
Incremental Evaluation of Tabled Prolog: Beyond Pure
Logic Programs

Diptikalyan Saha and C. R. Ramakrishnan

Department of Computer Science,
State University of New York at Stony Brook
Stony Brook, New York, 11794-4400, U.S.A.

E-mail: {dsaha, cram}@cs.sunysb.edu

Abstract. Tabling, or memoization, enables incremental evaluation of logic pro-
grams. When the rules or facts of a program change, we need to recompute only
those results that are affected by the changes. The current algorithms for incre-
mentally maintaining memo tables treat insertion of facts/rules differently from
their deletion. Hence these techniques cannot be directly applied for incremental
evaluation of arbitrary tabled programs, especially those involving Prolog built-
ins such as findall, other aggregation operations, or non-stratified negation. In
this paper, we explore a simpler incremental evaluation algorithm that, based on
the dynamic call graph, invalidates and re-evaluates entire calls. The algorithm
is agnostic to whether a dependency adds or removes answers from tables, and
hence can be applied uniformly to programs with negation, even when the nega-
tion is implicit (as is the case with certain aggregation operations). We find that
the call-based algorithm is very effective in examples where the call dependencies
are largely acyclic (e.g. dynamic programming examples) and is moderately ef-
fective when the dependencies contain independent cyclic components (e.g. data
flow analysis problems). This is the first practical algorithm to handle all legal
tabled logic programs for which incremental evaluation is meaningful.

1 Introduction

Tabled resolution for logic programs [6, 26] alleviates some of the well-known problems
of Prolog, including susceptibility to looping, repeated subcomputations, and unsatis-
factory semantics for negation. Tabled resolution-based systems evaluate programs by
memoizing subgoals (referred to as calls) and their provable instances (referred to as an-
swers) in a set of tables. When resolving a subgoal, if it is present in the call table, then
it is resolved against the answers recorded in the corresponding answer table; otherwise
the subgoal is entered in the call table, and its answers, computed by resolving the sub-
goal against program clauses, are also entered in the answer table. Implementations of
tabling [9, 20, 27, 28, e.g.] have become stable and efficient and practical applications
can be developed by encoding them as high-level logic programs [8, 18].

Tabling enables incremental evaluation: when some facts or rules in a program
change, we can recompute only the results affected by the changes, instead of re-
evaluating the program from scratch. The crucial questions for incremental evaluation
are how to detect which table entries need to change, and how to compute the changes.

Based on earlier works on view maintenance in databases [10, e.g.], we have de-
veloped time- and space-efficient techniques for incremental evaluation of tabled logic
programs [22, 23, 25]. These techniques, based on maintaining dependencies between
answers, use separate algorithms for handling additions and deletions incrementally.
These techniques have been highly effective for incremental evaluation of large definite
logic programs (e.g. points-to analysis for C programs), and have been integrated into
experimental versions1 of the XSB logic programming system [27].

However, these techniques cannot be readily applied to arbitrary tabled logic pro-
grams, especially those that use aggregation and other Prolog built-ins, or have non-
stratified negation. In the presence of non-monotonic operators, it is often difficult to
determine whether the addition of an answer to a table results in addition or deletion of
an answer to another table.

In this paper, we present an incremental evaluation algorithm that is based on call
dependencies instead of answer dependencies, and process insertions as well as dele-
tions using a single method. At a high level, the technique works as follows. When facts
or rules of a program change, we first mark all calls in tables whose answers may be
affected by this change. In the next step we re-evaluate the marked calls. Naive re-
evaluation is often inefficient since the call dependencies are too coarse. Our algorithm
chooses calls to be re-evaluated optimally, and sequences the re-evaluations judiciously
to minimize the number of wasteful computations (see Section 3).

The salient advantages of this technique are:

– The technique can be used on any tabled program, regardless of the use of interme-
diate non-tabled predicates and Prolog built-ins.

– The technique is agnostic to the sign of a dependency— i.e. whether a call depends
negatively or positively on another— and hence can be used without change on
general logic programs: even those with non-stratified negation.

– The re-evaluation phase issues calls in an optimal order, re-evaluating calls only
when needed, and resulting in good performance in practice.

– Call graphs are generally small, and hence the technique scales to large examples.

We also present an extensive experimental evaluation of this new technique (see
Section 4). We present the results for evaluating a wide variety of programs: dynamic
programming examples, points-to analysis for C programs, data flow analysis of C pro-
grams, and validation of XML documents with respect to DTDs. We survey the closely
related prior work in Section 5 and conclude with a discussion on the extensions to the
new incremental evaluation techniques (Section 6).

2 Preliminaries

We first review certain concepts from SLG resolution that help formalize our incremen-
tal algorithm. We assume familiarity with the standard logic programming definitions
of terms, formulas, predicates, Horn clauses, rules, facts, and unification [14].

Our technical development is based on the SLG resolution [6]; however the defini-
tions as well as the results of this paper can be ported to other tabled evaluation schemes

1 See http://www.lmc.cs.sunysb.edu/˜dsaha/symspt/

2

as well [9, 28, e.g.]. Given a program P and an initial query q, the set of call tables con-
structed by SLG resolution is denoted by calls(q, P). The set of answers computed for
a subgoal q over program P is denoted by ans(q, P). The set of all answer tables con-
structed during evaluation of a query q, denoted by answer tables(q, P) is given by the
collection {ans(q′, P) | q′ ∈ calls(q, P)}.

