
A Model Checker for Value-Passing
Mu-Calculus using Logic Programming?

C. R. Ramakrishnan

Department of Computer Science,
SUNY at Stony Brook

Stony Brook, NY 11794–4400, USA
E-mail: cram@cs.sunysb.edu

Abstract. Recent advances in logic programming have been successfully
used to build practical verification toolsets, as evidenced by the XMC
system. Thus far, XMC has supported value-passing process languages,
but has been limited to using the propositional fragment of modal mu-
calculus as the property specification logic. In this paper, we explore the
use of data variables in the property logic. In particular, we present value-
passing modal mu-calculus, its formal semantics and describe a natural
implementation of this semantics as a logic program. Since logic programs
naturally deal with variables and substitutions, such an implementation
need not pay any additional price— either in terms of performance, or in
complexity of implementation— for having the added flexibility of data
variables in the property logic. Our preliminary implementation supports
this expectation.

1 Introduction

XMC is a toolset for specifying and verifying concurrent systems [RRS+00].
Verification in XMC is based on temporal-logic model checking [CES86]. In its
current form, temporal properties are specified in the alternation-free fragment
of the modal mu-calculus [Koz83]; and system models are specified in XL, a
process language with data variables and values, based on Milner’s CCS [Mil89].
The computational components of the XMC system, namely, the compiler for
the specification language, the model checker, and the evidence generator are
built on top of the XSB tabled logic programming system [XSB].

XMC started out in late 1996 as a model checker for basic CCS— i.e., CCS
without variables. Subsequently, we extended the model checker to XL (which
has variables and values) by exploiting the power of the logic programming
paradigm to manipulate and propagate substitutions. But the property logic
has remained as the propositional (i.e., variable-free) modal mu-calculus. In this
paper, we describe how the model checker in XMC can be extended to handle the
value-passing modal mu-calculus, a logic that permits quantified data variables.

To date, there have been two streams of work on model checking value-
passing calculus. Rathke and Hennessy [RH97] develop a local model checking
? Research supported in part by NSF grants EIA-9705998 and CCR-9876242.

algorithm, but consider constructs in the value-passing calculus that prevent any
guarantees on the completeness of the algorithm. Mateescu [Mat98] also gives
a local algorithm, but for the alternation-free fragment of the calculus. The
performance of the algorithms are not discussed in either work, but Mateescu’s
algorithm has been incorporated in the CADP verification toolkit [FGK+96].

In contrast to these two works, we consider a relatively simple but still ex-
pressive set of value-passing constructs in the calculus, and describe a model
checker that can be constructed with very minor changes to the propositional
model checker. It should be noted that our model checker is also local. Further-
more, the extensions proposed here can be applied to mu-calculus formulas of
arbitrary alternation depth, and that too with little overhead for handling the
propositional fragment of the logic. This is yet another illustration of the expres-
siveness of the logic programming paradigm and its potential for improving the
state of the art in an important application area.

The rest of the paper is organized as follows. We begin with a description
of modal mu-calculus, its semantics and its model checker as a logic program
(Section 2). We then introduce the value-passing modal mu-calculus and its
semantics (Section 3) and describe the changes needed in the model checker to
support value passing (Section 3.3). We show that the performance of the model
checker for the value-passing calculus matches the performance of the original
model checker for the propositional case (Section 3.4). The work on value-passing
logics raises interesting issues on model checking formulas with free variables,
which can be used to query the models (Section 4).

2 Propositional Modal Mu-calculus

The modal mu-calculus [Koz83] is an expressive temporal logic whose semantics
is usually described over sets of states of labeled transition systems (LTSs). An
LTS is a finite directed graph with nodes representing states, and edges repre-
senting transitions between states. In addition, the edges are labeled with an
action, which is a symbol from a finite alphabet. The LTS is encoded in a logic
program by a set of facts trans(Src, Act, Dest), where Src, Act , and Dest
are the source state, label and target state, respectively, of each transition.

