
Types, Type Checking and Type Inference

Compiler Design

CSE 504

Last modifled:
Version: 1.3 20:58:09 2012/04/09
Compiled at 12:47 on 2015/05/01

Compiler Design Types CSE 504 1 / 26

Type Analysis

Is an operator applied to an “incompatible” operand?
Type checking:

Static: Check for type compatibility at compile time

Dynamic: Check for type compatibility at run time

Type analysis phase also used to resolve fields in a structure:

Example: list.element

Compiler Design Types CSE 504 2 / 26

Type Checking vs. Type Inference

A Type Checker only verifies that the given declarations are
consistent with their use.
Examples: type checkers for Pascal, C.

A Type Inference system generates consistent type declarations from
information implicit in the program.
Examples: Type inference in SML, Scheme.
Given y = 3.1415 * x * x, we can infer that y is a float.

Compiler Design Types CSE 504 3 / 26

Why Static Type Checking?

Catch errors at compile time instead of run time.

Determine which operators to apply.
Example: In x + y, “+” is integer addition if x and y are both
integers.

Recognize when to convert from one representation to another (Type
Coercion).
Example: In x + y, if x is a float while y is an integer, convert y to a
float value before adding.

Compiler Design Types CSE 504 4 / 26

Type Checking: An Example

E −→ int const { E .type = int; }
E −→ float const { E .type = float; }
E −→ E 1 + E 2 {

if E 1.type == E 2.type == int
E .type = int;

else
E .type = float;

}

Compiler Design Types CSE 504 5 / 26

Type Checking: Another Example

E −→ int const { E .type = int; }
E −→ float const { E .type = float; }
E −→ id { E .type = sym lookup(id.entry , type); }
E −→ E 1 + E 2 {

if (E 1.type 6∈ {int, float}) OR
(E 2.type 6∈ {int, float})

E .type = error ;
else if E 1.type == E 2.type == int

E .type = int;
else

E .type = float;
}

Compiler Design Types CSE 504 6 / 26

Types

Base types: atomic types with no internal structure.
Examples: int, char.

Structured types: Types that combine (collect together) elements of
other types.

Arrays:
Characterized by dimensions, index range in each dimension, and
type of elements.
Records: (structs and unions)
Characterized by fields in the record and their types.

Compiler Design Types CSE 504 7 / 26

Type Expressions

Language to define types.
Type −→ int | float | char . . .

| void

| error

| name

| array(Type)
| record((name, Type)∗)
| pointer(Type)
| tuple((Type)∗)
| arrow(Type, Type)

Compiler Design Types CSE 504 8 / 26

Examples of Type Expressions

float xform[3][3];

xform ∈ array(array(float))

char *string;

string ∈ pointer(char)

struct list { int element; struct list *next; } l;

list ≡ record((element, int), (next, pointer(list)))
l ∈ list

int max(int, int);

max ∈ arrow(tuple(int, int), int)

Compiler Design Types CSE 504 9 / 26

Type Checking with Type Expressions

E −→ E 1 [E 2] { if E 1.type == array(T) AND
E 2.type == int

E .type = T
else

E .type = error }
E −→ * E 1 { if E 1.type == pointer(T)

E .type = T
else

E .type = error }
E −→ & E 1 { E .type = pointer(E 1.type) }

Compiler Design Types CSE 504 10 / 26

Functions and Operators

Functions and Operators have Arrow types.

max: int × int −→ int

sort: numlist −→ numlist

Functions and operators are applied to operands.

max(x,y):

max : int × int −→ int

x : int

y : int

(x, y) : int × int

max(x, y) : int

Compiler Design Types CSE 504 11 / 26

Function Application

E −→ E 1 E 2 { if E 1.type ≡ arrow(S, T) AND
E 2.type ≡ S

E .type = T
else

E .type = error }

E −→ (E 1, E 2) { E .type = tuple(E 1.type, E 2.type) }

Compiler Design Types CSE 504 12 / 26

Type Equivalence

When are two types “equal”?

type Vector = array [1..10] of real;

type Weights = array [1..10] of real;

var x, y: Vector;

z: Weight;

Name Equivalence: When they have the same name.
x and y have same type, but z has different type.

Structural Equivalence: When they have the same structure.
x, y and z have same type.

Compiler Design Types CSE 504 13 / 26

Structural Equivalence

S ≡ T iff:

S and T are the same basic type;

S = array(S1) , T = array(T1), and S1 ≡ T1.

S = pointer(S1) , T = pointer(T1), and S1 ≡ T1.

S = tuple(S1,S2) , T = tuple(T1,T2), and S1 ≡ T1 and S2 ≡ T2.

S = arrow(S1,S2) , T = arrow(T1,T2), and S1 ≡ T1 and S2 ≡ T2.

Compiler Design Types CSE 504 14 / 26

Subtyping

Object-oriented languages permit subtyping.

class Rectangle {

private int x,y;

int area() { ... }

}

class Square extends Rectangle {

...

}

Square is a subclass of Rectangle.
Since all methods on Rectangle are inherited by Square (unless explicitly
overridden)

Square is a subtype of Rectangle.

Compiler Design Types CSE 504 15 / 26

Inheritance

class Circle {

float x, y; // center

float r; // radius

float area() {

return 3.1415 * r * r;

}

}

class ColoredCircle extends Circle {

Color c;

}

class Test{

static main() {

ColoredCircle t;

... t.area() ...

}

}

Compiler Design Types CSE 504 16 / 26

Resolving Names

What entity is represented by t.area()?
(assume no overloading)

Determine the type of t.
t has to be of type user(c).

