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Abstract. In this paper, we have tried to go beyond conventional ensemble learning & 

explore multi-level ensemble learning with reference to recommender systems. In particular, 

we have focused on stacked generalization for building Movie Recommender System. We have 

tried to analyze the transition from single level to multi-level ensemble learning and its effects 

on the overall accuracy. We have used movielens dataset from Grouplens Project and used a 

host of techniques like Collaborative Filtering, PAM, Content based recommender, Random 

Forest, SVM, ANN, etc. to optimize accuracy. We have experimented with various 

combinations of base learners based on their accuracy & diversity to finally arrive at the most 

accurate ensemble of ensembles. Results show that 2-level stacking gives more accurate results 

than single level stacking or any individual recommender system. 
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1   Introduction 

Ensemble learning is a very powerful machine learning paradigm which can 

optimize roughly any other learning algorithm. It is based on a very intuitive concept 

that a group of people can make a better decision than an individual. Instead of solely 

relying on the smartest learning algorithm, it exploits the wisdom of all learning 

algorithms and focusses on collective intelligence. Earlier, we used to train a number 

of different models on the dataset and choose the best one for deployment. Using 

Ensemble learning, we can use all the models we have trained (provided they have 

accuracy > 50% ) to further optimize our accuracy. It can be used to deal with 

complex problems such as Classification, Regression, Time Series, Recommender 

Systems, Reinforcement Learning, Unsupervised Learning, etc. The down side of 

using ensemble learning is that the complexity of the model increases so it might not 

be applicable for real-time analysis.  

 

Recommender Systems are supervised learning algorithms which try to model a 

user based on a host of parameters and recommend accordingly. They impact our 

everyday life. Most common examples include Amazon, Netflix, Facebook, etc. In 

this age of Internet, It becomes a herculean task for a user to find the most relevant 

information on the web. Here, Recommender systems step in & filter through a sea of 

data to fetch the most relevant data according to our profile. They save our time & 

enable us to consume the most relevant data which we might have otherwise missed. 

Recommender systems is currently a hot research topic with research focusing on 

Personalization, Context-Aware Recommendations, Real-Time Recommendations, 

etc. Earlier, Recommender Systems were restricted to E-Commerece, Videos, etc. but 



now they are being used for Recommending News, Friends, Jobs, restaurants, 

financial services, life insurance, etc. Recommendations can be based on current 

location, likings, ratings, content, age, sex and a whole lot of other parameters based 

on online interaction.   

 

The realm of Recommender Systems using ensemble approach has not been 

exploited much. Most of the work deals with single level ensemble learning. In this 

paper, we have tried to extend conventional ensemble learning and used multi-level 

stacking. We have proposed a novel and more accurate recommender system based on 

traditional learners using 2-level stacking generalization. 

                        

         This paper is organized as follows. Section 2 discusses about the related work 

in this field. Section 3 throws light on ensemble learning in some detail. Section 4 

discusses about the recommender systems we have used in this work. Section 5 

describes our proposed approach towards multi-level ensemble learning model. 

Section 7, 8 and 9 contains Results, Conclusion and Future Work respectively. 

2   Related Work  

Earlier, we used to train multiple models and used the best one for deployment. This 

way, our time and efforts training other models go waste[15]. Then we came across 

ensemble learning which is a very powerful technique to optimize other learning 

algorithms [7] and widely used in data competitions.[9]  Ensemble learning has many 

flavors. It has various architectures[1] and techniques like bagging, boosting, 

stacking, etc. We explored that Ensemble learning has been used with Recommender 

systems [2,4,5] but Multi-level ensemble learning has not been exploited much, 

especially with reference to Recommender Systems[3].  We used a number of models 

like collaborative filtering, Content filtering, PAM [11,12,13,14], etc. for building 

multi-level ensemble learning system. 

