
2023 SBU ICPC Selection Contest Editorial

October 12, 2023

A - The Fancy New Hard Disk

Setter: Tanzir Pial, Validator: Yimin Zhu
Editorialist: Nicholas Tarsis Tag: Implementation

To see if the disk can fit through the door, it suffices to compare the diameter of the disk,
or twice the radius with the width and length. If the minimum of the length and width is
greater than or equal to the diameter, then the disk will fit through. This solution runs in
O(1) time for each testcase.

B - Weird Patterns by Roth

Validator: Yimin Zhu
Editorialist: Jacky Xie Tag: Implementation

F (n) generates the Fibonacci sequence, F (0) = 0, F (1) = 1, F (2) = 1, F (3) = 2, F (4) =
3, F (5) = 5,

Notice that the drawings are (vertically) symmetric, and consist of groups of two lines
with the same # pattern. For n = 5, from top to bottom, we have two rows of 1 #, then
two rows of 1, then 2, 3, 5, which is the Fibonacci sequence, matching F (1) through F (5).

The other part of the pattern is how far the #’s are from the sides. Counting the dots
to the side, we have 0, then 1, then 2, 3, 4, so they increment one by one. The last two
rows have no gap between the #’s on the left on right sides, so the width of the drawing will
depend on that, w = 2((n− 1) + F (n)).

(5−1)︷ ︸︸ ︷
◦ ◦ ◦◦

F (5)︷ ︸︸ ︷
#####

F (5)︷ ︸︸ ︷
#####

(5−1)︷ ︸︸ ︷
◦ ◦ ◦◦

We get n ≤ 20, F (20) = 6765, so the size of the drawing is 2 · 20 · 2(19 + 6765) = 271360
characters. We can simply generate the drawing line by line using the process described
above.

1

C - Walking Around Roth Just Creates Problems!

Problem Setter: Tasnim Imran Sunny
Validator: Kenny Zhang
Editorialist: George Ivanchyk Tag: Digit DP, Combinatorics

This problem can be solved with a common technique called “Digit DP”.

Define S(x) = F (1)+ ...+F (x) and dpi,j = S(j00....00), where the last number has length i,
the first digit is j and all the next (i− 1) digits are 0. Also, we can assume for convenience
that dpi,10 = dpi+1,1.

S(j00....00) can be split into two parts: from 1 to (j − 1)0...0 and from (j − 1)0...0 to
j0....0. First part is equal to dpi,j−1, and the second part is (j − 1) times the sum of F (x)
for x between 0....0 and 10....0, which is equal to dpi,1 for i = 2.

However, for i > 2 we should also consider that this sum is counted with leading zeros,
so we have to subtract all numbers that start with 0, that is dpi−1,1.

Considering all this, DP transition function has the following form:

dpi,j = dpi,j−1 + dpi,1 ∗ (j − 1)− dpi−1,1 ∗ (i > 2) (1)

After that, we want to calculate F (a)+ ...+F (b) = S(b)−S(a− 1), which can be solved
by calculating S(b) and S(a− 1) separately.
To calculate S(x) for a given x = d1d2...dk, we split this sum into 2 parts: S(d100...0) and
(S(x)−S(d100...0)). First sum is simply dpd1,k, and the second sum is d1 ∗S(d2...dk), which
can be called recursively.

As before, we have to account for the numbers that start with leading zeros after the first
recursive call, and for each of them subtract dpi−1,1

Complexity: O(log(b)) per test case.

D - Upstate-NYC-Stony Brook

Problem Setter: Tanzir Pial, Validator: Kenny Zhang
Editorialist: Tahsin Ahmed Tag: Segment/Fenwick Tree/ Policy Based Data Structures

Any intersection between segments must start and end at one of the given endpoints.
Therefore, we first compress event points by sorting the event points and assigning to each
event point its rank.

