
Multi-Level Ensemble Learning based Recommender

System
Bhavya Ghai1, Joydip Dhar2 and Anupam Shukla3

ABV- Indian Institute of Information Technology and Management, Gwalior, India
1bhavyaghai@gmail.com, 2jdhar@iiitm.ac.in,3anupamshukla@iiitm.ac.in

Abstract. In this paper, we have tried to go beyond conventional ensemble learning &

explore multi-level ensemble learning with reference to recommender systems. In particular,

we have focused on stacked generalization for building Movie Recommender System. We have

tried to analyze the transition from single level to multi-level ensemble learning and its effects

on the overall accuracy. We have used movielens dataset from Grouplens Project and used a

host of techniques like Collaborative Filtering, PAM, Content based recommender, Random

Forest, SVM, ANN, etc. to optimize accuracy. We have experimented with various

combinations of base learners based on their accuracy & diversity to finally arrive at the most

accurate ensemble of ensembles. Results show that 2-level stacking gives more accurate results

than single level stacking or any individual recommender system.

Keywords: Ensemble Learning, Movielens, Stacking, Bagging, Recommender System

1 Introduction

Ensemble learning is a very powerful machine learning paradigm which can

optimize roughly any other learning algorithm. It is based on a very intuitive concept

that a group of people can make a better decision than an individual. Instead of solely

relying on the smartest learning algorithm, it exploits the wisdom of all learning

algorithms and focusses on collective intelligence. Earlier, we used to train a number

of different models on the dataset and choose the best one for deployment. Using

Ensemble learning, we can use all the models we have trained (provided they have

accuracy > 50%) to further optimize our accuracy. It can be used to deal with

complex problems such as Classification, Regression, Time Series, Recommender

Systems, Reinforcement Learning, Unsupervised Learning, etc. The down side of

using ensemble learning is that the complexity of the model increases so it might not

be applicable for real-time analysis.

Recommender Systems are supervised learning algorithms which try to model a

user based on a host of parameters and recommend accordingly. They impact our

everyday life. Most common examples include Amazon, Netflix, Facebook, etc. In

this age of Internet, It becomes a herculean task for a user to find the most relevant

information on the web. Here, Recommender systems step in & filter through a sea of

data to fetch the most relevant data according to our profile. They save our time &

enable us to consume the most relevant data which we might have otherwise missed.

Recommender systems is currently a hot research topic with research focusing on

Personalization, Context-Aware Recommendations, Real-Time Recommendations,

etc. Earlier, Recommender Systems were restricted to E-Commerece, Videos, etc. but

now they are being used for Recommending News, Friends, Jobs, restaurants,

financial services, life insurance, etc. Recommendations can be based on current

location, likings, ratings, content, age, sex and a whole lot of other parameters based

on online interaction.

The realm of Recommender Systems using ensemble approach has not been

exploited much. Most of the work deals with single level ensemble learning. In this

paper, we have tried to extend conventional ensemble learning and used multi-level

stacking. We have proposed a novel and more accurate recommender system based on

traditional learners using 2-level stacking generalization.

 This paper is organized as follows. Section 2 discusses about the related work

in this field. Section 3 throws light on ensemble learning in some detail. Section 4

discusses about the recommender systems we have used in this work. Section 5

describes our proposed approach towards multi-level ensemble learning model.

Section 7, 8 and 9 contains Results, Conclusion and Future Work respectively.

2 Related Work

Earlier, we used to train multiple models and used the best one for deployment. This

way, our time and efforts training other models go waste[15]. Then we came across

ensemble learning which is a very powerful technique to optimize other learning

algorithms [7] and widely used in data competitions.[9] Ensemble learning has many

flavors. It has various architectures[1] and techniques like bagging, boosting,

stacking, etc. We explored that Ensemble learning has been used with Recommender

systems [2,4,5] but Multi-level ensemble learning has not been exploited much,

especially with reference to Recommender Systems[3]. We used a number of models

like collaborative filtering, Content filtering, PAM [11,12,13,14], etc. for building

multi-level ensemble learning system.