 

3. Ensemble Learning 
 

Ensemble learning is an optimization paradigm where numerous learners are trained 

to solve the same problem [23,25,27]. Ordinary machine learning approaches work on 

a particular hypothesis whereas ensemble learning work on a set of hypotheses and 

fuse their results together to achieve better accuracy. Ensemble learning refers to a 

collection of methods that learn a target function by training a number of individual 

learners and combining their predictions.[11] Ensemble learning is used when we can 

build component learners that are more accurate than chance and, more importantly, 

that are independent from each other. They work on the principle that uncorrelated 

errors of individual learners can be eliminated through averaging. An ensemble is 

itself a supervised learning algorithm, because it can be trained and then used to make 

predictions.[22]   

Ensemble learning has following Applications :- 

• Series Prediction 



• Regression 

• Recommendation Systems 

• Classification 

• Reinforcement Learning 

• Unsupervised Learning 

•     Risk Prediction 

 

 

4.  Techniques Used 
 

4.1 UBCF : UBCF stands for User Based Collaborative Filtering. It is based on the 

principle that user who liked similar things in the past will have like similar things in 

future. There are mainly two types of recommender systems, as a function of the 

algorithm used: Content-Based Filtering (CBF) and Collaborative Filtering (CF). CF 

is one of the most commonly used methods in personalized recommendation systems. 

Collaborative filtering algorithm recommend items based upon opinions of people 

with similar tastes. Collaborative filtering can also recommend items that are not 

similar and like-minded users have rated the items. Collaborative filtering faced some 

problems by traditional information filtering duly eliminating the need for computers 

to understand the content of the items. Recommender systems need to store certain 

information about the user preferences, known as the user profile to achieve this 

personalization. The system will inform the user of what items are well recommended 

by other users with similar likes or interests. An analysis of the content by the system 

is not necessary and the quality or subjective evaluation of the items will be 

considered. However, these algorithms present problems in their computational 

performance and efficiency. 

   

    Algorithm :- 

Step I   :  Split dataset via 80/20 rule 

Step II  :  Evaluate item-user matrix 

Step III :  Evaluate user-user similarity matrix 

Step IV  : Define Neighborhood 

Step V   :  Predict Values  

Step VI  :  Testing 
 

4.2 IBCF : Item-based collaborative filtering is a model-based algorithm for making 

recommendations. In the algorithm, the similarities between different items in the 

dataset are calculated by using one of a number of similarity measures, and then these 

similarity values are used to predict ratings for user-item pairs not present in the 

dataset. Looks into the set of items the target user has rated and computes how similar 

they are to the target item and then selects k most similar items. Prediction is 

computed by taking a weighted average on the target user’s ratings on the most 

similar items.  

 

    



4.3 PAM – PAM or Partitioning around Medoids is a clustering algorithm similar 

to k-NN algorithm. The number of clusters(k) is given as input. PAM breaks the 

dataset into k groups or clusters with each cluster having a representative or medoid 

in this case. Each point is assigned to a cluster which is closest to it based on distance 

function. Distance function may be eucledian, manhattan, etc. After assigning each 

point, median of points in each cluster is chosen as new cluster representative. This 

process of assigning points to clusters is repeated until convergence is reached For 

more details please refer [11]. PAM can be directly used in R using ‘cluster ’ package 

[12,13].   

In this paper, we used PAM as a demographics based recommender system. It 

clusters users based on their demographic data. The underlying assumption here is 

that people belonging to similar age group, location, profession, etc. will have similar 

tastes and user demographics are constant over time. The prediction by a given user 

for a particular movie will be the mean of ratings given by other users who belong to 

the same cluster as the user.  

 
Fig. : A plot between Average Silhouette and Cluster size 

 

We provide user demographic data containing age, sex, zipcode, profession of 943 

unique users as input. Since the input data is mixed i.e. it contains numeric (age, 

zipcode) and categorical (sex, profession) data, we have used gower distance as the 

metric. Now, we need to choose optimal value of k i.e. number of clusters. We will 

use a measure known as silhouette to determine k. Silhouette is a measure which 

determines how well an observation fits into a cluster. It ranges between 0 and 1 with 

1 representing best fit. We will train PAM multiple times and calculate average 

silhouette for different cluster size. Plotting average silhouette vs cluster size, we find 

that the graph peaks at k = 37 which is the optimal cluster size in our case. For more 

details about silhouette, please refer [14].   



