
Introduction

Compiler Design

CSE 504

1 Overview

2 Syntax-Directed Translation

3 Phases of Translation

Last modifled: Mon Jan 28 2013 at 17:19:57 EST
Version: 1.5 23:45:54 2013/01/28
Compiled at 11:48 on 2015/01/28

Compiler Design Introduction CSE 504 1 / 33

Overview

What is a Compiler?

Programming problems are easier to solve in high-level languages

High-level languages are closer to the problem domain
E.g. Java, Python, SQL, Tcl/Tk, . . .

Solutions have to be executed by a machine

Instructions to a machine are specified in a language that reflects to
the cycle-by-cycle working of a processor

Compilers are the bridges:

Software that translates programs written in high-level languages to
efficient executable code.

Compiler Design Introduction CSE 504 2 / 33



Overview

An Example

int gcd(int m, int n)

{

if (m == 0)

return n;

else if (m > n)

return gcd(n, m);

else

return gcd(n%m, m);

}

_gcd:

LFB2:

pushq %rbp

LCFI0:

movq %rsp, %rbp

LCFI1:

movl %edi, %ecx

movl %esi, %edi

testl %ecx, %ecx

jne L11

jmp L3

.align 4,0x90

L13:

movl %edx, %ecx

L11:

movl %edi, %edx

cmpl %edi, %ecx

jg L6

movl %edi, %eax

sarl $31, %edx

idivl %ecx

L6:

movl %ecx, %edi

testl %edx, %edx

jne L13

L3:

movl %edi, %eax

leave

ret

Compiler Design Introduction CSE 504 3 / 33

Overview

Requirements

In order to translate statements in a language, one needs to
understand both

the structure of the language: the way “sentences” are constructed in
the language, and
the meaning of the language: what each “sentence” stands for.

Terminology:

Structure ≡ Syntax
Meaning ≡ Semantics

Compiler Design Introduction CSE 504 4 / 33



Overview

Translation Strategy

Classic Software Engineering Problem

Objective: Translate a program in a high level language into efficient
executable code.

Strategy: Divide translation process into a series of phases
Each phase manages some particular aspect of translation.

Interfaces between phases governed by specific intermediate forms.

Compiler Design Introduction CSE 504 5 / 33

Syntax-Directed Translation

Translation Process

Abstract

Program
Target

Program
Source

Syntax

Analysis

Semantic
ProcessingSyntax

Tree

Compiler Design Introduction CSE 504 6 / 33



Syntax-Directed Translation

Translation Steps

Syntax Analysis Phase: Recognizes “sentences” in the program
using the syntax of the language

Semantic Analysis Phase: Infers information about the program
using the semantics of the language

Intermediate Code Generation Phase: Generates “abstract” code
based on the syntactic structure of the program and the semantic
information from Phase 2.

Optimization Phase: Refines the generated code using a series of
optimizing transformations.

Final Code Generation Phase: Translates the abstract intermediate
code into specific machine instructions.

Compiler Design Introduction CSE 504 7 / 33

Syntax-Directed Translation

Structure of a Compiler: an Analogy

Syntax-Directed Translation: the structure (syntax) of a sentence in a
language is used to give it a meaning (semantics).

Bawat tao’y isinilang na may laya at magkakapantay ang taglay na
dangal at karapatan.

Green wire connect after first not cut white also red wire.

He sailed the coffee out of the leaf.

This sentence has four words.

Compiler Design Introduction CSE 504 8 / 33



Syntax-Directed Translation

Syntax

Defining and Recognizing Sentences in a Language

Layered approach

Alphabet: defines allowed symbols

Lexical Structure: defines allowed words

Syntactic Structure: defines allowed sentences

We will later associate meaning with sentences (semantics) based on their
syntactic structure.

Compiler Design Introduction CSE 504 9 / 33

Syntax-Directed Translation

Formal Language Specification

Solid theoretical results applied to a practical problem.

Declarative vs. Operational Notations

Declarative notation is used to define a language

Defines precisely the set of allowed objects (words/sentences)
Examples: Regular expressions, Grammars.

Operational notation is used to recognize statements in a language

Defines an algorithm for determining whether or not a given
word/sentence is in the language
Example: Automata

Results from theory on converting between the two notations.

Compiler Design Introduction CSE 504 10 / 33



Syntax-Directed Translation

Formal Languages

A language is a set of strings over a set of symbols.

The set of symbols of a language is called its alphabet (usually
denoted by Σ.

Each string in the language is called a sentence.

Parts of sentences are called phrases.