3. Ensemble Learning

Ensemble learning is an optimization paradigm where numerous learners are trained

to solve the same problem [23,25,27]. Ordinary machine learning approaches work on

a particular hypothesis whereas ensemble learning work on a set of hypotheses and

fuse their results together to achieve better accuracy. Ensemble learning refers to a

collection of methods that learn a target function by training a number of individual

learners and combining their predictions.[11] Ensemble learning is used when we can

build component learners that are more accurate than chance and, more importantly,

that are independent from each other. They work on the principle that uncorrelated

errors of individual learners can be eliminated through averaging. An ensemble is

itself a supervised learning algorithm, because it can be trained and then used to make

predictions.[22]

Ensemble learning has following Applications :-

• Series Prediction

• Regression

• Recommendation Systems

• Classification

• Reinforcement Learning

• Unsupervised Learning

• Risk Prediction

4. Techniques Used

4.1 UBCF : UBCF stands for User Based Collaborative Filtering. It is based on the

principle that user who liked similar things in the past will have like similar things in

future. There are mainly two types of recommender systems, as a function of the

algorithm used: Content-Based Filtering (CBF) and Collaborative Filtering (CF). CF

is one of the most commonly used methods in personalized recommendation systems.

Collaborative filtering algorithm recommend items based upon opinions of people

with similar tastes. Collaborative filtering can also recommend items that are not

similar and like-minded users have rated the items. Collaborative filtering faced some

problems by traditional information filtering duly eliminating the need for computers

to understand the content of the items. Recommender systems need to store certain

information about the user preferences, known as the user profile to achieve this

personalization. The system will inform the user of what items are well recommended

by other users with similar likes or interests. An analysis of the content by the system

is not necessary and the quality or subjective evaluation of the items will be

considered. However, these algorithms present problems in their computational

performance and efficiency.

 Algorithm :-

Step I : Split dataset via 80/20 rule

Step II : Evaluate item-user matrix

Step III : Evaluate user-user similarity matrix

Step IV : Define Neighborhood

Step V : Predict Values

Step VI : Testing

4.2 IBCF : Item-based collaborative filtering is a model-based algorithm for making

recommendations. In the algorithm, the similarities between different items in the

dataset are calculated by using one of a number of similarity measures, and then these

similarity values are used to predict ratings for user-item pairs not present in the

dataset. Looks into the set of items the target user has rated and computes how similar

they are to the target item and then selects k most similar items. Prediction is

computed by taking a weighted average on the target user’s ratings on the most

similar items.

4.3 PAM – PAM or Partitioning around Medoids is a clustering algorithm similar

to k-NN algorithm. The number of clusters(k) is given as input. PAM breaks the

dataset into k groups or clusters with each cluster having a representative or medoid

in this case. Each point is assigned to a cluster which is closest to it based on distance

function. Distance function may be eucledian, manhattan, etc. After assigning each

point, median of points in each cluster is chosen as new cluster representative. This

process of assigning points to clusters is repeated until convergence is reached For

more details please refer [11]. PAM can be directly used in R using ‘cluster ’ package

[12,13].

In this paper, we used PAM as a demographics based recommender system. It

clusters users based on their demographic data. The underlying assumption here is

that people belonging to similar age group, location, profession, etc. will have similar

tastes and user demographics are constant over time. The prediction by a given user

for a particular movie will be the mean of ratings given by other users who belong to

the same cluster as the user.

Fig. : A plot between Average Silhouette and Cluster size

We provide user demographic data containing age, sex, zipcode, profession of 943

unique users as input. Since the input data is mixed i.e. it contains numeric (age,

zipcode) and categorical (sex, profession) data, we have used gower distance as the

metric. Now, we need to choose optimal value of k i.e. number of clusters. We will

use a measure known as silhouette to determine k. Silhouette is a measure which

determines how well an observation fits into a cluster. It ranges between 0 and 1 with

1 representing best fit. We will train PAM multiple times and calculate average

silhouette for different cluster size. Plotting average silhouette vs cluster size, we find

that the graph peaks at k = 37 which is the optimal cluster size in our case. For more

details about silhouette, please refer [14].

5. Proposed Approach

As discussed above, Ensemble learning includes many models like Bagging,

Boosting, Stacking, etc. In this paper, we will primarily focus on stacking. For

creating an effective ensemble model, we need to train multiple diverse learners. In

our case we chose User based Collaborative filtering, Item based collaborative

filtering, PAM & POP. Each of these learners manipulate the dataset in a unique way

& make errors according to their individual biases. We trained these models on a

portion of dataset & evaluated their accuracy & diversity on the rest. Initially, we split

the entire dataset into training & test dataset in the ratio 80:20. Then we trained all the

individual learners namely UBCF, IBCF, POP, Content & PAM on train dataset and

made predictions on the test dataset. We measured accuracy via RMSE value &

diversity via Pearson correlation coefficient. Higher the correlation coefficient, lower

is the diversity. For creating 1-level stacking model, we fused all the predictions using

many popular machine learning techniques as shown in Table 3.

The predictions made by the individual learners on the test set served as the input

for 1st level stacking. After training different 1st level stacking models, we tested it on

a portion of the initial test dataset. Here, we expect that 1-level stacking will give

better accuracy than the best individual learner considering each learner has high

accuracy & diverse in its approach.

