Syntax-Directed Code Generation

Code Generation J

Compiler Design

CSE 504

@ Syntax-Directed Code Generation
© Machines

© Expressions

Q@ Statements

© Short-Circuit Code

Compiler Design Code Generation CSE 504 1/30

Short-Circui

Syntax-Directed Code Generation
[Jele}

Code Generation

@ Intermediate code generation: Abstract (machine independent) code.
@ Code optimization: Transformations to the code to improve

time/space performance.
@ Final code generation: Emitting machine instructions.

Compiler Design Code Generation CSE 504 2 /30

Syntax-Directed Code Generation

(o] e}

Syntax Directed Translation

Interpretation:
E — E;+Ey {E.wal:=Ejval + Eyval;}

Type Checking:
E — Ei+E> {
if E1.type = E,.type = int
E.type = int;
else
E .type = float;

Compiler Design Code Generation CSE 504 3 /30

Syntax-Directed Code Generation

[elel J

Code Generation via Syntax Directed Translation

Code Generation:
E — Ei+E> {
E.code = E;.code |
E;.code |
“add”

Compiler Design Code Generation CSE 504 4 /30

ed Cc tion Machines

@00

Stack Machines

Simplified translation, but fewer opportunities for optimization.

@ Machine Configuration:
o Contents of stack; each element of the stack is a cell of some standard
size (e.g. 32 bits).
o Registers: Program counter, Stack pointer, (more later)
@ Stack representation:
o “[]" to represent empty stack
“v1::5" to represent a stack whose top element is v; and the remainder
of the stack is S.
o "S[i]" represents the value at the j-th element of stack S (counting
from the base, not top, of the stack).

Compiler Design Code Generation CSE 504 5 /30

Syntax-Directed Code Generation Machines

(o] 1o}

Stack Machine Instructions

@ load_immed v: Push v on stack.

S —|loadimmedv]— v: S

@ load: Load value from given address to top of stack.

a:S ——> vi:S

where v = S]a.
@ store: Store a given value to a given address.

via:S —[store|l— v:uT
where T is same as S except T[a] = v.
@ add: Add top two elements.

wivy S ——> vi+tw:S

@ pop: Remove top-most element.

vi:S ——> S

Compiler Design Code Generation CSE 504 6 /30

Machines

[ele]]

Register Machines

@ Machines with a (possibly unbounded) number of registers.
Lets call them ty, to, ...

@ Separate Heap space for dynamically allocated objects.

@ Instructions:

e move ty, t,: Move value from register t; to t;.
e move_immed t,i: move literal constant / to a register t7.
e add ty, tr: Add values of t; and t,, store it back in t;.

Compiler Design Code Generation CSE 504 7 /30

Expressions
900000000000

Syntax-Directed Code Generation

Code Generation and Attributes (Stack Machine)

E — Ei+E {
E.code = Ej.code | Ej.code |

add
}
E — int { E.code = "load_immed int.val" }
E — id { E.code = “load id.addr" }

E — id = E1 {
E.code = "load_immed id.addr" |
Eq.code |
“store”

id.addr is the address of cell allocated for id.

Compiler Design Code Generation

CSE 504

8 /30

Syntax-Directed Code Generation nes Expressions

0O@®0000000000

Variables and Addresses in Register Machines

@ Since the register machine has unbounded number of registers, all
local variables and function parameters will be stored in registers.

@ Each program variable is mapped to a distinct abstract register.
Each id has an attribute id.addr to represent this mapping.

@ For final code generation, the registers of the abstract machine will be
mapped to (a small, finite) set of registers of a concrete machine (e.g.
MIPS).

@ Clearly not all abstract machine registers may have a corresponding
concrete machine register.
Such abstract registers will be spilled to cells on a stack on the
concrete machine.

Compiler Design Code Generation CSE 504 9 /30

x-Directed Code Generation nes Expressions

00@000000000

Code Generation and Attributes (Register Machine)

E — E, + E> {
E.t = generate_new_temporary();
E.code = E;.code | E;.code
| “add E.t, Ei.t, Es.t”
}

E — int {
E.t = generate_new_temporary();
E.code = ['mov_immed E.t, int.val" |

}

E — id {
E.t = id.addr;
E.code =[]
}
E — id=E {
E.t = Ei.t;

E.code = E;.code
| “move id.addr, E.t"
}

Compiler Design Code Generation CSE 504 10 / 30

x-Directed Code Generation nes Expressions

0O00®00000000

References

Some languages allow variables to have locations (i.e. addresses) and a
variable may refer to another variable's location.

e Languages such as C/C++ permit programmers to obtain location of
arbitrary variables (using the “address-of” operation, “&"), and
dereference locations (i.e. access the value stored at an address, using
H*H)'

@ When translating a C-like language, every variable should be
potentially allocated on stack; it can be mapped to a register if there
is no operation that takes its address.

@ Languages such as Java give locations only to objects and arrays. All
variables are stack-allocated.
The location of a variable itself is not accessible to the program.