Preliminaries: We use the convention used in logic programming, writing vari-
able names in upper case, function and predicate names in lower case. We use
θ to denote substitutions, which map variables to terms over a chosen signature
(usually the Herbrand domain). By {X←t} we denote a substitution that maps
variable X to term t. Application of a substitution θ to a term t is denoted by
t[θ], and composition of substitutions is denoted by ‘◦’.

2.1 Syntax

Formulas in the modal mu-calculus are written using the following syntax:

ϕ −→ Z | tt | ff | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈A〉ϕ | [A]ϕ | µZ.ϕ | νZ.ϕ

In the above, Z is drawn from a set of formula names and A is a set of actions;
tt and ff are propositional constants; ∨ and ∧ are standard logical connectives;
and 〈A〉ϕ (possibly after action A formula ϕ holds) and [A]ϕ (necessarily after
action A formula ϕ holds) are modal operators. The formulas µZ.ϕ and νZ.ϕ
stand for least- and greatest- fixed points respectively.

For example, a basic property, the absence of deadlock, is expressed in this
logic by the following formula:

νdf.[−{}]df ∧ 〈−{}〉tt (1)

where ‘−’ stands for set complement (and hence ‘−{}’ stands for the universal
set of actions). The formula states that from every reachable state ([−{}]df) a
transition is possible (〈−{}〉tt)

Fixed points may be nested. For instance, the property that a ‘b’ action is
eventually possible from each state is written as:

νib.[−{}]ib ∧ 〈−{}〉(µeb.〈{b}〉tt ∨ 〈−{b}〉eb) (2)

The inner fixed point (involving the formula name eb) states that a ‘b’ tran-
sition is eventually reachable, and the outer fixed point (involving the formula
name ib) asserts that the inner formula is true in all states.

Apart from nesting, the inner fixed point may refer to the formula name
defined by the outer fixed point. Such formulas are called alternating fixed points.
For instance, the property that a ‘c’ action is enabled infinitely often on all
infinite paths is written as:

νax.µay.[−{}]((〈{c}〉tt ∧ ax) ∨ ay) (3)

2.2 Semantics

Given the above syntax of mu-calculus formulas, we can talk about free and
bound formula names. For instance, in the alternating fixed point formula given
above, consider the inner least fixed point subformula: in that subformula, the
name ax occurs free and ay is bound. To associate a meaning with each formula,
we consider environments that determine the meanings of the free names in a
formula.

A mu-calculus formula’s semantics is given in terms of a set of LTS states.
The environments map each formula name to a set of LTS states. We denote the
semantics of a formula ϕ as [[ϕ]]σ, where σ is the environment.

The formal semantics of propositional mu-calculus is given in Figure 1. The
set U denotes the set of all states in a given LTS, whose transition relation
is represented by trans/3. The equations defining the semantics of boolean
operations, as well as the existential and universal modalities are straightforward.
The least fixed point is defined as the intersection (i.e., the smallest) of all the
pre-fixed points, while the greatest fixed point is defined as the union (i.e, the
largest) of all post-fixed points.

[[tt]]σ = U
[[ff]]σ = { }
[[Z]]σ = σ(Z)

[[ϕ1 ∨ ϕ2]]σ = [[ϕ1]]σ ∪ [[ϕ2]]σ

[[ϕ1 ∧ ϕ2]]σ = [[ϕ1]]σ ∩ [[ϕ2]]σ

[[〈A〉ϕ]]σ = {s | ∃a ∈ A such that trans(s,a,t) and t ∈ [[ϕ]]σ}
[[[A]ϕ]]σ = {s | ∀a ∈ A, trans(s,a,t)⇒ t ∈ [[ϕ]]σ}
[[µZ.ϕ]]σ = ∩{S | [[ϕ]]{Z←S}◦σ ⊆ S}
[[νZ.ϕ]]σ = ∪{S | S ⊆ [[ϕ]]{Z←S}◦σ}

Fig. 1. Semantics of propositional modal mu-calculus

2.3 Model checker as a logic program

We now describe how a model checker for modal mu-calculus can be encoded
as a logic program. We first outline the representation of mu-calculus formulas,
and then derive a model checker based on the semantics in Figure 1.