In SLG resolution derivations are captured as a proof forest, with each tree in the
forest corresponding to an answer table. The model we present here abstracts away
operational details that are irrelevant to the results of this paper. A more fine-grained
abstract operational model of tabled resolution can be found in [5]. Moreover, for sim-
plicity, the following definition is based on definite Horn clause programs (i.e. no neg-
ative literals in clause bodies); nevertheless, the definitions can be extended to cover
general logic programs (see [21]).
SLG Resolution: SLG resolution [6] associates an answer table with each tree in the
proof forest. Given a program P and a query q, tabled resolution proceeds by build-
ing the proof forest using a sequence of the following four operations, starting with a
Program Clause Resolution operation for q.

Program Clause Resolution: A proof tree in the forest is extended by one step using
OLD-resolution [26].

New Subgoal: This operation is applicable whenever a tabled subgoal g is the selected
literal at a node that currently appears as a leaf, and there is no tree with g as the
root. This operation creates a new proof tree with g as the root for computing the
answers for g using program clause resolution.

New Answer: Applicable whenever a new answer a has been computed for a tabled
subgoal g (i.e., whenever a success leaf is derived in the tree for g), this operation
places a in the answer table for g.

Answer Clause Resolution: A proof tree in the forest is extended by one step by re-
solving a tabled subgoal g with one of the answers in g’s answer table.

The construction of the proof forest terminates when none of the above operations
can be applied. The above description of SLG resolution follows the development of
operational semantics of SLG in [21]. Note that Completion operation of SLG resolu-
tion does not lead to a growth in SLG forest and hence is hence treated separately from
the above four operations.

Definition 1 (Subgoal Dependency Graph [21]) The subgoal dependency graph due
to evaluating query q over a program P is a directed graph (V,E) such that (i) V is the
set of all tabled subgoals that occur as roots of trees in the SLG forest (i.e. the entries
in the call table); and (ii) (c1, c2) ∈ E, i.e. there is an edge from c1 to c2 if c2 occurs as
a selected literal in a tree rooted at c1.

Subgoals are also known as calls and an edge (c1, c2) in the subgoal dependency
graph means that c1 calls c2. The subgoal dependency graph obtained when resolving
the query r(1,X) over the program in Figure 1(a) is given in Figure 1(b).

3 Incremental Evaluation Based On Call Dependencies

We consider incremental evaluation of tabled programs, where facts or rules may be
added or deleted after query evaluation is completed. Each complete query evaluation

3

:- table r/2.
r(X,Y) :- e(X,Y).
r(X,Y) :- e(X,Z),

r(Z,Y).

e(1,2).
e(2,3).
e(3,4).
e(3,5).
e(4,2).
e(5,6).
e(6,7).
e(6,8).
e(7,8).

r(2,X)

r(3,X)
r(4,X)

r(1,X)

r(5,X)

r(8,X) r(7,X)

r(6,X)

r(8,X) r(7,X)

r(6,X)

e(8,X) e(7,X)

e(6,X)

e(3,X)

r(2,X)

r(3,X)
r(4,X)

r(1,X)

e(2,X)

e(4,X)

e(1,X)

r(5,X)

e(5,X)

(a) (b) (c)

Fig. 1. Example program (a); and the subgoal dependency graph (b) and called-by graph (c) for
evaluating r(1,X)
is called a run. Between each run, a set of rules in the program may change. We denote
this set by C and partition C into two sets C+ and C− that contain the added and
deleted rules respectively. Given a program P , the changed program P ′ obtained by
applying the changes in C is given by P ′ = P ∪ C+ − C−. Note that our technical
development is general and considers changes to a program’s rules. Facts, which are
rules with empty bodies, naturally become a special case.

Our algorithm is based on tracking dependencies between calls during query eval-
uation. In the absence of any other information (e.g. dependencies between answers),
least work that a call-dependency-based algorithm can do to incrementally maintain ta-
bles after a program change is related to the number of calls whose answers have to
be modified due to the change. Hence the set of changed calls, defined formally below,
gives a upper bound on the performance of our incremental algorithms.

Definition 2 (Changed Calls) Let P be a program, C = C+ ∪ C− be the set of rules
that are changed, and P ′ = P ∪ C+ − C− be the changed program. Let Q be the set
of calls due to evaluation of some query over P . The set of changed calls, denoted by
changed(P,C) is the set of all calls in Q such that ans(q, P) 6≡ ans(q, P ′).

In terms of our implementation in the XSB system, predicates whose definition may
change are marked explicitly by the user as volatile. It should be noted that the XSB
system supports the declaration of facts and rules that are dynamically loaded (i.e. not
compiled) as dynamic. Not all dynamically loaded fact/rule bases change from run
to run, and hence we use the volatile declaration to specifically indicate which
facts/rules may be subject to change. For instance, in the program in Figure 1(a), the set
of edge facts may change, and this is denoted by the declaration volatile e/2.

Our call-dependency-based incremental evaluation technique is based on an exten-
sion of the transpose of the subgoal dependency graph, known as the called-by graph.

Definition 3 (Called-By Graph) The called-by graph due to the evaluation of query q

over program P is a directed graph (V,E) such that (i) V = Vt ∪ Vf where Vt is the
set of tabled subgoals that occur as roots of trees in the SLG forest, and Vf is the set of

4

selected literals in the SLG forest that unify with the head of some volatile rule; and (ii)
(c1, c2) ∈ E if and only if c1 is a selected subgoal in a tree with c2 as the root (i.e. c1 is
called by c2).