Compiler Design Introduction CSE 504 11 / 33

Syntax-Directed Translation

Context-Free Grammars
A well-studied notation for defining formal languages.

A Context Free Grammar (CFG, or “grammar” unless otherwise
qualified) is defined over an alphabet, called terminal symbols.

A CFG is defined by a set of productions.

Each production is of the form

X −→ β

where
X is a single non-terminal symbol
representing a set of phrases in the language, and
β is a sequence of terminal and non-terminal symbols

Example:
Stmt −→ while Expr do Stmt

A unique non-terminal, called the start symbol, represents the set of
all sentences in the language.

The language defined by a grammar G is denoted by L(G ).

Compiler Design Introduction CSE 504 12 / 33



Syntax-Directed Translation

Example Grammar
“List of digits separated by + and − signs” (Example 2.1 in book):

L −→ L + L

L −→ L - L

L −→ D

D −→ 0|1| . . . |9
Derivation of 9-5+2 from L:

L =⇒ L - L

=⇒ D - L

=⇒ 9 - L

=⇒ 9 - L + L

=⇒ 9 - D + L

=⇒ 9 - 5 + L

=⇒ 9 - 5 + D

=⇒ 9 - 5 + 2

Compiler Design Introduction CSE 504 13 / 33

Syntax-Directed Translation

Parse Trees

Pictorial representation of derivations

L =⇒ L - L

=⇒ D - L

=⇒ 9 - L

=⇒ 9 - L + L

=⇒ 9 - D + L

=⇒ 9 - 5 + L

=⇒ 9 - 5 + D

=⇒ 9 - 5 + 2

L

L L

DD

-

D L L+

9 5 2

L =⇒ L - L

=⇒ L - L + L

=⇒ L - L + D

=⇒ L - L + 2

=⇒ L - D + 2

=⇒ L - 5 + 2

=⇒ D - 5 + 2

=⇒ 9 - 5 + 2

Note: one parse tree may correspond to multiple derivations!

Compiler Design Introduction CSE 504 14 / 33



Syntax-Directed Translation

Ambiguity

A grammar is ambiguous if some sentence in the language has more than
one parse tree.

L

L L

DD

-

D L L+

9 5 2

L

L L

D

D

+

L L-

9 5 2

D

Compiler Design Introduction CSE 504 15 / 33

Syntax-Directed Translation

Associativity and Precedence

9-5+2 ≡ (9-5)+2

9-5-2 ≡ (9-5)-2

9+5+2 ≡ (9+5)+2

“+” and “−” usually have the same precedence and are
left-associative.
i.e. the second parse tree in the previous slide is the “correct” one

The grammar can be changed to reflect the associativity and
precedence:

L −→ L + D

L −→ L - D

L −→ D

D −→ 0|1| . . . |9

Compiler Design Introduction CSE 504 16 / 33



Syntax-Directed Translation

Syntax-Directed Translation Schemes

A notation that attaches “program fragments” (also called actions)
to productions in a grammar.

The intuition is, whenever a production is used in recognizing a
sentence, the corresponding action will be taken.

Example:

L −→ L + D {add}
L −→ L - D {sub}
L −→ D

D −→ 0 {push 0}
D −→ 1 {push 1}

...

Compiler Design Introduction CSE 504 17 / 33

Syntax-Directed Translation

Syntax-Directed Translation

Actions can be seen as “additional leaves” introduced into a parse
tree.

Reading the actions left-to-right in the tree gives the “translation”.

Example:

L −→ L + D {add}
L −→ L - D {sub}
L −→ D

D −→ 0 {push 0}
D −→ 1 {push 1}

...

L

L D

D

+

L -

5 2

D

{push 9} {push 5} {push 2}{sub} {add}

9

Compiler Design Introduction CSE 504 18 / 33



Syntax-Directed Translation

Grammars for Language Specification

The language (i.e. set of allowed strings) of most programming
languages can be specified using CFGs.

The grammar notation may be tedious for some aspects of a language.

For instance, an integer is defined by a grammar of the following form:

I −→ P | + P | - P

P −→ D P

P −→ D

D −→ 0|1| . . . |9

For simpler fragments, the notation of regular expressions may be
used.

I = (+|-)?[0− 9]+

Compiler Design Introduction CSE 504 19 / 33

Syntax-Directed Translation

Syntax Analysis in Practice

Usually divided into Lexical Analysis followed by Parsing.

Lexical Analysis:

A lexical analyzer converts a stream of characters into a stream of
tokens.
Each token has a name (associated with terminal symbols) and a value
(also called its attribute).
A lexical analyzer is specified by a set of regular expression patterns
and actions that are executed when the patterns are matched.