Syntax We represent modal mu-calculus formulas by a set of fixed point equa-
tions, analogous to the way in which lambda-calculus terms are presented using
the combinator notation. We denote least fixed point equations by += and great-
est fixed point equations by -=. We also mark the use of formula names by
enclosing it in a form(·) constructor. The syntax of encoding of mu-calculus
formulas is given by the following grammar:

F −→ form(Z) | tt | ff | F \/ F | F /\ F | diam(A, F) | box(A, F)

D −→ Z += F (least fixed point)
| Z -= F (greatest fixed point)

Nested fixed point formulas are encoded as a set of fixed point equations. For
instance, the nested fixed point formula for “always eventually b” (Formula (2))
is written in equational form as:

ib -= box(-{}, form(ib)) /\ diam(-{}, form(eb))
eb += diam({b}, tt) \/ diam(-{b}, form(eb))

(4)

Alternating fixed point formulas can be captured in equational form by ex-
plicitly parameterizing each fixed point by the enclosing formula names. For
instance, the property “infinitely often c” (Formula (3)) is written in equational
form as:

ax -= form(ay(form(ax)))
ay(AX) += box(-{}, (diam({c}, tt) /\ AX)) \/ form(ay(AX))

(5)

Semantics Based on the semantics in Figure 1, a model checker for propo-
sitional modal mu-calculus can be encoded using a predicate models/2 which
verifies whether a state in a LTS models a given formula. For encoding the se-
mantics note that the existential quantifier and the least fixed point computation
can be inherited directly from the Horn clause notation and tabled resolution
(minimal model computation) respectively. The encoding of a model checker for
this sublogic is given in Figure 2.

models(State_S, tt).

models(State_S, (F1 \/ F2)) :-

models(State_S, F1) ;

models(State_S, F2).

models(State_S, (F1 /\ F2)) :-

models(State_S, F1),

models(State_S, F2).

models(State_S, diam(As, F)) :-

trans(State_S, Action, State_T),

member(Action, As),

models(State_T, F).

models(State_S, form(FName)) :-

FName += Fexp,

models(State_S, Fexp).

Fig. 2. A model checker for a fragment of propositional mu-calculus

In order to derive a model checker for the remainder of the logic, two key
issues need to be addressed: (i) an encoding of the ‘∀’ quantifier which is used
in the definition of the universal modality, and (ii) a mechanism for computing
the greatest fixed points.

Encoding greatest fixed point computation: The greatest fixed point com-
putation can be encoded in terms of its dual least fixed point computation using
the following identity:

νZ.ϕ ≡ ¬µZ ′.¬ϕ[{Z←¬Z ′}]

For alternation-free mu-calculus formulas, observe that the negations between
a binding occurrence of a variable and its bound occurrence can be eliminated
by reducing the formula to negation normal form. For instance, the nested fixed
point formula above (Formula (4)) can be encoded using least fixed point oper-
ators and negation (denoted by neg(·)) as:

ib += neg(form(nib))
nib += diam(-{}, form(nib)) \/ box(-{}, neg(form(eb))
eb += diam({b}, tt) \/ diam(-{b}, form(eb))

Thus, there are no cycles through negation for alternation-free formulas. For for-
mulas with alternation, the transformation introduces cycles through negation.
For instance, the alternating fixed point formula originally encoded as

ax -= form(ay(form(ax)))
ay(AX) += box(-{}, (diam({c}, tt) /\ AX)) \/ form(ay(AX))

can be encoded using least fixed point operators and negation as

ax += neg(form(nax))
nax += neg(form(ay(neg(form(nax)))))
ay(AX) += box(-{}, (diam({c}, tt) /\ AX)) \/ form(ay(AX))

Note the cycle through negation in the definition of nax that cannot be elimi-
nated. Given that all the currently-known algorithms for model checking alter-
nating formulas are exponential in the depth of alternation, it appears highly
unlikely that there is some formulation of this problem in terms of negation that
avoids negative cycles.

