulary is straightforward.
- For instance, consider a stack machine with push, pop, and add operations with two constants: 0 and 1.
- We can use the automaton:



Compiler Design Lexical Analysis CSE 504 22 / 53

Finite State Automata

Represented by a labeled directed graph.

- A finite set of *states* (vertices).
- *Transitions* between states (edges).
- Labels on transitions are drawn from $\Sigma \cup \{\epsilon\}$.
- One distinguished *start* state.
- One or more distinguished *final* states.

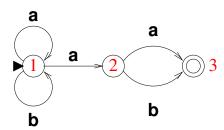
Compiler Design Lexical Analysis CSE 504 23 / 53

Finite State Automata Recognizers

Finite State Automata: An Example

Consider the Regular Expression $(a \mid b)^*a(a \mid b)$. $\mathcal{L}((a \mid b)^*a(a \mid b)) = \{aa, ab, aaa, aab, baa, bab, aaaa, aaab, abaa, abab, baaa, ...\}.$

The following automaton determines whether an input string belongs to $\mathcal{L}((a \mid b)^* a(a \mid b))$:



Compiler Design Lexical Analysis CSE 504 24 / 53

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

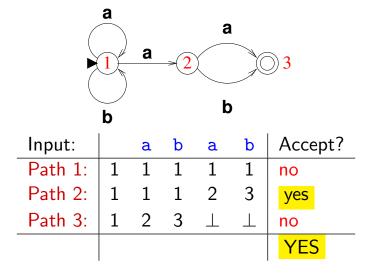
- ... if beginning from the start state
- ... we can trace some path through the automaton
- \dots such that the sequence of edge labels spells x
- ... and end in a final state.

Compiler Design Lexical Analysis CSE 504 25 / 53

Finite State Automata Recognizers

Recognition with an NFA

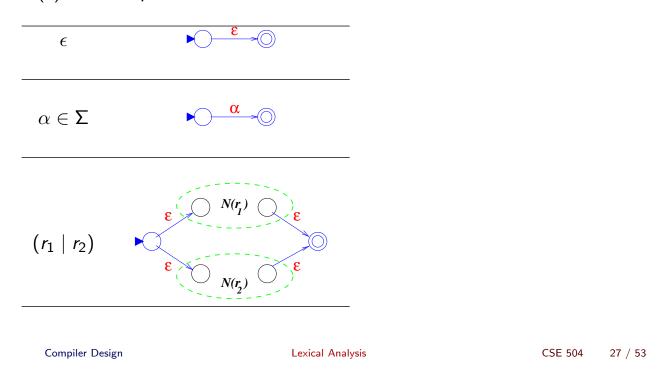
Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



Compiler Design Lexical Analysis CSE 504 26 / 53

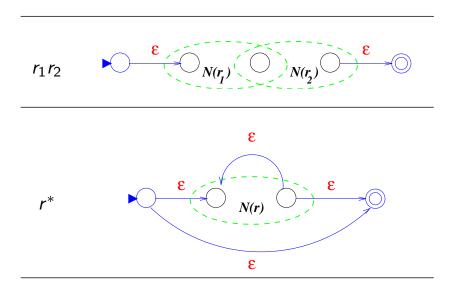
Regular Expressions to NFA

Thompson's Construction: For every regular expression r, derive an NFA N(r) with unique start and final states.



Finite State Automata Recognizers

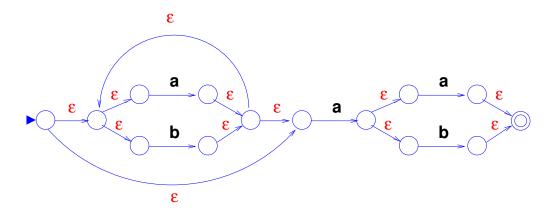
Regular Expressions to NFA (contd.)



