
Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Code Generation

Compiler Design

CSE 504

1 Syntax-Directed Code Generation
2 Machines
3 Expressions
4 Statements
5 Short-Circuit Code

Last modifled: Wed Apr 08 2015 at 16:10:34 EDT
Version: 1.6 15:28:43 2015/01/25
Compiled at 16:12 on 2015/04/08

Compiler Design Code Generation CSE 504 1 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Code Generation

Intermediate code generation: Abstract (machine independent) code.

Code optimization: Transformations to the code to improve
time/space performance.

Final code generation: Emitting machine instructions.

Compiler Design Code Generation CSE 504 2 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Syntax Directed Translation

Interpretation:
E −→ E 1 + E 2 { E .val := E 1.val + E 2.val ; }

Type Checking:
E −→ E 1 + E 2 {

if E 1.type ≡ E 2.type ≡ int
E .type = int;

else
E .type = float;

}

Compiler Design Code Generation CSE 504 3 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Code Generation via Syntax Directed Translation

Code Generation:
E −→ E 1 + E 2 {

E .code = E 1.code ||
E 2.code ||
“add”

}

Compiler Design Code Generation CSE 504 4 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Stack Machines

Simplified translation, but fewer opportunities for optimization.

Machine Configuration:

Contents of stack; each element of the stack is a cell of some standard
size (e.g. 32 bits).
Registers: Program counter, Stack pointer, (more later)

Stack representation:

“[]” to represent empty stack
“v1::S” to represent a stack whose top element is v1 and the remainder
of the stack is S .
“S [i]” represents the value at the i-th element of stack S (counting
from the base, not top, of the stack).

Compiler Design Code Generation CSE 504 5 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Stack Machine Instructions

load immed v : Push v on stack.

S −− load immed v −→ v :: S

load: Load value from given address to top of stack.

a :: S −− load −→ v :: S

where v = S [a].
store: Store a given value to a given address.

v :: a :: S −− store −→ v :: T

where T is same as S except T [a] = v .
add: Add top two elements.

v2 :: v1 :: S −− add −→ v1 + v2 :: S

pop: Remove top-most element.

v :: S −− pop −→ S

Compiler Design Code Generation CSE 504 6 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Register Machines

Machines with a (possibly unbounded) number of registers.
Lets call them t1, t2, . . .

Separate Heap space for dynamically allocated objects.

Instructions:

move t1, t2: Move value from register t2 to t1.
move immed t1, i : move literal constant i to a register t1.
add t1, t2: Add values of t1 and t2, store it back in t1.

Compiler Design Code Generation CSE 504 7 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Code Generation and Attributes (Stack Machine)

E −→ E 1 + E 2 {
E .code = E 1.code ||E 2.code ||

“add”
}

E −→ int { E .code = “load immed int.val” }

E −→ id { E .code = “load id.addr” }

E −→ id = E 1 {
E .code = “load immed id.addr” ||

E 1.code ||
“store”

}
id.addr is the address of cell allocated for id.

Compiler Design Code Generation CSE 504 8 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Variables and Addresses in Register Machines

Since the register machine has unbounded number of registers, all
local variables and function parameters will be stored in registers.

Each program variable is mapped to a distinct abstract register.
Each id has an attribute id.addr to represent this mapping.

For final code generation, the registers of the abstract machine will be
mapped to (a small, finite) set of registers of a concrete machine (e.g.
MIPS).

Clearly not all abstract machine registers may have a corresponding
concrete machine register.
Such abstract registers will be spilled to cells on a stack on the
concrete machine.

Compiler Design Code Generation CSE 504 9 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Code Generation and Attributes (Register Machine)

E −→ E 1 + E 2 {
E .t = generate new temporary();
E .code = E 1.code ||E 2.code

|| “add E .t, E 1.t, E 2.t”
}

E −→ int {
E .t = generate new temporary();
E .code = [“mov immed E .t, int.val”]
}

E −→ id {
E .t = id.addr ;
E .code = []
}

E −→ id = E 1 {
E .t = E 1.t;
E .code = E 1.code

|| “move id.addr , E .t”
}

Compiler Design Code Generation CSE 504 10 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

References

Some languages allow variables to have locations (i.e. addresses) and a
variable may refer to another variable’s location.

Languages such as C/C++ permit programmers to obtain location of
arbitrary variables (using the “address-of” operation, “&”), and
dereference locations (i.e. access the value stored at an address, using
“*”).

When translating a C-like language, every variable should be
potentially allocated on stack; it can be mapped to a register if there
is no operation that takes its address.

