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Introduction

Structure of a Language

Grammars: Notation to succinctly represent the structure of a language.
Example:

Stmt −→ if Expr then Stmt else Stmt
Stmt −→ while Expr do Stmt
Stmt −→ do Stmt until Expr

...
Expr −→ Expr + Expr

...
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Introduction

Grammars

Stmt −→ if Expr then Stmt else Stmt

Terminal symbols: if, then, else

Terminal symbols represent group of characters in input language:
Tokens.
Analogous to words.

Nonterminal symbols: Stmt, Expr

Nonterminal symbols represent a sequence of terminal symbols.
Analogous to sentences.
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Introduction

Phases of Syntax Analysis

1 Identify the words: Lexical Analysis.
Converts a stream of characters (input program) into a stream of
tokens.
Also called Scanning or Tokenizing.

2 Identify the sentences: Parsing.
Derive the structure of sentences: construct parse trees from a stream
of tokens.
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Introduction

Lexical Analysis

Convert a stream of characters into a stream of tokens.

Simplicity: Conventions about “words” are often different from
conventions about “sentences”.

Efficiency: Word identification problem has a much more efficient
solution than sentence identification problem.

Portability: Character set, special characters, device features.
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Introduction

Terminology

Token: Name given to a family of words.
e.g., integer constant

Lexeme: Actual sequence of characters representing a word.
e.g., 32894

Pattern: Notation used to identify the set of lexemes represented by a
token.
e.g., [0− 9]+
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Introduction

Terminology

A few more examples:

Token Sample Lexemes Pattern

while while while

integer constant 32894, -1093, 0 [0-9]+
identifier buffer size [a-zA-Z]+
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Introduction

Patterns

How do we compactly represent the set of all lexemes corresponding to a
token?
For instance:

The token integer constant represents the set of all integers: that

is, all sequences of digits (0–9), preceded by an optional sign (+ or −).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.
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Regular Expressions Expressions & Meaning

Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ.

a: stands for the set {a} that contains a single string a.

a | b: stands for the set {a, b} that contains two strings a and b.

Analogous to Union.

ab: stands for the set {ab} that contains a single string ab.

Analogous to Product.
(a|b)(a|b): stands for the set {aa, ab, ba, bb}.

a∗: stands for the set {ε, a, aa, aaa, . . .} that contains all strings of
zero or more a’s.

Analogous to closure of the product operation.

ε stands for the empty string.
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Regular Expressions Expressions & Meaning

Regular Expressions

Examples of Regular Expressions over {a, b}:

(a|b)∗: Set of strings with zero or more a’s and zero or more b’s:
{ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}
(a∗b∗): Set of strings with zero or more a’s and zero or more b’s such
that all a’s occur before any b:
{ε, a, b, aa, ab, bb, aaa, aab, abb, . . .}
(a∗b∗)∗: Set of strings with zero or more a’s and zero or more b’s:
{ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}
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Regular Expressions Expressions & Meaning

Language of Regular Expressions

Let R be the set of all regular expressions over Σ. Then,

Empty String: ε ∈ R

Unit Strings: α ∈ Σ⇒ α ∈ R

Concatenation: r1, r2 ∈ R ⇒ r1r2 ∈ R

Alternative: r1, r2 ∈ R ⇒ (r1 | r2) ∈ R

Kleene Closure: r ∈ R ⇒ r∗ ∈ R
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Regular Expressions Expressions & Meaning

Regular Expressions
Example: (a | b)∗

L0 = {ε}
L1 = L0 · {a, b}

= {ε} · {a, b}
= {a, b}

L2 = L1 · {a, b}
= {a, b} · {a, b}
= {aa, ab, ba, bb}

L3 = L2 · {a, b}
...

L =
∞⋃
i=0

Li = {ε, a, b, aa, ab, ba, bb, . . .}
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Regular Expressions Expressions & Meaning

Semantics of Regular Expressions

Semantic Function L : Maps regular expressions to sets of strings.

L(ε) = {ε}
L(α) = {α} (α ∈ Σ)

L(r1 | r2) = L(r1) ∪ L(r2)

L(r1 r2) = L(r1) · L(r2)

L(r∗) = {ε} ∪ (L(r) · L(r∗))
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Regular Expressions Expressions & Meaning

Computing the Semantics

L(a) = {a}
L(a | b) = L(a) ∪ L(b)

= {a} ∪ {b}
= {a, b}

L(ab) = L(a) · L(b)

= {a} · {b}
= {ab}

L((a | b)(a | b)) = L(a | b) · L(a | b)

= {a, b} · {a, b}
= {aa, ab, ba, bb}
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Regular Expressions Expressions & Meaning

Computing the Semantics of Closure

Example: L((a | b)∗)
= {ε} ∪ (L(a | b) · L((a | b)∗))

L0 = {ε} Base case

L1 = {ε} ∪ ({a, b} · L0)

= {ε} ∪ ({a, b} · {ε})
= {ε, a, b}

L2 = {ε} ∪ ({a, b} · L1)

= {ε} ∪ ({a, b} · {ε, a, b})
= {ε, a, b, aa, ab, ba, bb}

...