Compiler Design Lexical Analysis CSE 504 28 / 53

Example

(a | b)*a(a | b):

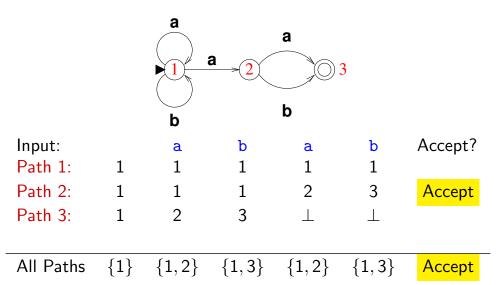


Compiler Design Lexical Analysis CSE 504 29 / 53

Finite State Automata Recognizers

Recognition with an NFA

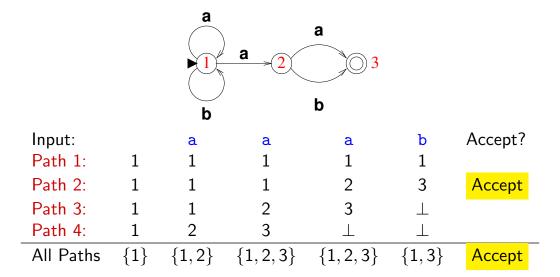
Is
$$\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$$
?



Compiler Design Lexical Analysis CSE 504 30 / 53

Recognition with an NFA (contd.)

Is
$$\underline{aaab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$$
?

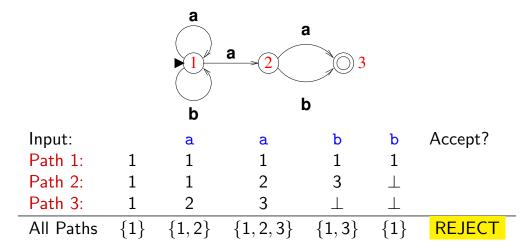


Compiler Design Lexical Analysis CSE 504 31 / 53

Finite State Automata Recognizers

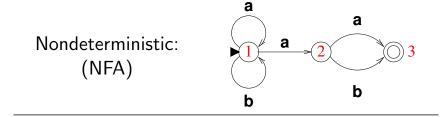
Recognition with an NFA (contd.)

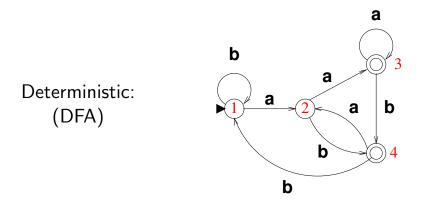
Is
$$\underline{aabb} \in \mathcal{L}((a \mid b)^*a(a \mid b))$$
?



Compiler Design Lexical Analysis CSE 504 32 / 53

Determinism $(a \mid b)*a(a \mid b)$:



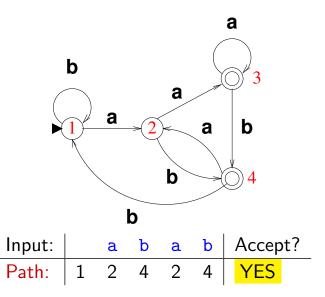


Compiler Design Lexical Analysis CSE 504 33 / 53

Finite State Automata DFA & NFA

Recognition with a DFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



Compiler Design Lexical Analysis CSE 504 34 / 53

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

- NFA may have transitions labeled by ϵ . (Spontaneous transitions)
- ullet All transition labels in a DFA belong to Σ .
- For some string x, there may be many accepting paths in an NFA.
- For all strings x, there is *one unique* accepting path in a DFA.
- Usually, an input string can be recognized *faster* with a DFA.
- NFAs are typically *smaller* than the corresponding DFAs.

Compiler Design Lexical Analysis CSE 504 35 / 53

Finite State Automata DFA & NFA

NFA vs. DFA (contd.)

R =Size of Regular Expression

N = Length of Input String

	NFA	DFA
Size of	O(R)	$O(2^R)$
Automaton		0(2)
Recognition time	$O(N \times R)$	O(N)
per input string		

Converting NFA to DFA

Subset construction

Given a set S of NFA states,

- compute $S_{\epsilon} = \epsilon$ -closure(S): S_{ϵ} is the set of all NFA states reachable by zero or more ϵ -transitions from S.
- compute $S_{\alpha} = \text{goto}(S, \alpha)$:
 - S' is the set of all NFA states reachable from S by taking a transition labeled α .
 - $S_{\alpha} = \epsilon$ -closure(S').