Cycles and Negation: Logic programs where predicates are not (pairwise) mu-
tually dependent on each other via negation are called stratified. A stratified pro-
gram has a unique least model which coincides with its well-founded model [vRS91],
as well as its stable model [GL88]. A non-stratified program (i.e., where there are
cycles through negation) may have multiple stable models or none at all; whereas
it has a unique (possibly three-valued) well-founded model. For non-stratified
programs, well founded models can be computed in polynomial time [CW96],
while determining the presence of stable models is NP-complete. Hence, we avoid
cycles through negation in our encoding wherever possible.

forall(BoundVars, Antecedent, Consequent) :−
bagof(Consequent, Antecedent, ConsequentList),
all true(ConsequentList).

all true([]).
all true([Goal | Rest]) :−

call(Goal),
all true(Rest).

Fig. 3. Implementing forall/3 using Prolog builtins

Encoding the universal quantifier: The universal quantifier can be cast
in terms of its dual existential quantifier using negation, but this can intro-
duce cycles through negation even for alternation-free mu-calculus formulas. For
instance, in the formula expressing deadlock-freedom property (Formula (1)) re-
placing the box-modality with its dual using negation will result in the following
encoding:

df -= neg(diam(-{}, neg(form(df)))) \/ diam(-{}, tt)

Hence we retain the box-modality and use an explicit programming construct
forall/3 to encode the model checker. The forall/3 construct can itself be
implemented using other Prolog builtins as shown in Figure 3. It should be
noted that the above implementation of forall/3 is correct only when there are
no free variables. In the presence of free variables, one needs to keep track of
their substitutions, and in general, disequality constraints on their substitutions.
However, for the mu-calculus model checkers considered in this paper, we can
ensure that there are no free variables in any use of forall/3, and hence this
simple implementation suffices. When there are no free variables, we do not need
to keep track of bound variables either, and hence the Prolog variable BoundVars
in the above implementation is treated like an anonymous variable.

The encoding of the model checker for the remainder of the logic is shown
in Figure 4. Taken together with Figure 2, the encoding reduces model checking
to logic-program query evaluation: verifying whether a state S models a for-
mula F is done by issuing the query models(S,F). By using a goal-directed
query evaluation mechanism, we ensure that the resultant model checker ex-
plores only a portion of the state space that is sufficient to prove or disprove a
property [RRR+97].

3 Value-Passing Modal Mu-Calculus

We consider value-passing modal mu-calculus where the actions in modalities
may be terms with data variables, and the value of these variables can be
“tested” using predicates. The quantification of a data variable is determined
by the modality in which it first appears. A data variable bound by a dia-
mond modality is existentially quantified, and that bound by a box modality
is universally quantified. The scope of the modality is same as the scope of the
quantification.

The presence of data variables makes property specification concise, and,
more importantly, independent of the underlying transition system. For instance,
consider the specification of a property of a protocol that states that every mes-
sage sent will be eventually received, where different messages are distinguished
by identifiers ranging from 1 to some integer n. This property is expressed by
the formulas in Figure 5, encoded in logics without (non-value-passing) and
with (value-passing) data variables. Consider the non-value-passing case with
the number of distinct messages (i.e., n in the figure) is two. The formula str
states that after every s1 (i.e., send of message 1) rcv1 must hold; and after

models(State_S, box(As, F)) :-

forall(State_T,

(trans(State_S, Action, State_T), member(Action, As)),

models(State_T, F)).

models(State_S, form(FName)) :-

FName -= Fexp,

negate(Fexp, NegFexp),

tnot(models(State_S, NegFexp)).

models(State_S, neg(form(Fname))) :-

FName += Fexp,

tnot(models(State_S, Fexp)).

models(State_S, neg(form(Fname))) :-

FName -= Fexp,

negate(Fexp, NegFexp),

models(State_S, NegFexp).

negate(tt, ff).

negate(ff, tt).

negate(F1 /\ F2, G1 \/ G2) :- negate(F1, G1), negate(F2, G2).

negate(F1 \/ F2, G1 /\ G2) :- negate(F1, G1), negate(F2, G2).

negate(diam(A, F), box(A, G)) :- negate(F, G).

negate(box(A, F), diam(A, G)) :- negate(F, G).

negate(form(FName), neg(form(FName))).

