Introduction

Compiler Design

CSE 504
@ Overview
© Syntax-Directed Translation
© Phases of Translation
Compiler Design Introduction CSE 504 1/33
Overview

What is a Compiler?

@ Programming problems are easier to solve in high-level languages

e High-level languages are closer to the problem domain
e E.g. Java, Python, SQL, Tcl/Tk, ...

@ Solutions have to be executed by a machine

e Instructions to a machine are specified in a language that reflects to
the cycle-by-cycle working of a processor

@ Compilers are the bridges:

e Software that translates programs written in high-level languages to
efficient executable code.

Compiler Design Introduction CSE 504 2 /33

Overview

An Example
int gcd(int m, int n) _ged: 113
{ LFB2: movl %edx, %ecx
if (m == 0) pushq %rbp Li1:
return n; LCFIO: movl Y%edi, %edx
else if (m > n) movq %rsp, %rbp cmpl Yedi, Y%ecx
return gcd(n, m); LCFI1: jg Leé
movl %edi, Y%ecx movl Y%edi, Y%eax
else
. movl Yesi, %edi sarl $31, Yedx
return ged(njm, m); testl Y%ecx, %ecx idivl YJecx
+ jne Li1 L6:
jmp L3 movl Yecx, %edi
.align 4,0x90 testl Yedx, ‘%edx
jne L13
L3:
movl Y%edi, %eax
leave
ret
Compiler Design Introduction CSE 504 3/33
Overview

Requirements

@ In order to translate statements in a language, one needs to
understand both

e the structure of the language: the way “sentences” are constructed in
the language, and
e the meaning of the language: what each “sentence” stands for.

@ Terminology:

e Structure = Syntax
e Meaning = Semantics

Compiler Design Introduction CSE 504 4 /33

Overview

Translation Strategy

Classic Software Engineering Problem

@ Objective: Translate a program in a high level language into efficient
executable code.

e Strategy: Divide translation process into a series of phases
Each phase manages some particular aspect of translation.

Interfaces between phases governed by specific intermediate forms.

Compiler Design Introduction CSE 504 5/33

Syntax-Directed Translation

Translation Process

Source
Program

Syntax
Analysis

Abstract Semantic Target
S¥Ir1;gx Processing Program

Compiler Design Introduction CSE 504 6 /33

Syntax-Directed Translation

Translation Steps

@ Syntax Analysis Phase: Recognizes “sentences” in the program
using the syntax of the language

@ Semantic Analysis Phase: Infers information about the program
using the semantics of the language

o Intermediate Code Generation Phase: Generates “abstract” code
based on the syntactic structure of the program and the semantic
information from Phase 2.

e Optimization Phase: Refines the generated code using a series of
optimizing transformations.

@ Final Code Generation Phase: Translates the abstract intermediate
code into specific machine instructions.

Compiler Design Introduction CSE 504 7 /33

Syntax-Directed Translation

Structure of a Compiler: an Analogy

Syntax-Directed Translation: the structure (syntax) of a sentence in a
language is used to give it a meaning (semantics).

@ Bawat tao'y isinilang na may laya at magkakapantay ang taglay na
dangal at karapatan.

@ Green wire connect after first not cut white also red wire.

@ He sailed the coffee out of the leaf.

@ This sentence has four words.

Compiler Design Introduction CSE 504 8 /33

Syntax-Directed Translation

Syntax

Defining and Recognizing Sentences in a Language

Layered approach

°
@ Alphabet: defines allowed symbols

@ Lexical Structure: defines allowed words
°

Syntactic Structure: defines allowed sentences

We will later associate meaning with sentences (semantics) based on their
syntactic structure.

Compiler Design Introduction CSE 504 9/33

Syntax-Directed Translation

Formal Language Specification

Solid theoretical results applied to a practical problem.

Declarative vs. Operational Notations

Declarative notation is used to define a language

o Defines precisely the set of allowed objects (words/sentences)
e Examples: Regular expressions, Grammars.
Operational notation is used to recognize statements in a language

e Defines an algorithm for determining whether or not a given
word /sentence is in the language
o Example: Automata

@ Results from theory on converting between the two notations.

Compiler Design Introduction CSE 504 10 / 33

Syntax-Directed Translation

Formal Languages

A language is a set of strings over a set of symbols.

@ The set of symbols of a language is called its alphabet (usually
denoted by .

@ Each string in the language is called a sentence.

@ Parts of sentences are called phrases.