Compiler Design Lexical Analysis CSE 504 37 / 53

Finite State Automata DFA & NFA

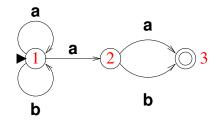
Converting NFA to DFA (contd).

- Each state in DFA corresponds to a set of states in NFA.
- Start state of DFA = ϵ -closure(start state of NFA).
- From a state s in DFA that corresponds to a set of states S in NFA:
 - let $S' = \text{goto}(S, \alpha)$ such that S' is non-empty.
 - add an α -transition to state s' that corresponds S' in NFA,
- ullet S contains a final NFA state, and s is the corresponding DFA state

 \Rightarrow s is a final state of DFA

Compiler Design Lexical Analysis CSE 504 38 / 53

$NFA \rightarrow DFA$: An Example



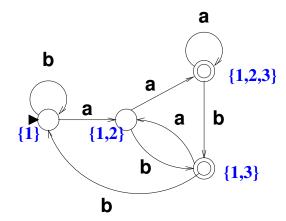
```
\begin{array}{llll} \epsilon\text{-closure}(\{1\}) & = & \{1\} \\ \gcdo(\{1\}, \mathtt{a}) & = & \{1, 2\} \\ \gcdo(\{1\}, \mathtt{b}) & = & \{1\} \\ \gcdo(\{1, 2\}, \mathtt{a}) & = & \{1, 2, 3\} \\ \gcdo(\{1, 2\}, \mathtt{a}) & = & \{1, 2, 3\} \\ \gcdo(\{1, 2\}, \mathtt{b}) & = & \{1, 3\} \\ \end{array} \quad \begin{array}{lll} \gcdo(\{1, 3\}, \mathtt{a}) & = & \{1, 2\} \\ \gcdo(\{1, 2\}, \mathtt{b}) & = & \{1, 3\} \\ \end{array}
```

Compiler Design Lexical Analysis CSE 504 39 / 53

Finite State Automata DFA & NFA

NFA \rightarrow DFA: An Example (contd.)

```
= \{1\}
\epsilon-closure(\{1\})
goto(\{1\}, a)
                   = \{1, 2\}
                                       goto({1,2,3},a)
                                                                  \{1, 2, 3\}
\mathsf{goto}(\{1\},\mathtt{b})
                   = \{1\}
                                       goto({1,2,3},b)
                                                                  \{1, 3\}
                                                                  \{1, 2\}
goto({1,2},a)
                                       goto({1,3},a)
                   = \{1, 2, 3\}
goto(\{1,2\},b)
                        \{1,3\}
                                       goto({1,3},b)
                                                                  {1}
```



Compiler Design Lexical Analysis CSE 504 40 / 53

Construction of a Lexical Analyzer

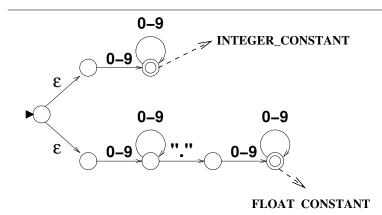
- Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a *token*.
- An automaton (DFA/NFA) is built from the above specifications.
- Each final state is associated with an *action*: emit the corresponding token.

Compiler Design Lexical Analysis CSE 504 41/53

Generating Lexical Analyzers

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).



Lex

- Tool for building lexical analyzers.
- Input: lexical specifications (.1 file)
- Output: C function (yylex) that returns a token on each invocation.
- Example:

```
%%
[0-9]+ { return(INTEGER_CONSTANT); }
[0-9]+"."[0-9]+ { return(FLOAT_CONSTANT); }
```

• Tokens are simply integers (#define's).