Fig. 4. A model checker for the remainder of the propositional mu-calculus

Without
Value-passing:

str -= box({s1}, form(rcv1))

/\ box({s2}, form(rcv2)) · · ·
/\ box({sn}, form(rcvn))

/\ box(-{s1, s2, . . ., sn}, form(str))

rcv1 += box(-{r1}, form(rcv1))

rcv2 += box(-{r2}, form(rcv2))
...

rcvn += box(-{rn}, form(rcvn))

With
Value-passing:

str -= box({s(X)}, form(rcv(X))) /\

box(-{s()}, form(str))

rcv(X) += box(-{r(X)}, form(rcv(X)))

Fig. 5. Mu-calculus formulas with and without value-passing

every s2 (i.e., send of message 2) rcv2 must hold; and after every non-send ac-
tion str itself holds. The formula str is a greatest fixed point equation since
the property holds on all (infinite) paths of evolution of the system that contain
no sends. The formula rcv1 (rcv2) states that the action r1 (r2) is eventually
enabled on all evolutions of the system.

Note that in the non-value-passing case, we have to enumerate the rcvi for
each i. In contrast, we can state the property in a value-passing logic with a
single formula using variables quantified over [1,n]. As the example shows, the
formula need not even specify the domain of quantification if the underlying
system generates only values in that domain.

3.1 Syntax

Before we describe the semantics of the value-passing logic, we extend our defi-
nition of LTSs, to include labels that are drawn from a finite set of ground terms
(i.e., terms without variables) instead of just atoms. Similarly, we extend the
syntax of the logic to have actions in modalities range over arbitrary (ground
or nonground) terms. The syntax of the value-passing logic is thus extended as
follows.

We divide the set of symbols into four disjoint sets: variables, predicate sym-
bols, function symbols, and formula names. Terms built over these symbols are
such that the formula names and predicate symbols occur only at the root. Let
F represent terms with function names at root; P represent terms with predi-
cate symbols at root; A represent a set of terms with function symbols at root.
The set of predicate symbols include the two base propositions tt and ff . Then
value-passing mu-calculus formulas are given by the following syntax:

ψ −→ F | P | ψ ∨ ψ | ψ ∧ ψ | 〈A〉ψ | [A]ψ | µF .ψ | νF .ψ

A variable that occurs for the first time in a modality is bound at that occurrence.
The scope of the binding spans the scope of the modality. In the following, we
consider only value-passing formulas that are closed: i.e., those that contain no
free variables.

3.2 Semantics

As in the propositional case, the semantics of value-passing formulas is given in
terms of a set of LTS states. However, due to the presence of data variables, we
split the environment into two parts: σ that maps each formula name to a set
of LTS states, and θ that maps each data variable to a term. We denote the
semantics of a formula ψ as [[ψ]]σ,θ, where σ, θ are the pair of environments. The
semantics of value-passing modal mu-calculus is given in Figure 6. The salient
aspect of value passing in the logic is that the values of data variables are picked
up from the labels in the underlying LTS. This is captured in the semantics of
diamond and box modalities by picking up a substitution θ′ that matches an
action in the set A with some label in the LTS, and evaluating the remaining
formula under the effect of this substitution (i.e., θ′ ◦ θ).