We now consider how to find the number of intersecting LIRR train times for some (xi, yi)
Upstate train time. Let start[i] and end[j] be the # of LIRR train times starting at the ith

ranked and ending at the jth ranked times respectively. Then the # of LIRR train times
that intersect Upstate train (xi, yi) is given by

rank(yi)∑
k=0

start[k]−
rank(xi)−1∑

k=0

end[k]

2

The problem thus reduces to efficiently updating and querying a prefix sum data struc-
ture. This can be done in logarithmic time using either a fenwick tree or a segment tree. In
total we use four fenwick/segment trees, two for start points and two for end points.

Time Complexity: O((n+m+ q) log(n+m+ q)).

E - Can Disco Lights Distract Contestants Enough

Validator: Kenny Zhang
Editorialist: Greg Zborovsky Tag: Matrix Exponentiation, Graph Theory

For each test case, we are given an undirected graph with N (0 ≤ N ≤ 100) nodes and M

(0 ≤ M ≤ N(N−1)
2

) edges, a reach R (0 ≤ R ≤ 10), and a time P (0 ≤ P ≤ 109) in minutes.
We are also given an initial coloring for the nodes.

Our goal is to compute the colors of the of each of the nodes after P minutes.
The update rule for colors is

color(u, t) = color(u, t− 1) +
∑

v∈adjacent(u,(t−1modR)+1)

color(v, t)

where color(u, t) is the color node u at time t and adjacent(u, k) is the set of nodes whose
shortest path to u is of length k.

The key observation is that the update rule for colors can be re-written as matrix mul-
tiplication.

Let us first solve the following simpler problem:

color(u, t) = color(u, t− 1) +
∑

v∈adjacent(u,1)

color(v, t− 1)

Note that color(u, t) is just the sum of its own color from the previous timestep and all
of its neighbors’ color values from the previous timestep. Rewritten with matrices it looks
like:

colors(t) = A colors(t− 1)

where A is the adjacency matrix of the given graph, or in other words, the matrix of
shortest paths of length 1. colors(t) is a vector of length N where colors(t)i = color(i, t).
Applying repeated matrix multiplications, we find that:

colors(t) = At colors(0)

Naively, computing colors(P) will take Θ(N3P) time, but using fast matrix exponentia-
tion, we can compute colors(P) in Θ(N3 logP).

Returning to the original problem, we need to be able to compute the adjacent function
for all lengths and shortest path lengths ∈ [1, R]. We can easily do this by running the
Floyd-Warshall algorithm to find all-pairs shortest paths and then constructing R adjacency

3

matrices: A1≤i≤R where Ai = the adjacency matrix where there is an edge between nodes u
and v if and only if the shortest path between u and v has length i. Note that we can now
re-write the original update rule as:

colors(t) = A(t modR)+1 . . .A2A1 (AR . . .A2A1)
⌊ t
R
⌋ colors(0)

.
We can compute (AR . . .A2A1)

⌊ t
R
⌋ quickly by first computing AR . . .A2A1 and then

performing fast matrix exponentiation on the resulting matrix.
The total time complexity is Θ(N3) to run Floyd-Warshall, Θ(N2R) to compute the

adjacency matrices, Θ(N3R) to compute AR . . .A2A1 , and Θ(N3 logP) for fast matrix
exponentiation. The total time complexity is Θ(N3(R + logP)).

F - Mandatory Problem about Cats

Validator: Tanzir Pial, Jiarui Zhang
Editorialist: Kevin Cai, Tanzir Pial Tag: Number Theory, Probability

The probability of choosing a brown kitten for box i would be (X −Ai)/X. Because all
the boxes are independent of each other, the probability of picking only brown kittens would
be

[(X − A1) ∗ (X − A2) ∗ ... ∗ (X − AN)]/X
N

If any Ai = X, then output 0. If all Ai = 0, then output 1.
Notice that keeping track of count of the prime factors ofX suffices since the denominator

only has those factors. Therefore we do not need to prime factorize all (X−Ai). The number
of prime factors of X is < O(log(X)) and the prime factorization can be done in O(

√
X).