The called-by graph after evaluation of query r(1,X) over the program in Fig-
ure 1(a) is given in Figure 1(c). The graph captures the dependencies between tabled
calls and calls to volatile predicate. It is first generated in the initial (non-incremental)
evaluation, and maintained over subsequent incremental runs.

The incremental algorithm has two phases. The first is the invalidation phase, where
calls that may be affected by the change are marked as affected.

Definition 4 (Initially Changed Calls) Given a called-by graph G = (V,E) and a
non-empty set C = C+ ∪C− of rules that were changed (inserted or deleted) since the
last run, the set of initially changed calls, denoted by init(G,C) are those v ∈ V such
that v unifies with the head of some rule in C.

Definition 5 (Affected Calls) Given a called-by graph G = (V,E) and a non-empty
set C = C+ ∪ C− of rules that were changed (inserted or deleted) since the last
run, the set of affected calls, denoted by affected(G, C), is the smallest set such that
v ∈ affected(C,G) if

– v ∈ init(G,C), or
– ∃v′ ∈ affected(G,C) such that (v′, v) ∈ E.

The set of affected calls (based on the above definition) can be found by simply travers-
ing the called-by graph starting from the vertices that unify with changed rule heads
(case (i) above). Note that the direction of edges in the called-by graph is reversed from
those in the subgoal dependency graph. It is this choice of direction that enables the
traversal of the called-by graph to compute the set of affected calls.

The idea behind the invalidation phase is calls that are not deemed affected are
unchanged by the modification, as formally stated below:

Theorem 1 Let P be an initial program, C = C+∪C− be the set of changed rules, and
P ′ = P ∪ C+ − C− be the changed program. Let G = (V,E) be the called-by graph
for some query over P . Then, every changed call is affected; i.e. changed(P,C) ⊆
affected(G,C).

Naive Re-Evaluation: Theorem 1 means that when some program rules change, it is
sufficient to re-evaluate the set of affected calls. Our first “naive” strategy is to remove
all table entries corresponding to the affected calls (i.e. their entries in the call table,
as well as their answer tables) and re-issue all affected calls, thereby computing them
using SLG resolution. This phase of incremental computation is called the re-evaluation
phase. Note that all affected calls are deleted to ensure that any answer derived for an
affected call is based only on valid information: either rederived answers of another
affected call, or existing answers of an unaffected call. While deleting the table entries
for an affected call, we also remove the corresponding vertex and the edges incident on
it from the called-by graph. Note that the re-evaluation may generate new vertices and
edges in the called-by graph. Thus the called-by graph itself is (incrementally) modified
when processing incremental changes.

5

For example, consider the deletion of the fact e(3,5) from the program in Fig-
ure 1(a). The invalidation phase identifies the calls e(3,X), r(3,X), r(2,X), r(4,X)
and r(1,X) as affected. Since these calls will be re-evaluated, the edges incident
on these vertices, i.e. e(3, X) → r(3, X), r(5, X) → r(3, X), e(4, X) → r(4, X),
r(4, X) → r(3, X), e(2, X) → r(2, X), r(2, X) → r(4, X), e(1, X) → r(1, X), and
r(2, X) → r(1, X), are deleted from the called-by graph. In the re-evaluation phase,
the call r(1,X) gives rise to calls r(2,X), r(3,X), and r(4,X), and their an-
swers are subsequently computed. These calls and the corresponding edges are added
(back) to the called-by graph. Note that, answers to unaffected calls can be found di-
rectly from the tables. For example, the call r(3,X) uses already existing answers for
e(3,X) and r(5,X); calls such as r(5,X) are unaffected by the deletion and are
not re-evaluated, thereby saving expensive program clause resolution steps.

Optimal Re-evaluation: The set of affected calls over-approximates the set of changed
calls. In many cases, the approximation may be severe and the naive re-evaluation strat-
egy wastefully re-evaluates unchanged calls. Consider the deletion of fact e(7,8)
from the program Figure 1(a). The invalidation phase identifies the calls e(7,X),
r(7,X), r(6,X), r(5,X), r(3,X), r(2,X), r(4,X), and r(1,X) as affected.
However, the set of changed calls is only e(7,X) and r(7,X), but the naive strategy
also re-evaluates all other affected calls.

We can define a better approximation to the changed set by considering which calls
need to be recomputed (even to determine that their answers have not changed). This
set, called the recomputed set is defined below.

Definition 6 (Recomputed Set) Let P be a program, C = C+ ∪ C− be the set of
changed rules, and P ′ = P ∪ C+ − C− be the changed program. Let G = (V,E) be
the called-by graph for some query q over P . Then, the set of recomputed calls, denoted
by recomputed(G, C), is the smallest set such that c ∈ recomputed(G,C) if

1. c ∈ init(G,C), or
2. there is some c′ such that (c′, c) ∈ E and c′ ∈ changed(P,C), or
3. there is some c′ such that c and c′ are in the same strongly connected component of

G, and c′ ∈ recomputed(G,C).