[[P]]σ,θ =

{
U if Pθ is true
{} if Pθ is false

[[F]]σ,θ = σ(F)

[[ψ1 ∨ ψ2]]σ,θ = [[ψ1]]σ,θ ∪ [[ψ2]]σ,θ

[[ψ1 ∧ ψ2]]σ,θ = [[ψ1]]σ,θ ∩ [[ψ2]]σ,θ

[[〈A〉ψ]]σ,θ = {s | ∃a ∈ A, and substitution θ′ such that

trans(s,aθ′,t) and t ∈ [[ψ]]σ,θ′◦θ}

[[[A]ψ]]σ,θ = {s | ∀a ∈ A, and substitution θ′ such that

trans(s,aθ′,t)⇒ t ∈ [[ψ]]σ,θ′◦θ}
[[µF .ψ]]σ,θ = ∩{S | [[ψ]]{F←S}◦σ,θ ⊆ S}
[[νF .ψ]]σ,θ = ∪{S | S ⊆ [[ψ]]{F←S}◦σ,θ}

Fig. 6. Semantics of value-passing modal mu-calculus

3.3 Model Checking the Value-Passing Modal Mu-Calculus

We first extend the syntax of our encoding of mu-calculus (Section 2.3) by re-
placing the propositions tt and ff by the more general pred(P) where P is a
term representing a predicate (e.g., pred(X=Y)). Note that, in our encoding, for-
mula names are already terms (to accommodate parameters used for alternating
fixed points).

From the semantics of the propositional calculus (Figure 1) and that of the
value-passing calculus (Figure 6), observe that a model checker for the value-
passing case needs to (i) maintain and propagate the substitutions for data
variables; and (ii) evaluate predicates defined over these variables. Note that
when these semantic equations are implemented by a logic programming sys-
tem, no additional mechanism is needed to propagate the substitutions on data
variables. In other words, an environment that maps variables to values is al-
ready maintained by a logic programming engine. Hence, a model checker for
the value-passing case can be derived from that for the propositional case by
replacing the tt rule (first clause in Figure 2) with the following rule:

models(State_s, pred(Pred)) :- call(Pred).

Also, note that since the labels of an LTS are ground terms, the query
trans(s, a, t) for any given s is always safe; i.e., a and t are ground terms upon
return from the query. This ensures that every call to models/2 is ground, pro-
vided the initial query is ground. Hence, the model checker for the value passing
calculus can be evaluated using without the need for constraint processing on any
logic programming system that is complete for programs with bounded term-
size property. In fact, since every call to models/2 is ground, there are no free
variables to worry about when using the forall construct— we can simply use
the implementation shown in Figure 3.

3.4 Experimental Results

From the relatively minor change to the definition of models/2, it is easy to see
that the performance of the model checker for the value-passing calculus, when
used on a propositional formula, will be no worse than the specialized model
checker for the propositional case. The interesting question then is to compare
the performance of the two model checkers on formulas that can be expressed
in the propositional calculus but more compactly in the value-passing calculus
(e.g., see Figure 5).

Table 1 summarizes the performance of the value-passing model checker and
the propositional model checker on the property shown in Figure 5. The mea-
surements were taken on a 600MHz Pentium III with 256MB running Linux 2.2.
We checked the validity of that property for different values of domain size (n in
that figure) on a specification of a two-link alternating bit protocol (ABP). The
two-link version of the protocol is obtained by cascading two ABP specifications,
connecting the receiver process of one link to the sender of the next. We chose
the two-link version since the single-link ABP is too small for any meaningful
performance measurement.

The space and time performance from the table shows that the value-passing
model checker performs as well as the propositional one; the difference in speeds
can be attributed to encoding used in the propositional formula, where a modal-
ity with a variable is expanded to a sequence of explicit conjunctions or disjunc-
tions. More experiments are needed to determine whether the succinctness of
value-passing formula does indeed have an impact on performance.