Parsing:

A parser converts a stream of tokens into a tree.
Parsing uncovers the structure of a sentence in the language.
Parsers are specified by grammars (actually, by translation schemes
which are sets of productions associated with actions).

Compiler Design Introduction CSE 504 20 / 33



Phases of Translation

Translation Process

Abstract

Program
Target

Program
Source

Syntax

Analysis

Semantic
ProcessingSyntax

Tree

Compiler Design Introduction CSE 504 21 / 33

Phases of Translation

Syntax Analysis

Lexical

Syntax
Tree

Abstract

Parsing

Stream
Token

Program
Source

Analysis

Compiler Design Introduction CSE 504 22 / 33



Phases of Translation

Lexical Analysis

First step of syntax analysis

Objective: Convert the stream of characters representing input
program into a sequence of tokens.

Tokens are the “words” of the programming language.

Examples:

The sequence of characters “static int” is recognized as two tokens,
representing the two words “static” and “int”.
The sequence of characters “*x++” is recognized as three tokens,
representing “*”, “x” and “++”.

Compiler Design Introduction CSE 504 23 / 33

Phases of Translation

Parsing

Second step of syntax analysis

Objective: Uncover the structure of a sentence in the program from
a stream of tokens.

For instance, the phrase “x = +y”, which is recognized as four
tokens, representing “x”, “=” and “+” and “y”, has the structure
=(x, +(y)), i.e., an assignment expression, that operates on “x” and
the expression “+(y)”.

Output: A tree called abstract syntax tree that reflects the structure
of the input sentence.

Compiler Design Introduction CSE 504 24 / 33



Phases of Translation

Abstract Syntax Tree (AST)

Represents the syntactic structure of the program, hiding a few
details that are irrelevent to later phases of compilation.

For instance, consider a statement of the form: “if (m == 0) S1

else S2” where S1 and S2 stand for some block of statements.
A possible AST for this statement is:

m

If−then−else

AST for S2AST for S1

==

0

Compiler Design Introduction CSE 504 25 / 33

Phases of Translation

Semantic Processing

Final Code
Generation

Intermediate
Code

Generation

Program
Target

Type
Checking

Semantic

Analysis

Code

Generation

Optimization
Code

Syntax
Tree

Abstract

Compiler Design Introduction CSE 504 26 / 33



Phases of Translation

Type Checking

A instance of “Semantic Analysis”

Objective: Decorate the AST with semantic information that is
necessary in later phases of translation.

For instance, the AST

m

If−then−else

AST for S2AST for S1

==

0

is transformed into

m

If−then−else

AST for S1 AST for S20

== : boolean

: integer : integer

Compiler Design Introduction CSE 504 27 / 33

Phases of Translation

Intermediate Code Generation

Objective: Translate each sub-tree of the decorated AST into
intermediate code.

Intermediate code hides many machine-level details, but has
instruction-level mapping to many assembly languages.

Main motivation for using an intermediate code is portability.

Compiler Design Introduction CSE 504 28 / 33



Phases of Translation

Intermediate Code Generation, an Example

m

If−then−else

AST for S1 AST for S20

== : boolean

: integer : integer

=⇒

loadint m

loadimmed 0

intequal

jmpnz .L1

jmp .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

jmp .L3

.L3:

Compiler Design Introduction CSE 504 29 / 33

Phases of Translation

Code Optimization

Objective: Improve the time and space efficiency of the generated
code.

Usual strategy is to perform a series of transformations to the
intermediate code, with each step representing some efficiency
improvement.

Peephole optimizations: generate new instructions by
combining/expanding on a small number of consecutive instructions.

Global optimizations: reorder, remove or add instructions to change
the structure of generated code.

Compiler Design Introduction CSE 504 30 / 33



Phases of Translation

Code Optimization, an Example

loadint m

loadimmed 0

intequal

jmpz .L1

jmp .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

jmp .L3

.L3:

=⇒ loadint m

jmpnz .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

Compiler Design Introduction CSE 504 31 / 33

Phases of Translation

Final Code Generation

Objective: Map instructions in the intermediate code to specific
machine instructions.

Supports standard object file formats.

Generates sufficient information to enable symbolic debugging.

Compiler Design Introduction CSE 504 32 / 33



Phases of Translation

Final Code Generation, an Example

loadint m

jmpnz .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

=⇒ movl 8(%ebp), %esi

testl %esi, %esi

jne .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

Compiler Design Introduction CSE 504 33 / 33