Compiler Design Introduction CSE 504

Syntax-Directed Translation

Context-Free Grammars
A well-studied notation for defining formal languages.
@ A Context Free Grammar (CFG, or “grammar” unless otherwise
qualified) is defined over an alphabet, called terminal symbols.
@ A CFG is defined by a set of productions.
@ Each production is of the form

X — B

where
e X is a single non-terminal symbol
representing a set of phrases in the language, and
e (3 is a sequence of terminal and non-terminal symbols
e Example:
Stmt — while Expr do Stmt

11/33

@ A unique non-terminal, called the start symbol, represents the set of

all sentences in the language.
@ The language defined by a grammar G is denoted by L(G).

Compiler Design Introduction CSE 504

12 /33

Syntax-Directed Translation

Example Grammar
“List of digits separated by + and — signs” (Example 2.1 in book):

L — L+1L

L — L-1L
L — D
D — 0J1]...]9
Derivation of 9-5+2 from L:
L — L-1L
— D-1L
— 9-1L
= 9-L+1L
— 9-D+1L
— 9-5+1L
— 9-5+0D
= 9-5+2
Compiler Design Introduction CSE 504 13 /33
Syntax-Directed Translation
Parse Trees
Pictorial representation of derivations
L = L-1L L L = L-1L
= D-1 L/_/\L — L-L+1L
— 9-1L | /|\ — L-L+D
— 9-L+1L D L+ L — L-L+2
— 9-D+1L | | — L-D+2
— 9-5+1L D D — L-5+2
— 9-5+D 9 5| 2| — D-5+2
— 9-5+2 — 9-5+2

Note: one parse tree may correspond to multiple derivations!

Compiler Design Introduction CSE 504 14 / 33

Syntax-Directed Translation

Ambiguity

A grammar is ambiguous if some sentence in the language has more than
one parse tree.

SN /\
N N

|
D

L L L D
b b
| | | |
9 5 2 9 5 2
Compiler Design Introduction CSE 504 15 / 33

Syntax-Directed Translation

Associativity and Precedence

9-5+2 = (9-5)+2
9-5-2 = (9-5)-2
9+5+2 = (9+5)+2

“+" and “—" usually have the same precedence and are
left-associative.
i.e. the second parse tree in the previous slide is the “correct” one

@ The grammar can be changed to reflect the associativity and

precedence:
L — L+D
L — L-D
L — D
D — 0|1]...]9

Compiler Design Introduction CSE 504 16 / 33

Syntax-Directed Translation

Syntax-Directed Translation Schemes

@ A notation that attaches “program fragments” (also called actions)
to productions in a grammar.

@ The intuition is, whenever a production is used in recognizing a
sentence, the corresponding action will be taken.

e Example:
L — L+D {add}
L — L-D {sub}
L — D
D — 0 {push 0}
D — 1 {push 1}
Compiler Design Introduction CSE 504 17 / 33

Syntax-Directed Translation

Syntax-Directed Translation

@ Actions can be seen as “additional leaves” introduced into a parse
tree.

@ Reading the actions left-to-right in the tree gives the “translation”.

Example:
L — L+D {add} .
L — L-D {sub}
L — D
D — 0 {push 0}
D — 1 {push 1} \ N

\
5 \
\ \ \

fpush 93 fpush 5} fsub} fpush 2} fadd}

Compiler Design Introduction CSE 504 18 / 33

Syntax-Directed Translation

Grammars for Language Specification

@ The language (i.e. set of allowed strings) of most programming
languages can be specified using CFGs.

@ The grammar notation may be tedious for some aspects of a language.

@ For instance, an integer is defined by a grammar of the following form:

| — P| +P| -P
P — DP

P — D

D — O0|1]...|9

@ For simpler fragments, the notation of regular expressions may be
used.

o | = (+]-)7[0 — 9]+
Compiler Design Introduction CSE 504 19 / 33

Syntax-Directed Translation

Syntax Analysis in Practice

@ Usually divided into Lexical Analysis followed by Parsing.
@ Lexical Analysis:
e A lexical analyzer converts a stream of characters into a stream of
tokens.
o Each token has a name (associated with terminal symbols) and a value
(also called its attribute).
e A lexical analyzer is specified by a set of regular expression patterns
and actions that are executed when the patterns are matched.
@ Parsing:
e A parser converts a stream of tokens into a tree.
e Parsing uncovers the structure of a sentence in the language.

o Parsers are specified by grammars (actually, by translation schemes
which are sets of productions associated with actions).