Compiler Design Lexical Analysis CSE 504 43 / 53

Generating Lexical Analyzers

Lex Specifications

```
%{
    C header statements for inclusion
%}
    Regular Definitions e.g.:
    digit [0-9]
%%

Token Specifications e.g.:
    {digit}+ { return(INTEGER_CONSTANT); }

%%
Support functions in C
```

Lex/Flex Regular Expressions

Adds "syntactic sugar" to regular expressions:

- Range: [0-7]: Integers from 0 through 7 (inclusive)
 [a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q.
- Exception: [^/]: Any character other than /.
- Definition: {digit}: Use the previously specified regular definition digit.
- Special characters: Connectives of regular expression, convenience features.

```
e.g.: | * ^
```

Compiler Design Lexical Analysis CSE 504 45 / 53

Generating Lexical Analyzers

Special Characters in Lex/Flex

For literal matching, enclose special characters in double quotes (") e.g.: "*"

```
Or use "\" to escape. e.g.: \*
```

Examples

for	Sequence of f, o, r
" "	C-style OR operator (two vert. bars)
.*	Sequence of non-newline characters
[^*/]+	Sequence of characters except * and /
\"[^"]*\"	Sequence of non-quote characters
	beginning and ending with a quote
({letter} "_")({letter} {digit} "_")*	
C-style identifiers	

Compiler Design Lexical Analysis CSE 504 47 / 53

Generating Lexical Analyzers

Actions

Actions are attached to final states.

Actions:

- Distinguish the different final states.
- Are used to return tokens.
- Can be used to set attribute values.
- In Lex/Flex: action is a fragment of C code (blocks enclosed by '{' and '}').

PLY

PLY is a Yacc/Lex-like parser/lexer framework in Python. (See http://www.dabeaz.com/ply/)

- List of tokens is declared a priori.
- Each token T with an action is specified by a Python function t₋T:
 - Regular expression patterns, specified as Python docstrings, describe sets of lexemes.
 - Function body describes the action to be performed when input matches the pattern.
- Action-less token T is specified by defining variable t_T with the regular expression pattern as its value.

Example:

```
import ply.lex as lex

# List of token names.
tokens = ('NUMBER', 'PLUS',
    'MINUS')

# Tokens without actions.
t_PLUS = r'\+'
t_MINUS = r'-'

# A token with action.
def t_NUMBER(t):
    r'\d+'
    t.value = int(t.value)
    return t
```

Compiler Design Lexical Analysis CSE 504 49 / 53

Generating Lexical Analyzers

Mechanics

- The returned tokens are instances of class LexToken, with attributes type, value, lineno and lexpos.
- Line numbers have to be maintained explicitly by setting the lineno attribute of the lexer.
- To ignore a lexeme (i.e. not return a token),
 - end its action with a pass instead of return, or
 - name the rule as t_ignore
- Error handling (for characters not matching any pattern) can be specified as function t_error.
- PLY's lexer can handle regular definitions, as well as conditional analysis (a la lex) where matching can be controlled by explicitly maintained conditions. See PLY documentation for details.

Priority of matching

- Patterns for tokens with actions are matched in the order they are specified.
- Regular expressions for action-less tokens are sorted, and matched longest-expression first.

Compiler Design Lexical Analysis CSE 504 51/53

Generating Lexical Analyzers

Constructing Lexers using PLY

- Easy way:
 - lex.lex() to create the lexer;
 - lex.input() to specify the input string to be scanned;
 - repeated invocation of lex.token() to generate tokens.
- Alternative (better) way:
 - Put lexer specifications in a separate module, say proto2lex.py.
 - lexer = lex.lex(module=proto2lex) to create a lexer (referenced from variable lexer).
 - lexer.input(...) to specify its input
 - lexer.token() to generate tokens, one at a time.
- The alternative way works even when there are multiple instances of the same lexer in an application.

Lexical Analysis: Summary

Convert a stream of characters into a stream of tokens.

- Make rest of compiler independent of character set
- Strip off comments
- Recognize line numbers
- Ignore white space characters
- Process macros (definitions and uses)
- Interface with **symbol table** (also called "name table").

Compiler Design Lexical Analysis CSE 504 53 / 53