L((a | b)∗) = L∞ = {ε, a, b, aa, ab, ba, bb, . . .}
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Regular Expressions Expressions & Meaning

Another Example

L((a∗b∗)∗) :

L(a∗) = {ε, a, aa, . . .}
L(b∗) = {ε, b, bb, . . .}

L(a∗b∗) = {ε, a, b, aa, ab, bb,
aaa, aab, abb, bbb, . . .}

L((a∗b∗)∗) = {ε}
∪{ε, a, b, aa, ab, bb,
aaa, aab, abb, bbb, . . .}

∪{ε, a, b, aa, ab, ba, bb,
aaa, aab, aba, abb, baa, bab, bba, bbb, . . .}

...

= {ε, a, b, aa, ab, ba, bb, . . .}
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Regular Expressions Regular Definitions

Regular Definitions

Assign “names” to regular expressions.
For example,

digit −→ 0 | 1 | · · · | 9
natural −→ digit digit∗

Shorthands:

a+: Set of strings with one or more occurrences of a.

a?: Set of strings with zero or one occurrences of a.

Example:

integer −→ (+|−)?digit+
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Regular Expressions Regular Definitions

Regular Definitions: Examples

float −→ integer . fraction

integer −→ (+|−)? no leading zero

no leading zero −→ (nonzero digit digit∗) | 0
fraction −→ no trailing zero exponent?

no trailing zero −→ (digit∗ nonzero digit) | 0
exponent −→ (E | e) integer

digit −→ 0 | 1 | · · · | 9
nonzero digit −→ 1 | 2 | · · · | 9
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Regular Expressions Regular Definitions

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input
alphabet.

They can hence be used to specify the set of lexemes associated with
a token.

That is, regular expressions and definitions can be used as the pattern
language

How do we decide whether an input string belongs to the set of strings
specified by a regular expression?
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Regular Expressions Regular Definitions

Using Regular Definitions for Lexical Analysis

Q: Is ababbaabbb in L(((a∗b∗)∗)?
A: Hm. Well. Let’s see.

L((a∗b∗)∗) = {ε}
∪{ε, a, b, aa, ab, bb,
aaa, aab, abb, bbb, . . .}
∪{ε, a, b, aa, ab, ba, bb,
aaa, aab, aba, abb, baa, bab, bba, bbb, . . .}

...

= ???
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Regular Expressions Regular Definitions

Recognizers

Construct automata that recognize strings belonging to a language.

Finite State Automata ⇒ Regular Languages

Finite State → cannot maintain arbitrary counts.

Push Down Automata ⇒ Context-free Languages

Stack is used to maintain counter, but only one counter can go
arbitrarily high.
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Finite State Automata Recognizers

Recognizing Finite Sets of Strings

Identifying words from a small, finite, fixed vocabulary is
straightforward.

For instance, consider a stack machine with push, pop, and add

operations with two constants: 0 and 1.

We can use the automaton:

s

h

p

p 0 1

u o

a

d

d

pop add

integer_constant

push
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Finite State Automata Recognizers

Finite State Automata

Represented by a labeled directed graph.

A finite set of states (vertices).

Transitions between states (edges).

Labels on transitions are drawn from Σ ∪ {ε}.
One distinguished start state.

One or more distinguished final states.
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Finite State Automata Recognizers

Finite State Automata: An Example

Consider the Regular Expression (a | b)∗a(a | b).
L((a | b)∗a(a | b)) = {aa, ab, aaa, aab, baa, bab,

aaaa, aaab, abaa, abab, baaa, . . .}.
The following automaton determines whether an input string belongs to
L((a | b)∗a(a | b):

a

a

b
b

a

1 2 3
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Finite State Automata Recognizers

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

. . . if beginning from the start state

. . . we can trace some path through the automaton

. . . such that the sequence of edge labels spells x

. . . and end in a final state.
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Finite State Automata Recognizers

Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b Accept?

Path 1: 1 1 1 1 1 no
Path 2: 1 1 1 2 3 yes

Path 3: 1 2 3 ⊥ ⊥ no

YES
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Finite State Automata Recognizers

Regular Expressions to NFA

Thompson’s Construction: For every regular expression r , derive an NFA
N(r) with unique start and final states.