Compiler Design Code Generation CSE 504 11 /30

-Directed Code Generation hines Expressions Sta S Short-Circui

0O000@0000000

/- and r-values

i=1+1;

@ r-value: actual value of the expression

o /-value: for expressions associated with specific memory addresses,
the location where the value of the expression is stored.

@ Some expressions (e.g. i) have both /- and r-values.
@ Other expressions (e.g. 5) have only an r-value.

@ Some expression’s values may be (at least temporarily) stored in
locations, but those locations may not have a meaning in terms of the
program, and we consider them also to have only r-values (e.g. i+1).

Compiler Design Code Generation CSE 504 12 / 30

Expressions

0O0000®000000

Code Generation for L-expressions

An L-expression is one which has an /-value.

@ Roughly speaking L-expressions are those that may occur on the lhs of an
assignment.

@ In Proto(2), the only L-expressions were identifiers.
@ In Proto(3), L-expressions include array access.

@ For compiling assignments, we will use additional attributes for L-expressions
(other than L.t and L.code, which all expressions have.

Compiler Design Code Generation CSE 504 13 / 30

-Directed Code Generation hines Expressions

0O00000e00000

Arrays

Consider expression grammar changed as follows:
@ L represents simple identifiers as well
as array expressions.

E - E+E @ The index of an array expression can
be any arbitrary expression (including

E - L=E an array expression itself)

E — int Example: x[y[i]]

E — L @ The base of an array expression is an
identifier or another array expression.

L — id Example: (x[i]) [j]

L — L[E]

@ LHS of an assignment can be an
array expression.

Compiler Design Code Generation CSE 504 14 / 30

Expressions

000000080000

Addresses and Allocation

@ For Proto, we'll use Java-like convention of keeping variables in
stack/registers, and arrays (and later, objects) on heap.
@ For heap access, we use the following intermediate code instructions:

e hstore a, r: store value to a heap cell.
Register a has the address of the cell in heap, and register r has the
value to be stored.

e hload r,a: load value from a heap cell.
Register a has the address of the cell in heap, and register r is the
destination for the load.

e halloc r, rp: allocate a segment of heap cells.
Register r, contains the number of cells to allocate. Register r; will
then be set to the base address of the allocated heap cells.

77 hsize r, r: get size of a heap segment. Bounds Check

Register r; is the address of the heap segment. Register r, will then be
set to the size of the segment.

Compiler Design Code Generation CSE 504 15 / 30

-Directed Code er: hines Expressions Sta Short-Circ

0O0000000e000

Generating code for arrays: Allocation

@ FE; will be an integer-valued
expression that specifies the
number of elements in the
array to allocate.

@ Type T is ignored (at least,
E — newTI[E:] for now).

{

E.t = generate_new_temporary(); @ E, then, is a reference to

E.code = E;.code the newly allocated array.
| “halloc E.t, Ei.t" @ If bounds check is needed,
} additional book-keeping

info needs to be maintained
with the array.

... allocate n+ 1 cells, and
use the zero-th cell to store
the length!

Compiler Design Code Generation CSE 504 16 / 30

x-Directed Code Generation

Expressions
000000000800

L — L I[E]

Compiler Design

L.t = L.at = id.addr;
L.lcode = L.rcode = [];
L.mem = reg;

}
{

L.at = generate_new_temporary();
L.Icode = Ly.rcode

| E.code

| “mul L.at, E.t, 4"
| “add L.at, L.at, Lyi.t";
L.t = generate_new_temporary();
L.rcode = L.Icode
| “hload L.t, L.at";
L.mem = heap;

}

Code Generation

@ L.t: Register

holding L's value.

@ L.at: Register

holding L's address.

@ L.Icode: Code for

evaluating L's
address.

@ L.rcode: Code for

evaluating L's value.

@ Note: no bounds

check!

CSE 504 17 / 30

Generating code for arrays:

E — L {
E.t = L.t
E.code = L.rcode
}

Expressions Statements
000000000080

Example expression:

(i + alil)
+ b[i] [j]

With i.addr = t1,

j.addr = 1,
a.addr = ts,
b.addr = t4.

Compiler Design

Code Generation

RHS
// i’s rcode (empty)
// alil’s rcode
mul tb, t1, 4
add tb, t5, t3
aload t6, tb5
// i+al[il’s code
add t7, t1, t6
// blil[j]1’s rcode:
// bli]l’s rcode
mul t8, ti1, 4
add t8, t8, t4
aload t9, t8
// use b[i] as base:
mul t10, t2, 4
add t10, t10, t8
aload ti11, t10
// add bl[il[j] to prev result
add t12, t7, ti1l

CSE504 18 /30

-Directed Code

Expressions Sta Short-Circ
000000000008 [}
Generating code for arrays: Assignments
E — L=E;
{ E.t = Ei.t;
if L. mem == reg
assigncode = "“move L.at, E;.t";
else

assigncode = "hstore L.at, E;.t";
E.code = L.Icode

| E1.code
| assigncode;