 Fig. 1-level Stacking Architecture

On the same grounds, we tried to extend 1-level stacking to 2-level stacking. Our

objective here is not to create the most accurate recommender system but to

investigate whether subsequent levels of stacking will enhance accuracy. For creating

2-level stacking model, we’ll repeat the same process but will take input from 1st level

instead of base learners. The term ‘best’ here means high accuracy & diversity. For

first level stacking, we choose the best learners from the ground level based on their

accuracy & diversity. After choosing best learners, we can employ various stacking

techniques to fuse the predictions. In our case, we used Random Forests, Linear

Regression, ANN & State Vector Machines for stacking at 1st level. For second level

stacking, we will repeat the process and this time we will choose best learners from 1st

level learners instead of ground level learners. We may choose a single model or a

combination of models implemented at 1st level stacking for building second level

model based on accuracy & diversity. We have again used many popular ML

algorithms for 2nd level stacking. Genetic Algorithms, Fuzzy logic, etc. can also be

used for stacking. We are trying to test how different levels of stacking compare to

each other.

Fig. 2-level Stacking

Algorithm

Step 1: Split dataset into train & test dataset

Step 2: Train many diverse learners with accuracy >50%

Step 3: Pick best learners or combination of best learners

Step 4: Implement stacking models on learners chosen in Step 3

Step 5: Pick best learners/ combination of learners from stacking models (Step 4)

Step 6: Implement stacking model on learners from Step 5

For creating n-level stacking model, the value of n can be decided on the basis of

diversity between learners. After each level we must calculate the correlation

coefficient between learners at that level. If the correlation between all learners is

greater than a threshold value (say 0.80), then we must stop. In this paper, we have

used n=2.

6. Dataset

 We have used Movielens 100k dataset from Grouplens project for training & testing

our ensemble learning model. This dataset was collected via Movielens web site at

University of Minnesota from 19th Sept’97 till 22nd April’98. The dataset contains no

missing values and has been used extensively for research purposes. The dataset

broadly consists data about Movies, User demographics and Ratings. The user file

consists of attributes such as User-Id, Age, Sex, Occupation & Zipcode of 943 unique

users. The movie file consists attributes like Movie-Id, Movie title, Release date,

Imdb URL & various genres for 1682 movies. The ratings table consists of 100k

movie ratings by 943 users for 1682 movies. It has four columns namely User-Id,

Movie-Id, rating, Timestamp. User-Id may vary from 1 to 943. Similarly, Movie Id

may vary from 1 to 1682. Movie rating range from 1 to 5. The dataset can be freely

accessed & downloaded at [8].

7. Results

All the models have been trained & tested using R and its robust set of packages on

Movielens-100k dataset. The output of a recommender system depends on the

purpose it was built for. Recommender systems may be used for prediction,

classification or ranking. Accordingly, the evaluation metric may vary from RMSE,

MAE, Precision, Recall to Tau, rho, etc. We are primarily interested in prediction as

classification & ranking can be performed on the basis of predicted values. Hence, we

will be using RMSE, MAE & MSE to evaluate recommender models.

Firstly, we trained base learners i.e UBCF, IBCF, PAM, POP, Content, etc. We

have discussed these recommenders in section 4. We have trained them on 80% of

data. Some of these recommenders can be directly used via Recommenderlab package

in R [10]. Table 1 summarizes the accuracy for base learners.

Table 1: Base Learners Accuracy

Recommenders MAE MSE RMSE

UBCF 0.7999 1.0191 1.0095

PAM 0.8954 1.3237 1.1505

IBCF 0.7475 0.9359 0.9674

POP 0.7535 0.9217 0.9600

Content 0.9237 1.4151 1.1896

Random 1.7010 4.3604 2.0881

Fig. : Correlation between base learners

Based on the predictions made by base learners on 20% of data, we calculated the

correlation between base learners as specified in table 2 and graphically represented

in the above figure. In the graphical representation, the bigger & darker a circle is,

more is the correlation and hence less diversity.

In table 1, we evaluated all base learners. To put things into perspective, we have

also used random. From table 1, we can say that POP and IBCF are most accurate.

Surprisingly, POP has outperformed traditional collaborative filtering algorithms.

Table 2 contains the correlation coefficients between different base learners. As far as

diversity is concerned, PAM seems to be walking away from the crowd. Having done

with diversity and accuracy of base learners, we will move to next level.