ε
ε

α ∈ Σ
α

(r1 | r2)

N(r )
1

ε

ε

ε

ε

N(r )
2
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Finite State Automata Recognizers

Regular Expressions to NFA (contd.)

r1r2 N(r )
2

N(r )
1

ε ε

r∗
ε ε

N(r)

ε

ε
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Finite State Automata Recognizers

Example

(a | b)∗a(a | b):

ε

ε ε

ε

a

b

ε ε a
ε

ε ε

ε

a

b

ε

ε
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Finite State Automata Recognizers

Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b Accept?
Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Finite State Automata Recognizers

Recognition with an NFA (contd.)

Is aaab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a a a b Accept?
Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 1 2 3 ⊥
Path 4: 1 2 3 ⊥ ⊥
All Paths {1} {1, 2} {1, 2, 3} {1, 2, 3} {1, 3} Accept
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Finite State Automata Recognizers

Recognition with an NFA (contd.)

Is aabb ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a a b b Accept?
Path 1: 1 1 1 1 1
Path 2: 1 1 2 3 ⊥
Path 3: 1 2 3 ⊥ ⊥
All Paths {1} {1, 2} {1, 2, 3} {1, 3} {1} REJECT

Compiler Design Lexical Analysis CSE 504 32 / 53



Finite State Automata DFA & NFA

Determinism
(a | b)∗a(a | b):

Nondeterministic:
(NFA)

a

a

b
b

a

1 2 3

Deterministic:
(DFA)

a

a

b

b

a

a

b

b

1 2

3

4
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Finite State Automata DFA & NFA

Recognition with a DFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b

b

a

a

b

b

1 2

3

4

Input: a b a b Accept?

Path: 1 2 4 2 4 YES
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Finite State Automata DFA & NFA

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

NFA may have transitions labeled by ε.
(Spontaneous transitions)

All transition labels in a DFA belong to Σ.

For some string x , there may be many accepting paths in an NFA.

For all strings x , there is one unique accepting path in a DFA.

Usually, an input string can be recognized faster with a DFA.

NFAs are typically smaller than the corresponding DFAs.
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Finite State Automata DFA & NFA

NFA vs. DFA (contd.)

R = Size of Regular Expression
N = Length of Input String

NFA DFA
Size of
Automaton

O(R) O(2R)

Recognition time
per input string

O(N × R) O(N)
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Finite State Automata DFA & NFA

Converting NFA to DFA

Subset construction
Given a set S of NFA states,

compute Sε = ε-closure(S): Sε is the set of all NFA states reachable
by zero or more ε-transitions from S .

compute Sα = goto(S , α):

S ′ is the set of all NFA states reachable from S by taking a transition
labeled α.
Sα = ε-closure(S ′).
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Finite State Automata DFA & NFA

Converting NFA to DFA (contd).

Each state in DFA corresponds to a set of states in NFA.

Start state of DFA = ε-closure(start state of NFA).

From a state s in DFA that corresponds to a set of states S in NFA:

let S ′ = goto(S , α) such that S ′ is non-empty.
add an α-transition to state s ′ that corresponds S ′ in NFA,

S contains a final NFA state, and s is the corresponding DFA state

⇒ s is a final state of DFA
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Finite State Automata DFA & NFA

NFA → DFA: An Example

a

a

b
b

a

1 2 3

ε-closure({1}) = {1}
goto({1}, a) = {1, 2}
goto({1}, b) = {1}
goto({1, 2}, a) = {1, 2, 3}
goto({1, 2}, b) = {1, 3}

goto({1, 2, 3}, a) = {1, 2, 3}
goto({1, 2, 3}, b) = {1, 3}
goto({1, 3}, a) = {1, 2}
goto({1, 3}, b) = {1}
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Finite State Automata DFA & NFA

NFA → DFA: An Example (contd.)

ε-closure({1}) = {1}
goto({1}, a) = {1, 2}
goto({1}, b) = {1}
goto({1, 2}, a) = {1, 2, 3}
goto({1, 2}, b) = {1, 3}

goto({1, 2, 3}, a) = {1, 2, 3}
goto({1, 2, 3}, b) = {1, 3}
goto({1, 3}, a) = {1, 2}
goto({1, 3}, b) = {1}

a

a

b

b

a

a

b

b

{1} {1,2}

{1,3}

{1,2,3}
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Generating Lexical Analyzers

Construction of a Lexical Analyzer

Regular Expressions and Definitions are used to specify the set of
strings (lexemes) corresponding to a token.

An automaton (DFA/NFA) is built from the above specifications.

Each final state is associated with an action: emit the corresponding
token.
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Generating Lexical Analyzers

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence
of digits separated by a decimal point).

[0-9]+ { emit(INTEGER_CONSTANT); }

[0-9]+"."[0-9]+ { emit(FLOAT_CONSTANT); }

0−9

0−9

0−9

0−9

ε

0−9

0−9

ε "."