The recomputed set represents the smallest set of calls that need to be re-evaluated.
The intuition behind this definition follows from the following observations:

1. Every changed call needs to be re-evaluated.
2. Every call that immediately depends on a changed call needs to be re-evaluated

(even if it itself is not changed). Note that the called-by graph contains no more
qualitative information on how the change of a call affects another. Only the pro-
gram has this information embedded in it, and hence the only way to determine
whether or not such a call changes is to re-evaluate it.

3. If a re-evaluated call is in a SCC, then all calls in that SCC need to be re-evaluated.
For instance, when e(3,5) is deleted from the program in Figure 1(a), e(3,X)
is changed, and hence r(3,X) is recomputed. Note that we cannot simply delete
r(3,X)’s tables are re-evaluate it: since r(4,X) currently contains the answer
X=5, and e(3,4) holds, we will then (incorrectly) conclude that r(3,5) still
holds. Hence, we have to re-evaluate all mutually dependent calls simultaneously
(r(3,X), r(4,X) and r(2,X), in this case).

6

It follows from the definition that every changed call is also in the recomputed set.
It can also be readily shown that every call in the recomputed set is affected. Formally,

Proposition 2 Let P be a program, C = C+ ∪ C− be the set of changed rules, and
P ′ = P ∪ C+ − C− be the changed program. Let G = (V,E) be the called-by graph
for some query q over P . Then changed(P,C) ⊆ recomputed(G,C) ⊆ affected(G,C).

The key to incremental re-evaluation based on call dependency information is to
re-evaluate only the calls in the recomputed set. We need two basic mechanisms to
accomplish this: (a) one to determine whether a re-evaluated call is changed or not, and
(b) another to determine SCCs in the called-by graph.

a. Change Marking: First of all, instead of deleting all the affected tables in the in-
validation phase, we simply mark their answers as (currently) invalid. Invalid answers
are ignored when doing answer clause resolution. With each affected call, we also keep
the number of invalid answers (in a counter called invalid count), initialized to the to-
tal number of answers at the beginning of the re-evaluation phase. Finally, we keep a
flag with each affected call (called addl answer) to indicate whether a new answer was
added to this call’s answer table in the re-evaluation phase. During re-evaluation, when-
ever an answer is added to a table (New Answer operation in SLG), if the answer already
exists but is invalid, we remove the invalid mark and decrement invalid count for the
table. If the answer did not exist before, we add the answer and set addl answer of
the call to true. When a call is completely re-evaluated (at the Completion operation of
SLG), we can determine that the call is changed iff addl answer is true or invalid count
is non-zero.

b. Evaluating SCCs: Finding SCCs in the called-by graph is fundamental to evaluat-
ing the recomputed set. Apart from the explicit use of SCC information in its definition,
note that we determine whether or not a call is changed only after completion. This
means that we need to evaluate the calls “bottom-up” through the called-by graph, and
triggering re-evaluations at higher levels only after confirming that the lower-level calls
have changed. This strategy, when applied to acyclic graphs has been shown to be opti-
mal [19] (see Section 5 for a detailed discussion).

Algorithms for finding SCCs typically need an additional pass over the graph. We
now describe a technique to find SCCs without making this additional pass, by slightly
modifying the traversal used in the invalidation phase. This technique is based on
Kosaraju and Sharir’s SCC computation algorithm [7, pages 488–493], which works
as follows. To find SCCs in a graph G, we first traverse G and give post-order numbers
to the vertices in G. We then traverse GT , the transpose of G, starting from the vertex
with the highest post-order number; this traversal builds a spanning tree for one SCC of
G. Whenever the traversal ends, we begin a new traversal from the unvisited vertex with
the highest post-order number, thereby building a spanning tree for another SCC. This
process continues until all vertices have been visited, enumerating all SCCs of G. The
order in which SCCs are found by the Kosaraju-Sharir algorithm is a topological order
in the SCC-reduced graph of G: if (v1, v2) is an edge in E, then the SCC containing v1

is found at least as early as the one containing v2.

The Re-Evaluation Algorithm: We now describe a re-evaluation algorithm that im-
plicitly finds SCCs. In the invalidation phase, we traverse the called-by graph and assign
a post-order number to each affected call.

7

In the re-evaluation phase, shown in Figure 2, we maintain a sequence of calls to be
re-evaluated in a global sequence known as the working sequence (variable ws in the
algorithm). This sequence is maintained using a heap data structure, keeping the calls
in the descending order of their post-order numbers. During re-evaluation, we pick the
call with the highest post-order number from this and invoke the call. Re-evaluation
continues until the working sequence becomes empty. When the re-evaluation of a call
c is complete, if c has changed, we add all its immediate successors in the called-by
graph to the working sequence.

re eval(G, C)
1. ws := init(G,C);
2. while (ws is not empty)
3. remove c, the call with the

highest PO number from ws;
4. call(c);

In SLG’s Completion Op. for call c:
1. if (c.addl answer) or

(c.invalid count > 0)
2. foreach c′ such that (c, c′) ∈ E

3. if not c′.processed
4. add c′ to ws
5. c′.processed := true

Fig. 2. Optimal Re-Evaluation Algorithm

Note that, during re-evaluation,
if call c2 needs answers from c1’s ta-
ble, then (c1, c2) is an edge in the
called-by graph. Thus re-evaluation
implicitly traverses the transpose of
the called-by graph. If c1’s table is
either unaffected or has been recom-
puted completely, then c2 can use the
answers from that table. Otherwise,
c1 will also be re-evaluated. This en-
sures that all calls in an SCC of the
called-by graph will be evaluated si-
multaneously.