Domain Size Propositional MC Value-passing MC
Time Space Time Space

2 4.6s 4.3M 4.3s 4.5M
3 12.9s 8.2M 11.6s 8.5M
4 24.1s 13.0M 20.9s 13.5M
5 39.8s 19.1M 32.6s 19.8M
6 56.7s 26.2M 47.5s 27.0M

Table 1. Performance of propositional and value-passing model checkers

4 Conclusions and Future Work

We showed how the power of logic programming for handling variables and sub-
stitutions can be used to implement model checkers for value-passing property
logics with very little additional effort and performance penalty.

Two crucial— although common— restrictions we placed on the property
logics and transition systems contributed to this simplicity. First, we considered
only closed formulas in the property logics. This restriction is also placed in

the other works on value-passing logics [RH97,Mat98]. With this restriction, we
ensured that the model checking query still produces only an yes/no answer.
The interesting problem that we are currently investigating is whether model
checking can truly be a query : i.e., find substitutions for free variables in the
property formula that make the property true. This problem is inspired by the
recent work on temporal logic queries [Cha00]. It turns out (as is to be expected)
that the context in which a variable occurs in a formula dictates whether that
query evaluation can be done without the use of additional mechanisms such as
constraint handling.

Secondly, we considered only ground transition systems, where the states
of the system and labels on the transitions were ground terms. Most verifica-
tion tools allow only ground transition systems to be described, so this is not an
unusual restriction. For instance, Mateescu [Mat98] considers only ground transi-
tion systems in the context of value-passing logics; Rathke and Hennessy [RH97],
on the other hand, considers nonground systems. Ground transition systems
meant that model checker would terminate even for value-passing logics, since
the substitutions for variables in the logics were picked up from the terms oc-
curring in the transition system. Relaxing this restriction, to allow symbolic
transition systems where transition labels and states may be nonground terms,
will allow us to model check individual modules of a specification. This can be
done either by allowing the variables in the property logic to be typed (from
finite types, to ensure termination), or by evaluating the model checker under a
constraint logic programming system.

In this paper, we focused on aspects of value-passing that can be handled
without constraint processing machinery. This work, as well as our concurrent
work on bisimulation of value-passing systems [MRRV00], indicate that verifica-
tion tools for general value-passing system can be built by judiciously combining
tabulation and constraint processing. The performance implications of using
constraints, however, remain to be explored.

References

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
TOPLAS, 8(2), 1986.

[Cha00] William Chan. Temporal logic queries. In Computer Aided Verification
(CAV), 2000.

[CW96] W. Chen and D. S. Warren. Tabled evaluation with delaying for general
logic programs. Journal of the ACM, 43(1):20–74, January 1996.

[FGK+96] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP (CAESAR/ALDEBERAN development package): A
protocol validation and verification toolbox. In Computer Aided Verification
(CAV), volume 1102 of Lecture Notes in Computer Science, pages 437–440,
1996.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In International Conference on Logic Programming, pages 1070–1080,
1988.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[Mat98] R. Mateescu. Local model checking of an alternation-free value-based modal
mu-calculus. In Workshop on Verification, Model Checking, and Abstract
Interpretation (VMCAI), 1998.

[Mil89] R. Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

[MRRV00] M. Mukund, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. Verma.
Symbolic bisimulation using tabled constraint logic programming. In In-
ternational Workshop on Tabulation in Parsing and Deduction (TAPD),
2000.

[RH97] J. Rathke and M. Hennessy. Local model checking for value-passing pro-
cesses. In International Symposium on Theoretical Aspects of Computer
Software, 1997.

[RRR+97] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. L. Swift, and D. S. Warren. Efficient model checking using tabled resolu-
tion. In Proceedings of the 9th International Conference on Computer-Aided
Verification (CAV ’97), Haifa, Israel, July 1997. Springer-Verlag.

[RRS+00] C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, Y. Dong, X. Du,
A. Roychoudhury, and V.N. Venkatakrishnan. XMC: A logic-programming-
based verification toolset. In Computer Aided Verification (CAV), 2000.
XMC is available from http://www.cs.sunysb.edu/∼lmc.

[vRS91] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3), 1991.

[XSB] XSB. The XSB logic programming system. Available from
http://xsb.sourceforge.net.