Table 2 : Correlation between Recommenders at level 1

Correlation UBCF PAM IBCF POP Content

UBCF 1 0.2309 0.6443 0.8018 0.5554

PAM 0.2309 1 0.3378 0.5215 0.1175

IBCF 0.6443 0.3378 1 0.7047 0.3967

POP 0.8018 0.5215 0.7047 1 0.4861

Content 0.5554 0.1175 0.3967 0.4861 1

For building 1-level Ensemble learning structure as described in Fig. 1, we will stack

all the base learners together using machine learning techniques like Random Forest,

SVM, Linear regression & Neural network. We have trained these models on 80% of

the predicted data obtained from base learners. Table 3 shows the evaluation of these

techniques on the remaining 20% data.

Table 3: Evaluation of 1st level stacking techniques

Model MAE MSE RMSE

Random Forest 0.7442 0.8838 0.9401

SVM 0.7272 0.8732 0.9344

Mean 0.8022 1.031 1.015

Linear Regression 0.7337 0.8652 0.9301

Neural Network 0.7898 0.9818 0.9908

Using Table 3, we can say that Linear Regression outperformed other machine

learning techniques. Stacked Linear Regression model has performed better than the

best individual base learner. The RMSE has dropped from 0.9600(POP) to

0.9301(Linear Regression) which is 3.12% increment in accuracy.

For building 2-level Ensemble learning model, we will first train different

combination of base learners to form 1st layer of stacking models. Then we’ll build 2nd

layer by repeating the same using 1st layer as input. We will choose different

combinations based on the accuracy & diversity of base learners. Table 4 summarizes

the evaluation of different combinations of base learners along with the model used.

Here RF means Random Forest, SVM means State Vector Machines, LR means

Linear Regression and NN represent Artificial Neural network.

Table 4: Evaluation of Stacking models for 2-level Ensemble Architecture

Index Recommenders Model MAE MSE RMSE

1 IBCF + PAM RF 0.7847 0.9747 0.9872

2 IBCF + PAM LR 0.7523 0.9076 0.9527

3 IBCF + PAM SVM 0.7477 0.9172 0.9577

4 Content + PAM LR 0.8301 1.0750 1.0368

5 Content + PAM RF 0.8519 1.1366 1.066

6 IBCF + Content LR 0.7619 0.9311 0.9649

7 IBCF + POP SVM 0.7335 0.8806 0.9384

8 IBCF+PAM+ Content LR 0.7362 0.8701 0.9328

9 IBCF+PAM+ Content NN 0.7471 0.8949 0.9460

10 UBCF+PAM+ Content RF 0.7975 1.0121 1.0060

11 IBCF+POP+UBCF LR 0.7364 0.8700 0.9327

12 POP+PAM+ Content LR 0.7364 0.8700 0.9327

13 UBCF+POP+PAM+ Content LR 0.7574 0.9235 0.9610

14 IBCF+POP+PAM+ Content LR 0.7341 0.8654 0.9302

15 IBCF+POP LR 0.7362 0.8701 0.9328

Table 4 summarizes 15 different models trained for 1st level stacking. Clearly, Model

indexed 14 performed the based. Each of these models is trained only on a subset of

entire data. For example, IBCF+POP, represents the prediction data obtained from

IBCF & POP when applied on test dataset. Next we’ll calculate the correlation

between these 15 models. Fig *** represents correlation coefficient between all 1st

level stacking models. Bigger & darker circles on the figure represents stronger

correlation and hence less variance.

Finally, we are ready for the 2nd level stacking for the 2-level architecture. We will

choose different combination of models from 1st level stacking models based on

accuracy & diversity. Table 5 represents the different combination of stacking models

implemented for 2nd level stacking. Numbers mentioned in Input column of Table 5

represents the index of model as mentioned in Table 4. For example, 7+8 represents

the combination IBCF + POP(SVM) and IBCF+PAM+ Content(LR).

Table 5 : Evaluation of 2nd level Stacking Models

Input Model MAE MSE RMSE

3+5+6+13+14 LR 0.7164 0.8404 0.9167

7+8 LR 0.7185 0.8442 0.9188

4+5+7+10 SVM 0.7143 0.8404 0.921

14+15 SVM 0.707 0.8379 0.9154

The combination of model indexed 14 & 15 is the most accurate model among all 2-

level stacking models. We observe that 2nd level stacking has significantly improved

accuracy from 1st level stacking. The RMSE has dropped from 0.93 to 0.9154 which

is equivalent to 1.57% increment in accuracy.