The correctness of the algorithm,
stated in the following theorem, can
be established following the proper-
ties of the Kosaraju-Sharir algorithm
and the definition of recomputed set.

Theorem 3 The set of calls picked by the re-evaluation algorithm (line 3 of re eval in
Figure 2) is the same as the recomputed set.

In the example, when e(7,8) is deleted, the reverse postorder of affected calls
is given by the sequence e(7,X), r(7,X), r(6,X), r(5,X), r(3,X), r(4,X),
r(2,X), r(1,X). The set of initially changed calls is {e(7,X)}. When e(7,X)
is re-evaluated, its answer e(7,8) is removed, and hence we deem the call to have
changed. This causes r(7,X) to be added to the working sequence. When this call is
re-evaluated, it too is deemed to have changed (answer r(7,8) is no longer derivable).
Hence we add r(6,X) to the working sequence. Re-evaluating r(6,X), we find that it
has not changed. The working sequence is now empty and the re-evaluation is complete.
Thus, among the 8 affected calls, we re-evaluated only 3. It should be noted that answers
to all affected calls have been marked invalid, and only a few of the affected calls are
re-evaluated. Hence the re-evaluation phase ends by cleaning up: i.e. that removes the
invalid mark from answers of tables that are affected but not re-evaluated. This step is
straightforward and not shown in Figure 2.

4 Experiments

We evaluated the performance of the naive and optimized algorithms on various classes
of table logic programs. Below we present the results of our experiments. The algo-

8

rithms are implemented by extending XSB logic programming system [27] (ver 2.7.1).
All measurements are taken on a PC with 3GHz Pentium 4 processor with 2GB of phys-
ical memory running Linux (RedHat) version 2.6.9. Our implementation, benchmarks,
additional experimental results on simple reachability analysis and push down model
checking are available at [24].

Dynamic Programming: We now present the performance of incremental evaluation
on a set of familiar dynamic programming problems, which are canonical examples of
the advantages of memoization in both functional programming and logic programming
worlds. Support graph based incremental techniques [25] cannot be directly used to cap-
ture the answer dependencies in these problems due to the use of aggregation operations
(min, max etc.). Figure 3 summarizes the relative time performance of incremental eval-
uation (w.r.t. from-scratch evaluation time) averaged over several possible changes for
different dynamic programming problems: longest common subsequence (LCS), mini-
mum edit distance (EDD), and matrix chain multiplication (MM). The figure presents
the average performance

LCS EDD MM

invalidation
re−evaluation

na
iv

e

op
t

na
iv

e

op
t

na
iv

e

op
t 0

 20

 40

 60

 80

 100

%
 ti

m
e o

f f
ro

m
−s

cr
at

ch

Fig. 3. Performance on Dynamic Prog. problems

LCS: We evaluated the perfor-
mance of incremental evaluation on
LCS by changing the character at
some position in one of the strings.
On average, 50% calls are affected,
and 11% of are changed and 15% are
recomputed. Although only 15% of
the calls are re-evaluated by our op-
timized incremental algorithm, the
time taken for re-evaluation is close
30%. This is due to the over-
head of answer clause resolution
that our current implementation per-
forms (from the top-level) even for

calls that are not recomputed. Incremental evaluation of LCS is sensitive to positions of
characters in the string that were changed. This can be readily seen from Figure 4.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

%
 o

f c
al

ls

Positions in string of length 300

affected
re-computed

changed

Fig. 4. The effect of the changed position on the
performance of incremental evaluation of LCS.

EDD: The solution to EDD is very
similar to that of LCS. The two prob-
lems differ in the number of depen-
dent calls for each call. Every call
in EDD evaluation is connected to
3 calls in the call-by graph whereas
in LCS each call is connected to at
most 2 calls. Hence the number of
affected calls in higher in EDD, re-
sulting in higher invalidation time.
MM: For matrix chain multiplica-
tion, we deleted one matrix from the
chain and measured the incremental
and from-scratch time to do the eval-
uation. Each affected call is also re-

9

computed. Hence the optimal algorithm does not show better performance over the
naive one.

invalidation

re−evaluation

na
ive op

t

na
ive op

t
left right

random

na
ive op

t

na
ive op

t

left right

dag

 0

 20

 40

 60

 80

 100

%
tim

e o
f f

rom
−s

cra
tch

Fig. 5. Performance of Incremental Algorithms
on All-Pair Shortest Path

All-Pair Shortest Path: We ex-
perimented with encodings of the
all-pair shortest path problem on a
directed acyclic graph having 50K
nodes and randomly generated graph
having 50K edges and 250 nodes
(close to complete graph). We per-
formed separate experiments with
two different logic program en-
codings (with left and right recur-
sion, resp.). For the almost-complete
graph, incremental evaluation algo-
rithms are not effective since almost
all calls are recomputed. For DAGs,
the left-recursive version shows poor

incremental performance due to lack of call dependency information.
Data Flow Analysis Reaching definition analysis for imperative programs is a well-
known data flow analysis which determines, for each program point, the set of vari-
able definitions (assignments) that may reach that point [2]. We extended the intra-
procedural analysis to an inter-procedural setting using the classical approach of replac-
ing procedure calls with jumps: from the call site to the entry point of the callee, and
from the exit point of the callee to the statement following the call site. The experiments
were performed on various large C programs and for each benchmark 100 random state-
ments (one per incremental run) were chosen for replacement with a skip statement. The
logic programming formulation of data flow analysis uses stratified negation, and the
techniques based on answer dependency [25] cannot be readily used in this case.