Languages such as Java give locations only to objects and arrays. All
variables are stack-allocated.
The location of a variable itself is not accessible to the program.

Compiler Design Code Generation CSE 504 11 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

l- and r -values

i = i + 1;

r-value: actual value of the expression

l-value: for expressions associated with specific memory addresses,
the location where the value of the expression is stored.

Some expressions (e.g. i) have both l- and r -values.

Other expressions (e.g. 5) have only an r -value.

Some expression’s values may be (at least temporarily) stored in
locations, but those locations may not have a meaning in terms of the
program, and we consider them also to have only r -values (e.g. i+1).

Compiler Design Code Generation CSE 504 12 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Code Generation for L-expressions

An L-expression is one which has an l-value.

Roughly speaking L-expressions are those that may occur on the lhs of an
assignment.

In Proto(2), the only L-expressions were identifiers.

In Proto(3), L-expressions include array access.

For compiling assignments, we will use additional attributes for L-expressions
(other than L.t and L.code, which all expressions have.

Compiler Design Code Generation CSE 504 13 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Arrays

Consider expression grammar changed as follows:

E → E + E

E → L = E

E → int

E → L

L → id

L → L[E]

L represents simple identifiers as well
as array expressions.

The index of an array expression can
be any arbitrary expression (including
an array expression itself)

Example: x[y[i]]

The base of an array expression is an
identifier or another array expression.

Example: (x[i])[j]

LHS of an assignment can be an
array expression.

Compiler Design Code Generation CSE 504 14 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Addresses and Allocation

For Proto, we’ll use Java-like convention of keeping variables in
stack/registers, and arrays (and later, objects) on heap.

For heap access, we use the following intermediate code instructions:

hstore a, r : store value to a heap cell.
Register a has the address of the cell in heap, and register r has the
value to be stored.
hload r , a: load value from a heap cell.
Register a has the address of the cell in heap, and register r is the
destination for the load.
halloc r1, r2: allocate a segment of heap cells.
Register r2 contains the number of cells to allocate. Register r1 will
then be set to the base address of the allocated heap cells.

?? hsize r1, r2: get size of a heap segment. Bounds Check

Register r1 is the address of the heap segment. Register r2 will then be
set to the size of the segment.

Compiler Design Code Generation CSE 504 15 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Generating code for arrays: Allocation

E −→ new T [E 1]

{
E .t = generate new temporary();
E .code = E 1.code

|| “halloc E .t, E 1.t”
}

E1 will be an integer-valued
expression that specifies the
number of elements in the
array to allocate.

Type T is ignored (at least,
for now).

E , then, is a reference to
the newly allocated array.

If bounds check is needed,
additional book-keeping
info needs to be maintained
with the array.

. . . allocate n + 1 cells, and
use the zero-th cell to store
the length!

Compiler Design Code Generation CSE 504 16 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Generating code for arrays: LHS

L −→ id {
L.t = L.at = id.addr ;
L.lcode = L.rcode = [];
L.mem = reg ;
}

L −→ L1 [E] {
L.at = generate new temporary();
L.lcode = L1.rcode

||E .code
|| “mul L.at, E .t, 4”
|| “add L.at, L.at, L1.t”;

L.t = generate new temporary();
L.rcode = L.lcode

|| “hload L.t, L.at”;
L.mem = heap;
}

L.t: Register
holding L’s value.

L.at: Register
holding L’s address.

L.lcode: Code for
evaluating L’s
address.

L.rcode: Code for
evaluating L’s value.

Note: no bounds
check!

Compiler Design Code Generation CSE 504 17 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Generating code for arrays: RHS

E −→ L {
E .t = L.t;
E .code = L.rcode
}

Example expression:

(i + a[i])

+ b[i][j]

With i.addr = t1,
j.addr = t2,
a.addr = t3,
b.addr = t4.