8. Conclusion

We implemented many recommender systems & experimented with different

ensemble combinations. Our objective here was to investigate the outcomes of multi

level ensemble learning with respect to recommender systems. Although, similar

results can be expected for other supervised learning algorithms as well. Here, we

have used movie recommendation system as a case for experimenting with multi-level

ensemble learning. We tried to solve the complex problem of recommendation by

splitting into sub-problems and merging via ensemble learning. Each of the base

leaner is solving a sub-problem. For example, IBCF, UBCF are recommending on the

basis of ratings data, PAM is recommending on the basis of demographics, Content

based recommender is based on genre data, etc.

 We found that Diversity and Accuracy of base learners together determine the

effectiveness of Ensemble learning models. More the accuracy & diversity of base

learners, better is the overall accuracy optimization of the model.

Using 2-level ensemble learning, we were able to reduce RMSE from 0.9601 to

0.9154 which is equivalent to 4.65% increment in performance. We also found that

moving from 1-level architecture to 2-level architecture is rewarding. There was a

1.56% enhancement in accuracy over 1-level architecture. As we move from the

individual base learners to higher levels of stacking, Accuracy increases and diversity

between the models at the same level decreases rapidly. Optimum number of levels

will be that smallest level at which the correlation between learners becomes greater

than some pre-decided threshold value. If we go higher than optimum value, then it

will increase the computational complexity of the model without much appreciation in

accuracy.

We have used the same base learners for 1-level and 2-level ensembling. The

question arises that why 2-level stacking is giving better results than 1-level stacking

? We think that it maybe because 1-level ensemble model is not able to capture the

diversity of the dataset substantially. In case of multi-level stacking, we use numerous

models at intermediate levels which are based on subsets of intermediate results. The

variance caused by using different models and using different subsets of data

iteratively has accounted for better accuracy for multi-level ensemble learning model.

There is a trade-off between accuracy & diversity. With subsequent levels, we are

able to exploit the diversity of dataset to a greater extent leading to increment in

accuracy.

9. Future Work

One of the biggest disadvantage of Ensemble learning models is that they are

computationally expensive and so are unfit for Real time Analysis. Future work may

include faster Ensemble models which might be used for Real time Analysis. We can

also investigate the flexibility of Ensemble learning models by operating the same

model on different datasets and checking its effectiveness. Ensemble learning has

many architectures. Future work may including experimenting with different

Architectures or forming a new hybrid architecture. Ensemble model can also be

optimized further by including more number of diverse learners at each level and

include other techniques like bagging & boosting.

References

[1] Asmita, Shruti, and K. K. Shukla. "Review on the Architecture, Algorithm and

Fusion Strategies in Ensemble Learning." International Journal of Computer

Applications 108.8 (2014).

[2] Jahrer, Michael, Andreas Töscher, and Robert Legenstein. "Combining

predictions for accurate recommender systems." Proceedings of the 16th ACM

SIGKDD international conference on Knowledge discovery and data mining. ACM,

2010.

[3] Amatriain, Xavier, et al. "Data mining methods for recommender

systems."Recommender Systems Handbook. Springer US, 2011. 39-71.

[4] Bar, Ariel, et al. "Improving simple collaborative filtering models using ensemble

methods." Multiple Classifier Systems. Springer Berlin Heidelberg, 2013. 1-12.

[5] Lili, Cheng. "RECOMMENDER ALGORITHMS BASED ON BOOSTING

ENSEMBLE LEARNING." International Journal on Smart Sensing & Intelligent

Systems 8.1 (2015).

[6] Webb, Geoffrey I., and Zijian Zheng. "Multistrategy ensemble learning: Reducing

error by combining ensemble learning techniques." Knowledge and Data

Engineering, IEEE Transactions on 16.8 (2004): 980-991.

[7] P´adraig Cunningham , Technical Report UCD-CSI-2007-5. Ensemble

Techniques.

[8] http://grouplens.org/datasets/movielens/100k/

[9] http://mlwave.com/kaggle-ensembling-guide/

[10] Hahsler, Michael. "recommenderlab: A Framework for Developing and Testing

Recommendation Algorithms." Nov (2011).

[11]https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/Partitio

ning_Around_Medoids_(PAM)

[12] https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/pam.html

[13] https://cran.r-project.org/web/packages/cluster/cluster.pdf

[14] http://www.stat.berkeley.edu/~s133/Cluster2a.html

[15] David, Jeff, Samir Bajaj, and Cherif Jazra. "A Facebook Profile-Based TV

Recommender System." vectors 1: u2.

http://grouplens.org/datasets/movielens/100k/
http://mlwave.com/kaggle-ensembling-guide/
https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/Partitioning_Around_Medoids_(PAM)
https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/Partitioning_Around_Medoids_(PAM)
https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/pam.html
https://cran.r-project.org/web/packages/cluster/cluster.pdf