Benchmark Non Non-opt. Incremental Opt. Incremental % of calls % of aff. calls
Incr. Invalid Re-eval % Invalid Re-eval % affected recomputed changed

assembler 5.9477 0.0013 3.6001 60.6 0.0011 3.6393 61.2 23.5 85 1
diff 4.5451 0.0009 2.2256 49.0 0.0008 2.2358 49.2 30.9 97 1
dixie 1.7306 0.0006 0.9609 55.6 0.0005 0.9405 54.4 26.8 95 7
gnugo 4.4097 0.0008 2.3761 53.9 0.0007 2.4185 54.8 30.6 99 1
learn 1.2925 0.0005 0.5250 40.7 0.0004 0.5354 41.4 26.6 93 9
smail 5.5063 0.0010 2.8868 52.4 0.0008 2.8455 51.7 25.4 98 2

Table 1. Reaching Definitions; One statement replaced with skip

Table 1 shows that incremental algorithms takes on average 50% of from-scratch
time although number of affected calls is close to 30%. Closer inspection reveal that for
these examples 90% of the call nodes belong to a few non-trivial SCCs in the called-
by graph. The formation of such large SCCs is due the inter-procedural jumps which
introduce cycles even when the original program had no recursion. Due to the large
SCCs, most affected calls are also recomputed. For example in benchmark learn 93%
of the affected calls are recomputed but only 9% of the affected calls are changed. This
suggests that the flow analysis program itself is readily incrementalized. It remains

10

to be seen whether the program can be reformulated to enable incremental evaluation
(analogous to converting right-recursion to left to obtain efficient tabled programs).

Pointer Analysis We used the call-graph based techniques for the incremental eval-
uation of Anderson’s Points-to analysis [3] encoded as a tabled logic program [23].
We measured the performance of the analyzer on programs taken from C benchmarks
available with PAF [16] compiler suite and SPEC95 benchmarks. The C source code
is preprocessed using CIL [15] into Prolog facts representing the primitive assignment
statements. Each library function was replaced by a stub representing the data flow be-
tween its formal parameters and return value and preprocessed in the same manner. The
lines of code for twmc, nethack and vortex are 24959, 33993, and 67110 respectively.

Benchmark Non Naive Incremental Opt. Incremental % of calls % of aff. calls
Incr. Invalid Re-eval % Invalid Re-eval % affected recomputed changed

m88ksim 0.3911 0.0019 0.0375 10.1 0.0014 0.0252 6.8 1.1 56.4 25.2
vpr 0.6481 0.0123 0.1875 30.8 0.0080 0.1725 27.8 4.0 57.9 6.1
smail 1.6520 0.0141 1.1793 72.2 0.0061 1.1884 72.3 6.0 90.3 25.8
twmc 2.2172 0.0077 0.9345 42.5 0.0030 0.9221 41.7 2.9 85.7 6.0
nethack 0.9778 0.0053 0.8046 82.8 0.0026 0.8020 82.2 5.6 67.2 12.8
vortex 12.44 0.0408 12.1018 97.5 0.0169 11.3504 91.3 5.5 68.3 6.6

Table 2. Performance of naive and optimized algorithms on pointer analysis

Table 2 shows the relative performance of naive and optimized incremental algo-
rithms after removal of one (source-level) statement from the benchmark programs
compared to the from-scratch time. Deleting one source level assignment statement
may delete multiple primitive assignments statements and hence multiple facts. The ex-
periments results are averaged over 100 randomly chosen deletion of source statements.

Observe that the incremental times for large benchmarks are close to the non-
incremental times. We investigated the vortex program to explain its behavior. Pointer
analysis of vortex makes 68K calls in total of which on average 4K calls are affected.
Close inspection of affected calls revealed the existence of large SCC (consisting 2.7K
nodes) in the call graph. Also about 90% of the time taken by pointer analysis is at-
tributed to the calls in the large SCC. Since the nodes in the SCC are part of the affected
set, re-evaluation takes almost same time as from-scratch analysis. The calls in the SCC
are also in the recomputed set and hence we do not observe any appreciable difference
in the performance of the optimized algorithm relative to its naive counterpart.

XML Validation We investigated incremental validation of XML documents with
respect to Document Type Definitions (DTD) [4]. DTD is an extended context-free
grammar which defines a regular expression for each element type of XML document.
An XML document forms a tree, and the string corresponding to an element of an XML
document is the concatenation of the labels of its children. An element E is said to be
valid with respect to a DTD D if all its children are valid, and the string corresponding
to E belongs to the regular language defined in DTD corresponding to the type of E.
An XML document is said to be valid with respect to a DTD D if the root element
is valid. Given a document X valid with respect to an a DTD D and an update to the
document X , incremental validation determines whether the updated document is still
valid with respect to D.