 

5.  Proposed Approach 
 

As discussed above, Ensemble learning includes many models like Bagging, 

Boosting, Stacking, etc. In this paper, we will primarily focus on stacking. For 

creating an effective ensemble model, we need to train multiple diverse learners. In 

our case we chose User based Collaborative filtering, Item based collaborative 

filtering, PAM & POP. Each of these learners manipulate the dataset in a unique way 

& make errors according to their individual biases. We trained these models on a 

portion of dataset & evaluated their accuracy & diversity on the rest. Initially, we split 

the entire dataset into training & test dataset in the ratio 80:20. Then we trained all the 

individual learners namely UBCF, IBCF, POP, Content & PAM on train dataset and 

made predictions on the test dataset. We measured accuracy via RMSE value & 

diversity via Pearson correlation coefficient. Higher the correlation coefficient, lower 

is the diversity. For creating 1-level stacking model, we fused all the predictions using 

many popular machine learning techniques as shown in Table 3.  

The predictions made by the individual learners on the test set served as the input 

for 1st level stacking. After training different 1st level stacking models, we tested it on 

a portion of the initial test dataset. Here, we expect that 1-level stacking will give 

better accuracy than the best individual learner considering each learner has high 

accuracy & diverse in its approach.  

 

 
                                             Fig.  1-level Stacking Architecture 

    

On the same grounds, we tried to extend 1-level stacking to 2-level stacking. Our 

objective here is not to create the most accurate recommender system but to 

investigate whether subsequent levels of stacking will enhance accuracy. For creating 

2-level stacking model, we’ll repeat the same process but will take input from 1st level 

instead of base learners. The term ‘best’ here means high accuracy & diversity. For 

first level stacking, we choose the best learners from the ground level based on their 

accuracy & diversity. After choosing best learners, we can employ various stacking 

techniques to fuse the predictions. In our case, we used Random Forests, Linear 

Regression, ANN & State Vector Machines for stacking at 1st level. For second level 

stacking, we will repeat the process and this time we will choose best learners from 1st 

level learners instead of ground level learners. We may choose a single model or a 

combination of models implemented at 1st level stacking for building second level 



model based on accuracy & diversity. We have again used many popular ML 

algorithms for 2nd level stacking. Genetic Algorithms, Fuzzy logic, etc. can also be 

used for stacking. We are trying to test how different levels of stacking compare to 

each other. 

 
Fig. 2-level Stacking 

 

 

Algorithm  

 

Step 1:  Split dataset into train & test dataset 

Step 2:  Train many diverse learners with accuracy >50% 

Step 3:  Pick best learners or combination of best learners 

Step 4:  Implement stacking models on learners chosen in Step 3 

Step 5:  Pick best learners/ combination of learners from stacking models (Step 4)  

Step 6:  Implement stacking model on learners from Step 5        

  

For creating n-level stacking model, the value of n can be decided on the basis of 

diversity between learners. After each level we must calculate the correlation 

coefficient between learners at that level. If the correlation between all learners is 

greater than a threshold value (say 0.80), then we must stop. In this paper, we have 

used n=2.  

 

6. Dataset 
 

    We have used Movielens 100k dataset from Grouplens project for training & testing 

our ensemble learning model. This dataset was collected via Movielens web site at 

University of Minnesota from 19th Sept’97 till 22nd April’98. The dataset contains no 

missing values and has been used extensively for research purposes. The dataset 

broadly consists data about Movies, User demographics and Ratings. The user file 

consists of attributes such as User-Id, Age, Sex, Occupation & Zipcode of 943 unique 

users. The movie file consists attributes like Movie-Id, Movie title, Release date, 

Imdb URL & various genres for 1682 movies. The ratings table consists of 100k 

movie ratings by 943 users for 1682 movies. It has four columns namely User-Id, 



Movie-Id, rating, Timestamp. User-Id may vary from 1 to 943. Similarly, Movie Id 

may vary from 1 to 1682.  Movie rating range from 1 to 5. The dataset can be freely 

accessed & downloaded at [8]. 

 

7. Results 
 

All the models have been trained & tested using R and its robust set of packages on 

Movielens-100k dataset. The output of a recommender system depends on the 

purpose it was built for. Recommender systems may be used for prediction, 

classification or ranking. Accordingly, the evaluation metric may vary from RMSE, 

MAE, Precision, Recall to Tau, rho, etc. We are primarily interested in prediction as 

classification & ranking can be performed on the basis of predicted values. Hence, we 

will be using RMSE, MAE & MSE to evaluate recommender models. 

 

Firstly, we trained base learners i.e UBCF, IBCF, PAM, POP, Content, etc. We 

have discussed these recommenders in section 4. We have trained them on 80% of 

data. Some of these recommenders can be directly used via Recommenderlab package 

in R [10].  Table 1 summarizes the accuracy for base learners. 