Compiler Design Introduction CSE 504 20 / 33

Phases of Translation

Translation Process

Source
Program

Syntax
Analysis

Abstract Semantic Target
Syntax Processing Program
Tree
Compiler Design Introduction CSE 504 21 /33

Phases of Translation

Syntax Analysis

Source
Program

Lexical
Analysis

Token
Stream

Parsing

Abstract
Syntax
Tree

Compiler Design Introduction CSE 504 22 /33

Phases of Translation

Lexical Analysis

First step of syntax analysis

@ Objective: Convert the stream of characters representing input
program into a sequence of tokens.
@ Tokens are the “words” of the programming language.

@ Examples:

e The sequence of characters “static int" is recognized as two tokens,
representing the two words “static” and “int".
e The sequence of characters “xx++" is recognized as three tokens,

representing “x" “x" and "++".

Compiler Design Introduction CSE 504 23 /33

Phases of Translation

Parsing

Second step of syntax analysis

@ Objective: Uncover the structure of a sentence in the program from
a stream of tokens.

@ For instance, the phrase “x = +y", which is recognized as four
tokens, representing ‘X", “=" and “4" and “y", has the structure
=(x, 4+(y)), i.e., an assignment expression, that operates on “x” and
the expression “+(y)".

@ Output: A tree called abstract syntax tree that reflects the structure
of the input sentence.

Compiler Design Introduction CSE 504 24 / 33

Phases of Translation

Abstract Syntax Tree (AST)

@ Represents the syntactic structure of the program, hiding a few
details that are irrelevent to later phases of compilation.

@ For instance, consider a statement of the form: “if (m == 0) S1
else S2" where S1 and S2 stand for some block of statements.
A possible AST for this statement is:

If-then-else

m/= =\0 A

AST for S1 AST for S2

Compiler Design Introduction CSE 504 25 /33

Phases of Translation

Semantic Processing

g N

Abstract
Syntax
Tree

Intermediate
e Code

Checking Generation

Code
Optimization

|

Final Code | |
Generation

Target
Program

Semantic Code
N Analysis) Generation

Compiler Design Introduction CSE 504 26 / 33

Phases of Translation

Type Checking
A instance of “Semantic Analysis”

@ Objective: Decorate the AST with semantic information that is
necessary in later phases of translation.

@ For instance, the AST

If-then-else

m/= =\0 A

AST for S1 AST for S2

is transformed into

If-then-else
== boolean
M integer 0 :integer ~ ASTforS1 AST for S2
Compiler Design Introduction CSE 504

Phases of Translation

Intermediate Code Generation

@ Objective: Translate each sub-tree of the decorated AST into
intermediate code.

@ Intermediate code hides many machine-level details, but has
instruction-level mapping to many assembly languages.

@ Main motivation for using an intermediate code is portability.

Compiler Design Introduction CSE 504

27 /33

28 /33

Phases of Translation

Intermediate Code Generation, an Example

loadint m
loadimmed O
intequal

jmpnz .L1
lf-then-else jmp .L2

.L1:
== boolean
//////”:::j////wZEi;\\\iykl - code for S1

jmp .L3
Mm: integer 0 :integer ASTforS1 AST for S2 Lo

. code for S2
jmp .L3
.L3:

Compiler Design Introduction CSE 504 29 / 33

Phases of Translation

Code Optimization

@ Objective: Improve the time and space efficiency of the generated
code.

@ Usual strategy is to perform a series of transformations to the
intermediate code, with each step representing some efficiency
improvement.

@ Peephole optimizations: generate new instructions by
combining/expanding on a small number of consecutive instructions.

@ Global optimizations: reorder, remove or add instructions to change
the structure of generated code.

Compiler Design Introduction CSE 504 30/ 33

Phases of Translation

Code Optimization, an Example

loadint m — loadint m
loadimmed O jmpnz .L2
intequal L1:
jmpz .L1 code for S1
jmp .L2 jmp .L3
.L1: .L2:
. code for S1 code for S2
jmp .L3 .L3:
.L2:
. code for S2
jmp .L3
.L3:

Compiler Design Introduction CSE 504 31/ 33

Phases of Translation

Final Code Generation

@ Objective: Map instructions in the intermediate code to specific
machine instructions.

@ Supports standard object file formats.

@ Generates sufficient information to enable symbolic debugging.

Compiler Design Introduction CSE 504 32 /33

Phases of Translation

Final Code Generation, an Example

loadint m — movl 8(’%ebp), %esi
jmpnz .L2 testl Yesi, %esi
L1: jne .L2
. code for S1 L1:
jmp .L3 . code for S1
.L2: jmp .L3
. code for S2 .L2:
.L3: . code for S2
.L3:

Compiler Design Introduction CSE 504 33 /33