11

Table 3 shown the result of applying the naive algorithm for incremental validation
of XML documents for different number of elements (first column). The example XML
documents and DTD describe a library catalog which contains zero or more number

No. of Non-Incr Non-Opt. Incremental
Elements Invalid Re-eval %
12K 0.1848 0.000 0.0023 1.25
120K 1.8855 0.000 0.0293 1.55
240K 3.7926 0.000 0.0604 1.59
360K 5.6746 0.000 0.0933 1.64
480K 7.6301 0.000 0.1241 1.62
600K 9.6027 0.000 0.1581 1.64

Table 3. XML Validation; deletion of one ele-
ment

of books. Each book contains
zero of more number of authors fol-
lowed by title. Each author has a
name, zero or more emails and an
address. The elements types name,
address, emails and title are defined
as PCDATA. We generated XML
documents having 1K–50K books,
with up to 3 authors per book and
up to 3 email addresses per author.
Each update consists of deletion of

one book element from the chain of book elements of the library. The number of af-
fected calls is less than 0.01% of total number of calls.

Note that the basic problem here is to check whether a string belongs to a regular
language or not. We encoded this checker as a left-recursive DCG, and hence do not
expect to see any benefits due to the optimized algorithm. In the example above, the
savings due to incremental evaluation arise from reusing the prior validation of each
book element. Since the number of books is large, it results in considerable savings due
to incremental evaluation.

Space Overhead We measured the space overhead for keeping the called-by graph for
various applications. Note that although the number of nodes in the called-by graph is
bounded by the number of tabled calls, the number of edges can large. Observe from
Table 4 w that space needed for the called-by graph is about 30% of the table space
for most of the applications. For matrix chain multiplication with chain length n, the
number of calls is O(n2) but the number of called-by graph edges is O(n3). This con-
tributes to the large size of the called-by graph compared to its table space. For such
applications, it may be better to not materialize the called-by graph, as described in 6.

Application Table Space Called-by Graph Size
Pointer Analysis (vortex) 51.0 13.6
Pointer Analysis (twmc) 18.3 3.5
Matrix Multiplication (chain 200) 4.0 75.0
Longest Common Subsequence (strlen 1000) 168.7 50.1
Minimum Edit Distance (strlen 600) 63.3 21.6
Reaching Definition (diff) 211.0 39.3
XML validation (60K elements) 107.0 13.0

Table 4. Space overhead (in MB) for called-by graph

12

5 Related Work

The idea of recording the evaluation process as a graph and using a topological order
to guide incremental change propagation has been used in various fields of program
analysis, model checking, functional programming, and logic programming.

Incremental attribute grammar evaluation [19] generates an acyclic dependency
graph to record the functional dependencies among attribute values in the non-circular
attribute grammar. The dependency graph considered there is static and acyclic; the
topological order in the graph was found in a pre-processing phase and the change
propagation was performed in that order. The paper showed that the change propagation
was optimal. The augmented dependency graph (ADG) [1], records the dependencies
between input and output values in the execution of pure functional programs having
branches. The dependencies are dynamic in this setting, and an incremental topological
order maintenance algorithm was used for efficiency in change propagation. However,
ADGs can represent only acyclic dependencies. The dependency graph considered in
our work is potentially cyclic and dynamic. Thus our change propagation algorithm
applies to a more general setting than adaptive functional programming.

In [12, 13] Hermenegildo et. al. presented incremental algorithms for re-analysis of
logic programs and constraint logic programs respectively. They use call dependency to
propagate changes due to insertion and deletion of rules. They also presented a bottom-
up deletion algorithm which uses SCC-reduced predicate dependency graph to propa-
gate the changes from a topologically lower predicate SCC to a higher one only after the
lower SCC is completely evaluated. In [17] this algorithm was improved by propagating
changes through dynamic call graph instead of predicate dependency graph. The paper
also points out that the more accurate dependency graph will result in more localized
change propagation.

6 Discussion

In this section we discuss possible extensions to the algorithms presented in Section 3.

Lazy re-evaluation. The algorithms presented in Section 3 refreshes all answer tables
such that after each incremental phase the set of answers is sound and complete with
respect to the changed program. Certain applications, such as ontology management,
access tables through a graphical user interface, and access some or all of the answers
only when required. In such cases, it will be better to re-evaluate a call only on demand.
This can be done by keeping the subgoal dependency graph to propagate demand top-
down, while keeping the called-by graph to perform re-evaluations bottom-up.

Insertion for Definite Logic Programs. The algorithm presented in the paper de-
termines which calls need to be re-evaluated, but does not prescribe what technique
should be used to re-evaluate them. When the direction of the change (i.e. whether it
is an addition, deletion or both) is known, it is possible to derive better techniques for
re-evaluating calls. If the change made is an addition and the program has no negation,
we can derive a new program that computes these changes efficiently. The rules of the
new program are called “delta rules” and are derived by finite-differencing the origi-
nal definite program [11, 22]. This has a potential to significantly improve incremental

13

evaluation times. For example, a single statement insertion using delta rules takes on av-
erage 8% of from-scratch time for pointer analysis in vortex benchmark whereas it takes
90% of from-scratch time when the affected calls are completely re-evaluated. While it
is relatively straightforward to use the “delta rules” program for incrementally process-
ing additions for predicates without negation, light-weight re-evaluation techniques for
other kinds of changes and for general logic programs remains an open problem.

Mixed Strategy. In [25] we described a space efficient technique for storing answer
dependencies in the form of symbolic support graph for incremental evaluation of an
important class of tabled logic programs. Since answer dependency is more fine-grained
than call dependency, symbolic support graph based deletion algorithm are extremely
efficient in practice— taking less than 5% of from-scratch time in all the applications we
have tested. We can combine the two techniques, keeping call dependencies in general
but keeping symbolic support graphs to efficiently process deletions whenever possible.

