
2022 SBU ICPC Selection Contest

December 2, 2022

About

Welcome to the 2022 SBU ICPC Selection Contest! The goal of the contest is to identify the
top candidates for our International Collegiate Programming Contest(ICPC) teams, which
will participate in the Greater New York Regional Contest for a slot in the ICPC World
Finals 2023.

Rules

This contest is a local ICPC-style contest. Each participant must compete alone (this is not
a team contest). The contest lasts for 3 hours (7:20PM - 10:20PM). All submissions read
from stdin and output to stdout. For more details regarding the execution environment,
please refer to this page.

Scoring

• Participants are ranked according to the most problems solved.

• Participants who solve the same number of problems are ranked by least total time.

• The total time is the sum of the time consumed for each problem solved. The time
consumed for a solved problem is the time elapsed from the beginning of the contest
to the submittal of the accepted run plus 20 penalty minutes for every rejected run for
that problem regardless of submittal time. There is no time consumed for a problem
that is not solved.

Note

There are 8 problems to be solved in 3 hours. The first problem is the easiest one. The
rest are randomly ordered.

1

https://support.hackerrank.com/hc/en-us/articles/1500002392722-Execution-Environment

A - War

Tom and Katy are playing their own version of war, the card game. Tom and Katy each have
N cards with values that range from 1 to 9. They will flip the top card of their respective
deck and the person with the higher value wins the round. When they tie, the outcome
of the round is a draw. Whoever wins the most rounds when they run out of cards is the
winner. Given each person’s deck, who will win the game of war?

Input Format

The first line will contain the integer N , representing the number of cards in each deck.
It will be followed by N lines each containing two integers representing the players’ cards,
separated by a space. The first number is Tom’s card while the second is Katy’s.

Constraints

1 ≤ N ≤ 100
1 ≤ card values ≤ 9

Output Format

If Tom wins print “Tom wins!”. If Katy wins print “Katy wins!”. If both of them have the
same number of wins, print “Draw!”

Sample Input 0

3
1 9
2 3
5 4

Sample Output 0

Katy wins!

2

Sample Input 1

3
9 9
7 3
5 6

Sample Output 1

Draw!

3

B - Happy Elimination

Amy is playing a mobile game called Happy Eliminating. This game gives certain blocks in
a vertical line at the beginning. Amy can tap on a block and eliminate all neighbors of the
same color. An elimination of m blocks will give Amy m2 points. After an elimination move,
other blocks will drop so there is no space between the blocks. Please help Amy determine
the maximum points she can earn for each game.

Input Format

The first line is an integer n indicating the number of blocks. The second line contains n
integers c1, c2, ..., cn separated by space. ci indicates the color of the i-th block.

Constraints

1 ≤ n ≤ 100
1 ≤ ci ≤ 100

Output Format

Print the maximum points Amy can get.

Sample Input 0

9
1 3 2 2 2 3 4 3 1

Sample Output 0

23

4

C - Purrfection

Toby is a fluffy cat with n toys! While he loves playing with his toys, he also loves doing
math! To measure how much he likes each of his toys, he assigned each a purrfection value
pi. While playing with all of his toys, Toby discovered a way to measure the total purrfection
T of his toys:

T =

(
n∏

i=1

n∏
j=i+1

|pi − pj|

)
mod m

Given the purrfection value of each of Toby’s toys, compute the total purrfection, T . As
T may be very large, output it modulo m.

Input Format

The first line contains two integers n,m - the number of toys and the modulo. The second
line contains n integers p1, p2, ..., pn.

Constraints

2 ≤ n ≤ 2× 105

1 ≤ m ≤ 1000
0 ≤ pi ≤ 109

Output Format

Output a single integer, the total purrfection modulo m.

5

Sample Input 0

2 10
5 8

Sample Output 0

3

Explanation 0

|5− 8| mod 10 = 3 mod 10 = 3

Sample Input 1

3 12
1 4 5

Sample Output 1

0

Explanation 1

(|1− 4| · |1− 5| · |4− 5|) mod 12 = 0

6

D - Meow You Doin?