CSE504 19 /30

Syntax-Directed Code Generation es Statements

@0000

Code Generation for Statements

Ss — S S5y {
Ss.code = S.code
| Ss1.code;

Ss — € { Ss.code =[]}

S — E; {
S.code = E.code;
}

Compiler Design Code Generation CSE 504 20 / 30

Syntax-Directed Code Generation es Statements

0O@000

Conditional Statements

S — if E, 51,5 {

elselabel = get_new_label();

endlabel = get_new_label();

S.code = E .code
[“beq E.t, 0, elselabel"
[S;.code;
[“ymp endlabel"
|“elselabel:"
[S».code;
|“endlabel:"

Compiler Design Code Generation CSE 504 21 /30

Syntax-Directed Code Generation es Statements

00e00

Conditional Statements and Continuations

S.end: label to jump after S is executed completely.

S — if E, 51,5 {

S.begin = get_new_label();

Si.end = S>.end = S.end,

S.code = "S.begin:"
| E.code
| “beq E.t, 0, Sp.begin”
| S1.code
| S2.code;

Compiler Design Code Generation CSE 504 22 /30

-Directed Code Generation hines X Statements Short-Circui

00000

Continuations

Attributes of a statement that specify where control will flow to after the
statement is executed.
@ Analogous to the follow sets of grammar symbols.

@ In deterministic languages, there is only one continuation for each
statement.

@ Can be generalized to include local variables whose values are needed
to execute the following statements:

Uniformly captures call, return and exceptions.

Compiler Design Code Generation CSE 504 23 /30

Syntax-Directed Code Generation nes X Statements

0O000e

Sequence and Continuation

@ Most frequently, the continuation of a statement will simply be its
succeeding statement.

@ We will use a special label “fallthrough” to denote this.

Ss — S 5s; {
Ssi.end = Ss.end,
S.end = fallthrough;
Ss.code = ...}

if S.end == fallthrough

next =[]
else
next = “jmp S.end”
S.code = ...
| next; }

Compiler Design Code Generation CSE 504 24 / 30

Syntax-Directed Code Generation es Statements Short-Circuit Code

®00000

Code Generation for Boolean Expressions

E — E;&& E, { E.t= generate_new_temporary();
E.code = E;.code
| E2.code
| “and E.t, Ey.t, Eo.t"; }

@ The above code evaluates E; regardless of the value of Ej.

@ Short circuit code: evaluate E, only if needed.

E — Ej&& E, { E.t = generate_new_temporary();
skip = generate_new_label();
E.code = E;.code
| ‘move E.t, Ey.t"
| “veq E.t, 0, skip”

| E2.code
| “move E.t, E;.t"
| HSkI.,D:”; }

Compiler Design Code Generation CSE 504 25 / 30

-Directed Code Generation hines X Sta Short-Circuit Code

000000

Generating Shortcircuit Code

Use two continuations for each boolean expression:

@ E.success: where control will go when expression in E evaluates to
true.

o E.fail: where control will go when expression in E evaluates to false.

Both continuations are inherited attributes.

Compiler Design Code Generation CSE 504 26 / 30

Short-Circuit Code

Syntax-Directed Code Generation

[e]e] Je]e]e]

Shortcircuit Code for Boolean Expressions

E — E,&& E,

E — !El

E — true

Compiler Design

{ Ei.fail = E fail;

E,.fail = E . fail,
E;.success = get_new_label();
E5.success = E.success;
E.code = E;.code |
" E;.success:” |
E;.code }
E:.fail = E.success;
Eq.success = E .fail;
E.code = E;.code }

{ E.code = "jmp, E.success” }

Code Generation CSE 504 27 / 30

Syntax-Directed Code Generation es Statements Short-Circuit Code

[e]e]e] Jele]

Short-circuit code for Conditional Statements

S — if E, 51,5 {

S.begin = get_new_label();

Si.end = S>.end = S.end,

E .success = S;.begin;

E .fail = S5.begin;

S.code = “S.begin" |
E.code |
S;.code |
S,.code;

Compiler Design Code Generation CSE 504 28 / 30

Syntax-Directed Code Generation

Short-Circuit Code
000000

Continuations and Code Generation

Continuation of a statement is an inherited attribute.
It is not an L-inherited attribute!

Code of statement is a synthesized attribute, but is dependent on its
continuation.

Backpatching: Make two passes to generate code.

© Generate code, leaving “holes” where continuation values are needed.
@ Fill these holes on the next pass.

Compiler Design Code Generation CSE 504 29 / 30

-Directed Code Generation hines X Sta s Short-Circuit Code

[e]e]e]ele]]

What's left?

After intermediate code is generated,

o Optimize intermediate code using target machine-independent

techniques.
Examples:

e constant propagation
e loop-invariant code motion
e dead-code elimination
e strength reduction
@ Generate final machine code
Perform target machine-specific optimizations.

Compiler Design Code Generation CSE 504 30/ 30

