Does Speech enhancement of publicly available data help build robust Speech Recognition Systems?

Bhavya Ghai,¹ Buvana Ramanan,² Klaus Mueller¹

¹Department of Computer Science, Stony Brook University, USA ²Nokia Bell Labs, Murray Hill, USA

Objective

- Build robust Automatic Speech Recognition (ASR) systems comparable to the likes of big organizations like Google, Microsoft, etc. without access to huge private repositories of clean labeled dataset
- This will provide a level playing field for startups, academics and other small companies and research
 organizations to compete with larger organizations.

Dataset	
 Existing datasets for speech enhancement are pretty limited in size. So, we decided to curate our own dataset. 	LibriSpeech Clean Speech

- For clean speech, we used LibriSpeech dataset which is derived from public domain audiobooks (~460 hours)
- For ambient noise, we used popular datasets like Urbansound, ESC50 and youtube videos consisting of background noise in rain, traffic, restaurant, etc.
- For background music, we used youtube videos to extract movie theme songs and instrumental music belonging to diverse genres like Latin, African, Heavy metal, Native American, Japanese, Indian, etc.

Our Approach

- Speech from publicly available sources is first cleaned using SEGAN Algorithm.
- Cleaned speech is contaminated with different kinds of ambient noise and background music to simulate different real-world conditions.
- ASR based on DeepSpeech model is trained using noisy & clean speech together (Multi-condition training).

Public Available	Noisy speech	Speech	Clean speech	Automatic
data		Enhancomont		Speecn

- We observed 9.5% mean reduction in Word error rate (WER) using our approach compared to the baseline i.e. training on noisy data while evaluating for both clean and noisy test datasets.
- Our approach also performs at par with ideal case on Noisy test data. On clean test data, our WER is a bit higher which might be due to artifacts introduced during speech enhancement.

NOKIA Bell Labs