Non-materialized called-by graph. Although the call dependencies are typically
smaller than answer dependencies, and the number of calls is bounded by table space,
we saw an example (matrix chain multiplication) where the called-by graph takes much
more space than the tables themselves. It is hence worth exploring whether we can
avoid storing the edges of the called-by graph, and instead compute them on the fly.
It is relatively easy to derive the called-by relation a given definite logic programs. For
instance, from every rule of the form p :− q1, q2, . . . , qn we can derive “called-by” rules
such as called by(qi, p) :− q1, q2, . . . , qi−1.}. Although it is not clear whether such
rules can be derived for arbitrary logic programs (especially those employing impure
constructs such as cuts), the computed called-by relation, wherever possible, offers a
space-efficient alternative to storing large called-by graphs.

Summary. We presented an incremental evaluation algorithm based on call depen-
dencies that can handle tabled logic programs with negation, aggregation and Prolog
builtins. Experiments show that the general algorithm is useful although not as effec-
tive as the (more restricted) answer-dependency-based techniques. The algorithm iden-
tifies a small set of calls to be re-evaluated and invokes them in a particular order to
ensure optimality. The actual re-evaluation itself is performed rather naively, by (effec-
tively) removing all answers from a table to be re-evaluated and using program clause
resolution to restore the answer table. More sophisticated techniques that optimize the
re-evaluation itself are of significant interest. Our experience with this algorithm shows
that programs written for efficient tabled evaluation may not be most suited for efficient
incremental evaluation too. Developing a methodology to write efficient incremental
programs (analogous to recursion transformations and supplementary tabling for tabled
programs) is an important avenue of future research.

References

1. U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. In POPL,
pages 247–259. ACM Press, 2002.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and tools, pages
585–718. Addison-Wesley, 1986.

3. L. O. Anderson. Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, Unversity of Copenhagen, 1994.

14

4. A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation of xml documents.
ACM Trans. Database Syst., 29(4):710–751, 2004.

5. W. Chen, T. Swift, and D. S. Warren. Efficient implementation of general logical queries.
JLP, 1995.

6. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.
JACM, 43(1):20–74, 1996.

7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction To Algorithms. MIT Press,
2nd edition, 1998.

8. S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using general
purpose logic programming systems — a case study. In ACM PLDI, pages 117–126, 1996.

9. H. Guo and G. Gupta. A simple scheme for implementing tabled logic programming systems
based on dynamic reordering of alternatives. In ICLP, pages 181–196. Springer, 2001.

10. A. Gupta and I. Mumick. Maintenance of materialized views: Problems, techniques, and
appfications. IEEE Data Engineering Bulletin, 18(2):3–18, 1995.

11. A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In
SIGMOD, pages 157–166, 1993.

12. M. Hermenegildo, G. Puebla, K. Marriott, and P. J. Stuckey. Incremental analysis of con-
straint logic programs. ACM Trans. Program. Lang. Syst., 22(2):187–223, 2000.

13. M. V. Hermenegildo, G. Puebla, K. Marriott, and P. J. Stuckey. Incremental evaluation of
tabled logic programs. In ICLP, MIT Press, pages 797–811, 1995.

14. J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.
15. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools

for analysis and transformation of C programs. In Compiler Construction, pages 213–228.
Springer-Verlag, 2002.

16. PAF. Prolangs analysis framework. Available at http://www.prolangs.rutgers.
edu/public.html.

17. G. Puebla and M. V. Hermenegildo. Optimized algorithms for incremental analysis of logic
programs. In SAS, pages 270–284, 1996.

18. C. R. Ramakrishnan et al. XMC: A logic-programming-based verification toolset. In CAV,
number 1855 in LNCS, pages 576–580, 2000.

19. T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis for
language-based editors. TOPLAS, 5(3):449–477, 1983.

20. R. Rocha, F. Silva, and V. S. Costa. YapTab: A Tabling Engine Designed to Support Paral-
lelism. In Workshop on Tabling in Parsing and Deduction, 2000.

21. K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order stratified
programs. TOPLAS, 8(1):1–49, 1999.

22. D. Saha and C. R. Ramakrishnan. Incremental evaluation of tabled logic programs. In ICLP,
volume 2916 of LNCS, pages 389–406, 2003.

23. D. Saha and C. R. Ramakrishnan. Incremental and demand-driven points-to analysis using
logic programming. In Principles and Practice of Declarative Programming. ACM Press,
2005.

24. D. Saha and C. R. Ramakrishnan. A practical framework for incremental evaluation, 2005.
Available at http://www.lmc.cs.sunysb.edu/˜dsaha/callg.

25. D. Saha and C. R. Ramakrishnan. Symbolic support graph: A space efficient data struc-
ture for incremental tabled evaluation. In International Conference on Logic Programming
(ICLP), 2005. See http://www.lmc.cs.sunysb.edu/˜dsaha/symspt/.

26. H. Tamaki and T. Sato. OLDT resolution with tabulation. In ICLP, pages 84–98, 1986.
27. XSB. The XSB logic programming system. Available at http://xsb.sourceforge.

net.
28. N. Zhou, Y. Shen, L. Yuan, and J. You. Implementation of a linear tabling mechanism.

Journal of Functional and Logic Programming, 2001(10), October 2001.

15