INTEGER_CONSTANT

FLOAT_CONSTANT
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Generating Lexical Analyzers

Lex

Tool for building lexical analyzers.

Input: lexical specifications (.l file)

Output: C function (yylex) that returns a token on each invocation.

Example:

%%

[0-9]+ { return(INTEGER_CONSTANT); }

[0-9]+"."[0-9]+ { return(FLOAT_CONSTANT); }

Tokens are simply integers (#define’s).
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Generating Lexical Analyzers

Lex Specifications

%{

C header statements for inclusion
%}

Regular Definitions e.g.:
digit [0-9]

%%

Token Specifications e.g.:
{digit}+ { return(INTEGER_CONSTANT); }

%%

Support functions in C

Compiler Design Lexical Analysis CSE 504 44 / 53



Generating Lexical Analyzers

Lex/Flex Regular Expressions

Adds “syntactic sugar” to regular expressions:

Range: [0-7]: Integers from 0 through 7 (inclusive)
[a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q.

Exception: [^/]: Any character other than /.

Definition: {digit}: Use the previously specified regular definition
digit.

Special characters: Connectives of regular expression, convenience
features.
e.g.: | * ^
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Generating Lexical Analyzers

Special Characters in Lex/Flex

| * + ? ( ) Same as in regular expressions
[ ] Enclose ranges and exceptions
{ } Enclose “names” of regular definitions
^ Used to negate a specified range (in Exception)
. Match any single character except newline
\ Escape the next character
\n, \t Newline and Tab

For literal matching, enclose special characters in double quotes (") e.g.:
"*"

Or use “\” to escape. e.g.: \*
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Generating Lexical Analyzers

Examples

for Sequence of f, o, r

"||" C-style OR operator (two vert. bars)

.* Sequence of non-newline characters

[^*/]+ Sequence of characters except * and /

\"[^"]*\" Sequence of non-quote characters
beginning and ending with a quote

({letter}|" ")({letter}|{digit}|" ")*

C-style identifiers
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Generating Lexical Analyzers

Actions

Actions are attached to final states.
Actions:

Distinguish the different final states.

Are used to return tokens.

Can be used to set attribute values.

In Lex/Flex: action is a fragment of C code (blocks enclosed by ‘{’
and ‘}’).
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Generating Lexical Analyzers

PLY

PLY is a Yacc/Lex-like parser/lexer framework in Python.
(See http://www.dabeaz.com/ply/)

List of tokens is declared a priori.

Each token T with an action is
specified by a Python function t T :

Regular expression patterns, specified
as Python docstrings, describe sets of
lexemes.
Function body describes the action to
be performed when input matches the
pattern.

Action-less token T is specified by
defining variable t T with the regular
expression pattern as its value.

Example:

import ply.lex as lex

# List of token names.

tokens = (’NUMBER’, ’PLUS’,

’MINUS’)

# Tokens without actions.

t_PLUS = r’\+’

t_MINUS = r’-’

# A token with action.

def t_NUMBER(t):

r’\d+’

t.value = int(t.value)

return t
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Generating Lexical Analyzers

Mechanics

The returned tokens are instances of class LexToken, with attributes
type, value, lineno and lexpos.

Line numbers have to be maintained explicitly by setting the lineno

attribute of the lexer.

To ignore a lexeme (i.e. not return a token),

end its action with a pass instead of return, or
name the rule as t ignore

Error handling (for characters not matching any pattern) can be
specified as function t error.

PLY’s lexer can handle regular definitions, as well as conditional
analysis (a la lex) where matching can be controlled by explicitly
maintained conditions. See PLY documentation for details.
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Generating Lexical Analyzers

Priority of matching

Patterns for tokens with actions are matched in the order they are
specified.

Regular expressions for action-less tokens are sorted, and matched
longest-expression first.
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Generating Lexical Analyzers

Constructing Lexers using PLY

Easy way:

lex.lex() to create the lexer;
lex.input() to specify the input string to be scanned;
repeated invocation of lex.token() to generate tokens.

Alternative (better) way:

Put lexer specifications in a separate module, say proto2lex.py.
lexer = lex.lex(module=proto2lex) to create a lexer (referenced
from variable lexer).
lexer.input(. . .) to specify its input
lexer.token() to generate tokens, one at a time.

The alternative way works even when there are multiple instances of
the same lexer in an application.
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Generating Lexical Analyzers

Lexical Analysis: Summary

Convert a stream of characters into a stream of tokens.

Make rest of compiler independent of character set

Strip off comments

Recognize line numbers

Ignore white space characters

Process macros (definitions and uses)

Interface with symbol table (also called “name table”).
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