Molly (gray), Toby (orange), and Nikki (white) are all napping at home. Their home has
n rooms and some pairs of rooms are connected by two-way hallways. Two rooms can be
directly connected by at most one hallway. It is guaranteed that you can get from any room
to any other by moving through hallways. The rooms are numbered from 1 to n. Molly
is napping in room a and Toby is napping in room b. Molly and Toby are not napping in
the same room. Nikki was napping but she was interrupted by her hunger. She decided to
get up and go get some of that sweet Meow Mix. On her way, she wonders if she will pass
through the rooms in which Molly and Toby are napping. As Nikki is a meowthematician,
she would like to know the number of pairs of rooms (x, y) (x, y /∈ {a, b}) such that if she
goes from room x to room y she will have to pass through both rooms a and b.

The order of two rooms in a pair does not matter, that is, the pairs x, y and y, x must
be taken into account only once.

Input Format

The first line contains four integers n,m, a, b - the number of rooms, the number of hallways,
the room where Molly is napping, and the room where Toby is napping. The next m lines
contain descriptions of hallways between rooms. Each hallway description contains a pair of
integers ui, vi - the room numbers connected by the hallway.

7

Constraints

4 ≤ n ≤ 105

n− 1 ≤ m ≤ min
{

n(n−1)
2

, 105
}

1 ≤ a, b ≤ n, a ̸= b
1 ≤ ui, vi ≤ n, ui ̸= vi

Output Format

Output a single integer, the number of pairs of rooms x, y such that if Nikki goes from room
x to room y she will have to pass through both rooms a and b.

Sample Input 0

5 4 2 3
1 2
2 3
3 4
4 5

Sample Output 0

2

Explanation 0

Here, (1, 4) and (1, 5) are the only pairs of rooms that are connected by paths all of which
pass through both rooms 2 and 3.

8

Sample Input 1

6 6 1 4
1 2
2 3
3 4
4 5
5 6
6 1

Sample Output 1

0

Explanation 1

There exists no pair of rooms (x, y) such that all paths between x and y pass though
both rooms 1 and 4.

9

E - Dice Auction

This is a two-player game.
Both you and your opponent roll a die. Each of you only know your own roll. A third

party looks at both dice and puts an amount of money equal to the sum of the two dice
rolls in the middle, hidden from sight. You will now participate in an auction with your
opponent on the money pot. The player to bid first is selected randomly. Bidding starts at
1, and, when it’s your turn, you have the option of either raising by 1 or passing, as does
your opponent on their turn. Whenever somebody passes, the other person must pay money
equal to their current bid for the pot. Depending on the true value of the pot, this could
result in a net gain or loss of money.

To give you an advantage, your will roll a d6 (i.e. a standard six sided die), while your
opponent will roll a d4 (i.e. a standard four sided die).

This game will be played 1000 times with different randomly generated rolls. Both your
and your opponent’s goal is to make more net gain of money than the other person by the
end of all of the rounds.

Input Format

The input consists of 1000 lines, each containing a natural number between 1 and 6, repre-
senting your roll in a given round of the game.

Constraints

None!

Output Format

The output must consist of 1000 lines, each with a natural number between 1 and 10 (it
does not make sense to bid more than 10), representing the maximum value to which you
are willing to bid in that given round of the auction. Note that, as an example, even if you
output 7, it is possible that your opponent decides to stop bidding after you had bid 4. In
this example, you get the money pot for only 4$.

The problem will be judged against a custom judge that will play your strategy against a
particular one hard-coded for your opponent. You will pass the problem if and only if your
net earnings are greater than your opponent’s. It is guaranteed that the opponent has no
access to your outputs and it is always possible to beat the opponent for the set of test cases
(rolls for both you and the opponent) we have randomly generated.

10

F - Stop the overflow

Given the description of a water jar and a water tap find the time required to fillup the
jar with water before it overflows. You can ignore the surface tension and assume 1 unit of
water can flow through each unit square of the tap opening area in a single second.