 
 

Table 1: Base Learners Accuracy 

  

Recommenders MAE MSE RMSE 

UBCF 0.7999 1.0191 1.0095 

PAM 0.8954 1.3237 1.1505 

IBCF 0.7475 0.9359 0.9674 

POP 0.7535 0.9217 0.9600 

Content 0.9237 1.4151 1.1896 



Random 1.7010 4.3604 2.0881 

 
Fig. : Correlation between base learners 

Based on the predictions made by base learners on 20% of data, we calculated the 

correlation between base learners as specified in table 2 and graphically represented 

in the above figure. In the graphical representation, the bigger & darker a circle is, 

more is the correlation and hence less diversity.  

In table 1, we evaluated all base learners. To put things into perspective, we have 

also used random. From table 1, we can say that POP and IBCF are most accurate. 

Surprisingly, POP has outperformed traditional collaborative filtering algorithms. 

Table 2 contains the correlation coefficients between different base learners. As far as 

diversity is concerned, PAM seems to be walking away from the crowd. Having done 

with diversity and accuracy of base learners, we will move to next level. 

  

 
Table 2 : Correlation between Recommenders at level 1 

 

Correlation UBCF PAM IBCF POP Content 

UBCF 1 0.2309 0.6443 0.8018 0.5554 

PAM 0.2309 1 0.3378 0.5215 0.1175 

IBCF 0.6443 0.3378 1 0.7047 0.3967 

POP 0.8018 0.5215 0.7047 1 0.4861 

Content 0.5554 0.1175 0.3967 0.4861 1 

 



For building 1-level Ensemble learning structure as described in Fig. 1, we will stack 

all the base learners together using machine learning techniques like Random Forest, 

SVM, Linear regression & Neural network. We have trained these models on 80% of 

the predicted data obtained from base learners. Table 3 shows the evaluation of these 

techniques on the remaining 20% data. 
 

Table 3: Evaluation of 1st level stacking techniques 

 

Model MAE MSE RMSE 

Random Forest 0.7442 0.8838 0.9401 

SVM 0.7272 0.8732 0.9344 

Mean 0.8022 1.031 1.015 

Linear Regression 0.7337 0.8652 0.9301 

Neural Network 0.7898 0.9818 0.9908 

 

Using Table 3, we can say that Linear Regression outperformed other machine 

learning techniques. Stacked Linear Regression model has performed better than the 

best individual base learner. The RMSE has dropped from 0.9600(POP) to 

0.9301(Linear Regression) which is 3.12% increment in accuracy. 

  

For building 2-level Ensemble learning model, we will first train different 

combination of base learners to form 1st layer of stacking models. Then we’ll build 2nd 

layer by repeating the same using 1st layer as input. We will choose different 

combinations based on the accuracy & diversity of base learners. Table 4 summarizes 

the evaluation of different combinations of base learners along with the model used. 

Here RF means Random Forest, SVM means State Vector Machines, LR means 

Linear Regression and NN represent Artificial Neural network. 

 
Table 4: Evaluation of Stacking models for 2-level Ensemble Architecture 

 

Index Recommenders Model MAE MSE RMSE 

1 IBCF + PAM RF 0.7847 0.9747 0.9872 

2 IBCF + PAM LR 0.7523 0.9076 0.9527 

3 IBCF + PAM SVM 0.7477 0.9172 0.9577 

4 Content + PAM LR 0.8301 1.0750 1.0368 

5 Content + PAM RF 0.8519 1.1366 1.066 

6 IBCF + Content LR 0.7619 0.9311 0.9649 

7 IBCF + POP SVM 0.7335 0.8806 0.9384 

8 IBCF+PAM+ Content LR 0.7362 0.8701 0.9328 



9 IBCF+PAM+ Content NN 0.7471 0.8949 0.9460 

10  UBCF+PAM+ Content RF 0.7975 1.0121 1.0060 

11  IBCF+POP+UBCF LR 0.7364 0.8700 0.9327 

12  POP+PAM+ Content LR 0.7364 0.8700 0.9327 

13  UBCF+POP+PAM+ Content LR 0.7574 0.9235 0.9610 

14  IBCF+POP+PAM+ Content LR 0.7341 0.8654 0.9302 

15  IBCF+POP LR 0.7362 0.8701 0.9328 

 

Table 4 summarizes 15 different models trained for 1st level stacking. Clearly, Model 

indexed 14 performed the based. Each of these models is trained only on a subset of 

entire data. For example, IBCF+POP, represents the prediction data obtained from 

IBCF & POP when applied on test dataset. Next we’ll calculate the correlation 

between these 15 models. Fig *** represents correlation coefficient between all 1st 

level stacking models. Bigger & darker circles on the figure represents stronger 

correlation and hence less variance. 