Then for every (X − Ai), we can iterate through the prime factors of X and try to divide
(X − Ai) as many times as we can and update the count of that prime factor for the
denominator.

Time Complexity: O((N logX) +
√
X).

G - SBU Campus Network

Validator: Jiarui Zhang, Kenny Zhang
Editorialist: Xiao Sun Tag: Biconnected Components, Articulation Points, Block Cut
Tree

This problem is about biconnectivity. There are two related concepts:

• Articulation points (or more commonly, cut vertices or vertices cut) refer to the
vertices whose removal increase the number of connected components in the graph.

• Biconnected component: a maximal biconnected induced subgraph. Biconnected
means the (sub)graph has no cut vertices.

4

1
c1

18

17

16

1514

13

12

11

10

9

8

7

6

5

43

2
b1

b2

b3

b4

b5

b6

b7
c2

c3

c4

Figure 1: [Source: wikipedia] In the left graph, cut vertices are [2, 7, 8, 10]. The right
graph is the block-cut tree of the left graph. b1 = [1, 2], b2 = [2, 3, 4], b3 = [2, 5, 6, 7], b4 =
[7, 8, 9, 10, 11], b5 = [8, 12, 13, 14, 15], b6 = [10, 16], b7 = [10, 17, 18].

For example, in Figure 1 there are 4 cut vertices in the left graph. We can also find the
biconnected components in the right figure, known as the block-cut tree. In the block-cut
tree, each vertex is either a cut vertex (start with label c) or a biconnected component (start
with label b) in the original graph. Notice that a cut vertex can be in multiple blocks.

Now back to our original question. We can observe that a fail on a cut vertex is lethal,
as it disconnects the graph. So our main concern is the set of cut vertices. There are two
cases to consider:

• There are no cut vertices in the graph. In this case, the graph itself is biconnected.
So two servers are necessary and sufficient. Clearly one server is not enough as that
particular server can fail. Two servers are enough from the definition of biconnectivity
(any removal of vertex would not increase the number of connected components). So
if any single server fail, other vertices still have a path to another server. Any pair can
be chosen as the servers, so there are C(n, 2) choices.

• There is at least one cut vertex in the graph. If we count the number of leaves in the
block-cut tree, let the number be K. K servers are necessary and sufficient. If we have
less than K servers, then at least one leaf block is not deployed with a server. If the cut
vertex in that leaf block fail, all other nodes in the block are dead. K is also sufficient,
we can deploy one at any non vertex cut node for each leaf. Then all leave nodes are
safe. For other nodes, there are at least two paths to leaves, which also secures their
safety. The choice for each leaf is independent. So the number of choices is just the
multiplication of all of them.

The overall complexity is O(m + n). Wherer m is the number of edges and n is the
number of vertices. We use O(m + n) to find all cut vertices and biconnected components
using Tarjan’s algorithm (it is similar to the one that finds the strongly connected components
(SCC)). To enumerate all leaves we can simply check if the number of cut vertices in the
biconnected component is exact 1. Enumeration also takes O(m+ n).

5

H - Peace Maker

Problem Setter: Yimin Zhu, Validator: Jiarui Zhang
Editorialist: Yimin Zhu Tag: Simple Math

BA
v_A v_C

v_B
t0

t1
t2

T

Figure 2: Peace Maker

This problem is simple math. As shown in Fig. 2, A represents Yimin, B represents
Tanzir, C represents Jiarui, t represents time, and v represents velocity. They all begin
at t0. A and B meets at t1 and then B and C meets at t2. The time period t1 − t0 is
|AB|/(vA+vC) and time period t2− t1 is (|AB|− (t1− t0)∗ (vA+vB))/(vB+vC). Summation
of the two time periods will be t2 and the result is VB × t2.

6