Input Format

A single line will contain three non-negative single-space seperated floating point numbers
r, h, R representing the radius and the height of the water jar followed by the radius of the
water tap opening.

Constraints

1 ≤ r, h ≤ 1000
1 ≤ R ≤ 1000

Output Format

Output a single number (rounded to the third decimal) specifying the number of seconds it
will take to fill up the water jar.

Sample Input 0

3.0 4.0 2.0

Sample Output 0

9.000

Sample Input 0

5.0 4.0 3.0

Sample Output 0

11.111

11

G - String Problem

Given a string S, you are asked to find the number of good ways to split the string. A good
way to split a string S must satisfy the following constraints:

• S = (AB)iC for some i ≥ 1

• F (A) ≤ F (C)

• A,B,C are all non-empty strings.

If A = “xy” and B = “we”, then AB = “xywe”.
We recursively define An as follows: An = A (An−1). For example, A=A1 = “xy”, A2 =

“xyxy”, and so on.
F (A) is defined to be the number of characters in the alphabet who have an odd number

of occurrences in string A. For example F (abcwwwb) = 3 since a, c, and w have odd number
of occurrences in A.

Two good ways are considered different iff any of A,B,C is different in the two ways.

Input Format

The first line of the input consists of the number of test cases.
Each of the following lines includes one test case, which indicates the string S.

Constraints

The number of test cases is at most 5. The length of string S does not exceed 1.1× 106, and
includes only lowercase letters.

Output Format

The output includes one line for each test case, which indicates the number of good ways to
split the input string S.

Sample Input 0

3
qqpqqp
yyyrrz
yyfyyfq

Sample Output 0

8
9
16

12

Explanation 0

Explanation for “qqpqqp”:

1. A = q, B = qp, C = qqp
2. A = q, B = qpq, C = qp
3. A = q, B = qpqq, C = p
4. A = qq, B = p, C = qqp
5. A = qq, B = pq, C = qp
6. A = qq, B = pqq, C = p
7. A = qqp, B = q, C = qp
8. A = qqp, B = qq, C = p

Explanation for ”yyyrrz”:

1. A = y, B = y, C = yrrz
2. A = y, B = yy, C = rrz
3. A = y, B = yyr, C = rz
4. A = y, B = yyrr, C = z
5. A = yy, B = y, C = rrz
6. A = yy, B = yr, C = rz
7. A = yy, B = yrb, C = z
8. A = yyy, B = r, C = rz
9. A = yyy, B = rr, C = z

13

H - RothLand

14

One fine morning, the queen of the ducks of Rothland decides that it is time to conquer
NCS, the New Computer Science building. The queen’s advisor informs her that roughly N
human beings are estimated to be at NCS on any day. The queen declares that they will
invade NCS the day the population of Rothland is at least N . Currently there are D ducks
in Rothland. So they start asking ducks from nearby ponds to come join them. The news
starts spreading like wildfire.

The queen estimates that every day the population of Rothland is increasing by P percent.
For example, if there are currently 20 ducks in Rothland and if their number increases by
11% every day, there will be 22.2 ducks after one day, 24.642 ducks after two days, and so
on. If there were 23 humans in NCS, then they would have to wait two days before invading
NCS. [Yes, it is very difficult to visualize 22.2 ducks, but what can we do? We are estimating
after all.]

Given the number of ducks D, the number of humans in NCS N , and the percentage
increase of ducks every day P , find the number of days before NCS is taken over by ducks.

Input Format

The first line contains a positive integer T , number of test cases. In each of the following T
lines, there will be 3 integers, D, P , and N .

Constraints

1 ≤ T ≤ 250000
1 ≤ D ≤ 109

1 ≤ P ≤ 100
1 ≤ N ≤ 1018

Output Format

Print the case number and then an integer signifying the number of days after which NCS
will be invaded. Please see the sample output for exact output format.

Sample Input 0

3
20 11 22
20 11 24
230948879 7 123456789012345678

Sample Output 0

Case 1: 1
Case 2: 2
Case 3: 298

15