If c has a method of name area, we are done.
Otherwise, if the superclass of c has a method of name area, we are
done.
Otherwise, if the superclass of superclass of c...

=⇒ Determine the least superclass of class c that has a
method with name area.

Compiler Design Types CSE 504 17 / 26

Overloading

class Rectangle {

int x,y; // top lh corner

int l, w; // length and width

Rectangle move() {

x = x + 5; y = y + 5;

return this;

}

Rectangle move(int dx, int dy) {

x = x + dx; y = y + dy;

return this;

}

}

Compiler Design Types CSE 504 18 / 26

Resolving Overloaded Names

What entity is represented by move in r.move(3, 10)?

Determine the type of r.
r has to be of type user(c).

Determine the nearest superclass of class c that has a method with
name move

such that move is a method that takes two int

parameters.

Compiler Design Types CSE 504 19 / 26

Structural Subtyping

S ⊆ T iff:

S and T are the same basic type.

S = user(type1), T = user(type2) and type1 ⊆ type2.

S = array(S1) , T = array(T1), and S1 ⊆ T1;

S = pointer(S1) , T = pointer(T1), and S1 ⊆ T1;

S = tuple(S1,S2) , T = tuple(T1,T2), and S1 ⊆ T1 and S2 ⊆ T2;

S = arrow(S1,S2) , T = arrow(T1,T2), and S1 ⊇ T1 and S2 ⊆ T2.

Compiler Design Types CSE 504 20 / 26

Inheritance and Overloading

What entity is represented by f in E.f(a1, a2, ..., an)?

Let the type of E be user(c).

The target signature of f is
type(a1)× · · · × type(an)→ >.

The selected method f is the method in the least superclass of class c
such that type of f is a subtype of T .

If there are multiple methods in a superclass of c , say f1, f2, . . . , fn
with signatures T1,T2, . . .Tn respectively,

. . . select fi such that Ti is the (unique) greatest type such that
Ti ⊆ T .

Compiler Design Types CSE 504 21 / 26

Inheritance and Overloading

What entity is represented by f in E.f(a1, a2, ..., an)?

Let the type of E be user(c).

The target signature of f is
type(a1)× · · · × type(an)→ >.

The selected method f is the method in the least superclass of class c
such that type of f is a subtype of T .

If there are multiple methods in a superclass of c , say f1, f2, . . . , fn
with signatures T1,T2, . . .Tn respectively,

. . . select fi such that Ti is the (unique) greatest type such that
Ti ⊆ T .

Compiler Design Types CSE 504 21 / 26

Inheritance and Overloading

What entity is represented by f in E.f(a1, a2, ..., an)?

Let the type of E be user(c).

The target signature of f is
type(a1)× · · · × type(an)→ >.

The selected method f is the method in the least superclass of class c
such that type of f is a subtype of T .

If there are multiple methods in a superclass of c , say f1, f2, . . . , fn
with signatures T1,T2, . . .Tn respectively,

. . . select fi such that Ti is the (unique) greatest type such that
Ti ⊆ T .

Compiler Design Types CSE 504 21 / 26

Inheritance and Overloading

What entity is represented by f in E.f(a1, a2, ..., an)?

Let the type of E be user(c).

The target signature of f is
type(a1)× · · · × type(an)→ >.

The selected method f is the method in the least superclass of class c
such that type of f is a subtype of T .

If there are multiple methods in a superclass of c , say f1, f2, . . . , fn
with signatures T1,T2, . . .Tn respectively,

. . . select fi such that Ti is the (unique) greatest type such that
Ti ⊆ T .

Compiler Design Types CSE 504 21 / 26

Inheritance and Overloading

What entity is represented by f in E.f(a1, a2, ..., an)?

Let the type of E be user(c).

The target signature of f is
type(a1)× · · · × type(an)→ >.

The selected method f is the method in the least superclass of class c
such that type of f is a subtype of T .

If there are multiple methods in a superclass of c , say f1, f2, . . . , fn
with signatures T1,T2, . . .Tn respectively,

. . . select fi such that Ti is the (unique) greatest type such that
Ti ⊆ T .

Compiler Design Types CSE 504 21 / 26

Inheritance: Another Example

graphical object

polyline closed graphical

polygon ellipse

rectangle triangle

translate

length

scale

area

area

area

Compiler Design Types CSE 504 22 / 26

Abstract objects and Concrete Representations

Abstract classes declare methods, but do not define them.
Example:

closed graphical declares “area” method, but cannot define the
method.

The different “area” methods are defined when the object’s
representations are concrete: in rectangle, ellipse, etc.

When “area” method is applied to an object of class closed graphical,
we method to be called is the one defined in rectangle, triangle,
ellipse, etc.
... which can be resolved only at run-time!

Compiler Design Types CSE 504 23 / 26

Types in OO Languages: The Whole Story

Decaf implements a small part of the type system for an OO language.

Subtype rule: Wherever an object of type t is required (as a
parameter of a method, return value, or rhs of assignments), object of
any subtype s of t can be used.

Compiler Design Types CSE 504 24 / 26

Types in OO Languages: The Whole Story (contd.)

Method Selection rule: If class B inherits from class tt A and
overwrites method m, then for any B object b, method m of B must be
used, even if b us used as an A object.

class A {

int m() { ... }

}

class B extends A {

int m() { ... }

}
class C{

int f(B b) {

A a;

a = b;

... a.m() ...

}

Compiler Design Types CSE 504 25 / 26

Types in OO Languages: The Whole Story (contd.)

Dynamic Binding rule: A method of object obj , which can be
potentially overwritten in a subclass has to be bound dynamically if
the compiler cannot determine the runtime type of obj .

Compiler Design Types CSE 504 26 / 26