 

 
 

Finally, we are ready for the 2nd level stacking for the 2-level architecture. We will 

choose different combination of models from 1st level stacking models based on 

accuracy & diversity. Table 5 represents the different combination of stacking models 

implemented for 2nd level stacking. Numbers mentioned in Input column of Table 5 

represents the index of model as mentioned in Table 4. For example, 7+8 represents 

the combination IBCF + POP(SVM) and IBCF+PAM+ Content(LR). 

 
Table 5 : Evaluation of 2nd level Stacking Models 

 



Input Model MAE MSE RMSE 

3+5+6+13+14 LR 0.7164 0.8404 0.9167 

7+8 LR 0.7185 0.8442 0.9188 

4+5+7+10 SVM 0.7143 0.8404 0.921 

14+15 SVM 0.707 0.8379 0.9154 

 

The combination of model indexed 14 & 15 is the most accurate model among all 2-

level stacking models. We observe that 2nd level stacking has significantly improved 

accuracy from 1st level stacking. The RMSE has dropped from 0.93 to 0.9154 which 

is equivalent to 1.57% increment in accuracy. 

8. Conclusion 

We implemented many recommender systems & experimented with different 

ensemble combinations. Our objective here was to investigate the outcomes of multi 

level ensemble learning with respect to recommender systems. Although, similar 

results can be expected for other supervised learning algorithms as well. Here, we 

have used movie recommendation system as a case for experimenting with multi-level 

ensemble learning. We tried to solve the complex problem of recommendation by 

splitting into sub-problems and merging via ensemble learning. Each of the base 

leaner is solving a sub-problem. For example, IBCF, UBCF are recommending on the 

basis of ratings data, PAM is recommending on the basis of demographics, Content 

based recommender is based on genre data, etc. 

 

       We found that Diversity and Accuracy of base learners together determine the 

effectiveness of Ensemble learning models. More the accuracy & diversity of base 

learners, better is the overall accuracy optimization of the model.  

Using 2-level ensemble learning, we were able to reduce RMSE from 0.9601 to 

0.9154 which is equivalent to 4.65% increment in performance. We also found that 

moving from 1-level architecture to 2-level architecture is rewarding. There was a 

1.56% enhancement in accuracy over 1-level architecture. As we move from the 

individual base learners to higher levels of stacking, Accuracy increases and diversity 

between the models at the same level decreases rapidly. Optimum number of levels 

will be that smallest level at which the correlation between learners becomes greater 

than some pre-decided threshold value. If we go higher than optimum value, then it 

will increase the computational complexity of the model without much appreciation in 

accuracy. 

 

We have used the same base learners for 1-level and 2-level ensembling. The 

question arises that why 2-level stacking is giving better results than 1-level stacking 

? We think that it maybe because 1-level ensemble model is not able to capture the 

diversity of the dataset substantially. In case of multi-level stacking, we use numerous 

models at intermediate levels which are based on subsets of intermediate results. The 

variance caused by using different models and using different subsets of data 



iteratively has accounted for better accuracy for multi-level ensemble learning model. 

There is a trade-off between accuracy & diversity. With subsequent levels, we are 

able to exploit the diversity of dataset to a greater extent leading to increment in 

accuracy. 

 

 

9. Future Work  

One of the biggest disadvantage of Ensemble learning models is that they are 

computationally expensive and so are unfit for Real time Analysis. Future work may 

include faster Ensemble models which might be used for Real time Analysis. We can 

also investigate the flexibility of Ensemble learning models by operating the same 

model on different datasets and checking its effectiveness. Ensemble learning has 

many architectures. Future work may including experimenting with different 

Architectures or forming a new hybrid architecture. Ensemble model can also be 

optimized further by including more number of diverse learners at each level and 

include other techniques like bagging & boosting.   
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