// i’s rcode (empty)

// a[i]’s rcode

mul t5, t1, 4

add t5, t5, t3

aload t6, t5

// i+a[i]’s code

add t7, t1, t6

// b[i][j]’s rcode:

// b[i]’s rcode

mul t8, t1, 4

add t8, t8, t4

aload t9, t8

// use b[i] as base:

mul t10, t2, 4

add t10, t10, t8

aload t11, t10

// add b[i][j] to prev result

add t12, t7, t11

Compiler Design Code Generation CSE 504 18 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Generating code for arrays: Assignments

E −→ L = E 1

{ E .t = E 1.t;
if L.mem == reg

assigncode = “move L.at, E 1.t”;
else

assigncode = “hstore L.at, E 1.t”;
E .code = L.lcode

||E 1.code
|| assigncode;

}

Compiler Design Code Generation CSE 504 19 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Code Generation for Statements

Ss −→ S Ss1 {
Ss.code = S .code

|| Ss1.code;
}

Ss −→ ε { Ss.code = []}

S −→ E ; {
S .code = E .code;
}

Compiler Design Code Generation CSE 504 20 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Conditional Statements

S −→ if E , S1, S2 {
elselabel = get new label();
endlabel = get new label();
S .code = E .code

|| “beq E .t, 0, elselabel”
|| S1.code;
|| “jmp endlabel”
||“elselabel :”
|| S2.code;
||“endlabel :”

}

Compiler Design Code Generation CSE 504 21 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Conditional Statements and Continuations

S .end : label to jump after S is executed completely.

S −→ if E , S1, S2 {
S .begin = get new label();
S1.end = S2.end = S .end ;
S .code = “S .begin:”

||E .code
|| “beq E .t, 0, S2.begin”
|| S1.code
|| S2.code;

}

Compiler Design Code Generation CSE 504 22 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Continuations

Attributes of a statement that specify where control will flow to after the
statement is executed.

Analogous to the follow sets of grammar symbols.

In deterministic languages, there is only one continuation for each
statement.

Can be generalized to include local variables whose values are needed
to execute the following statements:

Uniformly captures call, return and exceptions.

Compiler Design Code Generation CSE 504 23 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Sequence and Continuation

Most frequently, the continuation of a statement will simply be its
succeeding statement.

We will use a special label “fallthrough” to denote this.

Ss −→ S Ss1 {
Ss1.end = Ss.end ;
S .end = fallthrough;
Ss.code = . . . }

S −→ E ; {
if S .end == fallthrough

next = []
else

next = “jmp S .end”
S .code = . . .

|| next; }
Compiler Design Code Generation CSE 504 24 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Code Generation for Boolean Expressions

E −→ E 1 && E 2 { E .t = generate new temporary();
E .code = E 1.code

||E 2.code
|| “and E .t,E1.t,E2.t”; }

The above code evaluates E2 regardless of the value of E1.

Short circuit code: evaluate E2 only if needed.

E −→ E 1 && E 2 { E .t = generate new temporary();
skip = generate new label();
E .code = E 1.code

|| “move E .t,E1.t”
|| “beq E .t, 0, skip”
||E 2.code
|| “move E .t,E2.t”
|| “skip:”; }

Compiler Design Code Generation CSE 504 25 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Generating Shortcircuit Code

Use two continuations for each boolean expression:

E .success: where control will go when expression in E evaluates to
true.

E .fail : where control will go when expression in E evaluates to false.

Both continuations are inherited attributes.

Compiler Design Code Generation CSE 504 26 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Shortcircuit Code for Boolean Expressions

E −→ E 1 && E 2 { E 1.fail = E .fail ;
E 2.fail = E .fail ;
E 1.success = get new label();
E 2.success = E .success;
E .code = E 1.code ||

”E 1.success:”||
E 2.code }

E −→ ! E 1 { E 1.fail = E .success;
E 1.success = E .fail ;
E .code = E 1.code }

E −→ true { E .code = “jmp, E .success” }

Compiler Design Code Generation CSE 504 27 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Short-circuit code for Conditional Statements

S −→ if E , S1, S2 {
S .begin = get new label();
S1.end = S2.end = S .end ;
E .success = S1.begin;
E .fail = S2.begin;
S .code = “S .begin:” ||

E .code ||
S1.code ||
S2.code;

}

Compiler Design Code Generation CSE 504 28 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

Continuations and Code Generation

Continuation of a statement is an inherited attribute.

It is not an L-inherited attribute!

Code of statement is a synthesized attribute, but is dependent on its
continuation.

Backpatching: Make two passes to generate code.

1 Generate code, leaving “holes” where continuation values are needed.

2 Fill these holes on the next pass.

Compiler Design Code Generation CSE 504 29 / 30

Syntax-Directed Code Generation Machines Expressions Statements Short-Circuit Code

What’s left?

After intermediate code is generated,

Optimize intermediate code using target machine-independent
techniques.
Examples:

constant propagation
loop-invariant code motion
dead-code elimination
strength reduction

Generate final machine code
Perform target machine-specific optimizations.

Compiler Design Code Generation CSE 504 30 / 30

