Scheduling DAGs on Asynchronous
Processors

Michael A. Bender Cynthia A. Phillips
Stony Brook Sandia Labs

This Talk

- Efficiently execute a DAG on p asynchronous

processors

- Results: an analysis of
firing-squad scheduling on DAGs.

» Motivation: Using free cycles on networks of
workstations, running tasks on server farms,
grid computing, etc.

NQQOl‘LO a ore 1
N it ke This Talk

 Efficiently execute on plasynchronous

" processors)]:i

- Results: an analysis of
firing-squad schedulin@n DAGs.

» Motivation: Using free cycles on networks of
workstations, running tasks on server farms,
grid computing, etc.

Terminology for DAGs

« D = critical path length (longest path in DAG)
e W= total work (# nodes in DAG)

Ex:
Ww-=13

Theorem [Graham, Brent]: A greedy schedule has
makespan < W/P+D .

— 2-approx because both W/P& D are lower bounds on OPT.
— Inmost || programs, W/P>>D, = greedy is almost OPT.

Greedy is ideal. We want FSS to be as close as possible to Greedy.

What I mean by asynchrony...

°rocl —H] —HH —H——
Proc 2 Hj I HHH H—
Droc 3 | Il HHH—

Procp FH——— J ——H—

What I mean by asynchrony...

-roc 1 HHH-FFHFHHHFFFHHHHEHERE
Proc 2 HHHFFHHHHFHAHHHHHFFFFHHP
Proc 3 H-HHFHHHHRFHHHFFFAHHHFP

Proc p - HHHHHHHHRHEHHRHHEHHSHH

« Even if the hardware is synchronous, there can
be asynchrony at the application level

How We Model Asynchrony:
Oblivious Adversary

« We assume that the adversary determines the
processor speeds at each point in time.

 Oblivious adversary

— knows structure of DAG and initial state of system, but
— does NOT know outcome of coin tosses of DAG scheduler.

* Realistic model of many sources of asynchrony (but

hot all). Common in asynchronous || computing

— [Gibbons 89] [Cole, Zajicek 89] [Martel Park,Subramonian 90] [Nishimura 90] [Kedem,Palem,Spirakis 90]
[Kedem, Palem, Rabin, Raghunathan 92] [Aumann,Rabin 94] [Aumann,Kedem,Palem,Rabin, 93]
[Aumann,Bender,Zhang 96].

 Firing Squad Scheduling works well with asynchrony.
For convenience, we can assume synchronous timesteps.
Results carry over to asynchronous setting.

Firing-Squad Scheduling (FSS)

Used in papers on asynchronous || computing (eager scheduling)
[Gibbons 89] [Cole, Zajicek 89] [Martel Park,Subramonian 90] [Nishimura 90] [Kedem Palem,Spirakis 90]
[Kedem, Palem, Rabin, Raghunathan 92] [Aumann,Rabin 94] [Aumann,Kedem Palem,Rabin, 93]
[Aumann,Bender,Zhang 96].

Whenever a processor is free, it randomly and
independently chooses a task to execute from
(a subset of) the tasks that are ready to run.

Redundancy: Some tasks may be executed many times.

Firing-Squad Scheduling (FSS) Cont.

» Redundancy => no preemption or process migration.

— A task that is bogged down on one proc finishes on another.
« FSS is well adapted for oblivious adversary

— (Which is why we can pretend things are synchronous).

* Previous work: FSS for DAGs with synchronization
barriers.

This talk: analysis of FSS on general DAGs.

Question: Which Version of FSS is Better
or Are They the Same?

ALL—choose from
all ready tasks.

— Minimizes redundant
work in a time step.

— Pushes on the fotal
work.

LEVEL—choose from
ready tasks at the
Jowest level of DAG.

— Increases redundant
work in time step, but

— Pushes on the critical
path.

Really, which is better, ALL or LEVEL?

Question: Which Version of FSS is Better or
Are They the Same?

ALL—choose from LEVEL—choose from
all ready tasks. ready tasks at the
— Minimizes redundant lowest level of DAG.

work in a time step. — Pushes on the critical

Pushes on the fotal path.

work.

Results: LEVEL is Asymptotically Better

 Adding all dependencies between levels of the
DAG actually improves makespan.

I originally thought both algs
performed the same.

Most people T ask prefer ALL.

Results

Makespan of ALL

(W W

p— Wililell D < plog p
ol ! (logp) + (logp)"
PTlave Tave D
when — < L
\ \ Tave D l{jgp

Makespan of LEVEL

(T')(W - [log™ p — log™ (pD /W)] =)

I)T‘Tﬂ. = ﬂ-ﬂ- ve

“_rhen — p(l(}g }’))1_2&, f(:)l' v & [0.. J_]

E(F‘ami? *Tlave is ave speed of procs

/\ RZSUITS clu,[‘{hj e_ggcd-;mq_
oo 30&& ih’m‘km} lds set Tave=1...
Makespan of ALL

(. .HI when % > plogp \
o 44 11—« D 44 1-2a
Ol < (logp)"—— + (logp) " =—— when — = p(logp) , for a € |0, 1]
l‘ D ’ ’
\ D when n < p)
i D log p

@(W - [log™ p — log™ (pD /W)] —D)

PTaip

Results

Makespan of ALL

W 4%
o I — > plog
(5 when — > plog
I][l—ox 114 1-2a -
© (logp)*— 4+ (logp) "D when 5= p(log p) , for a € [0, 1]
4% '
\ l when) < luzp

Makespan of LEVEL

o (” 4 flog" p — log™ (pD /W) D)
j[:-'

Br More l'niﬁh'ah, consider ?ecia.\ Case

Results ,_ D, ie,

X=1/2 .
Makespan of ALL
(% when % > plogy \
oW —a 4% 1—2a |
© (logp)®— + (logp) "D when 5= p(log p) , for a € [0, 1]
%4 p
\ l when) < og p)

Makespan of LEVEL

o (” 4 flog" p — log™ (pD /W) D)
j[:-'

Br More l'niﬁh'ah, consider ?ecia.\ Case

RQSUITS W= PD, I:Q., <= 1/2..

Makespan of ALL

(w when % > plogp \

D
%% %%
é Klog p}@’? _|_l(10g p;Z’%’{D when 5 — W;)(W/WM
T %% p
Then — <
\ D when D = logp)

Makespan of LEVEL

(S (2 + [log™ p — log™ (pD/W)] D) =6(D 1@

Overview

* DAGs
« Asynchrony + Oblivious Adversary

 Firing Squad Scheduling
« ALL vs. LEVEL @
« Asymptotic Bounds + explanation é)

 Firing Squad Scheduling w/o dependencies
« DAG exhibiting Lower Bound

FSS with No Dependencies

 Each processor randomly chooses a victim (task) and
executes that task.

« Question: how many rounds 'til all tasks finish?

@-——E

@
—-— :

/O Pr‘acessw

g
&
l

s

ﬁ%ﬁ

/D }?r‘acesso(s

>
S

- @_@:@E

PP Fasks

f FirsT Kounp H‘ [jiven—[ask gm;mJ _ (’__ "fl;) P’z '&,f'

EL

basks Survivina_] — 5

‘SECOND Rouud ‘(H‘[jfvcn—l-nsk Surv:‘ves] — (’—-"%‘) ~ E""e_

\ E [H-' basks Surviw'na_] = ;_

W
&

) i @

—_—

/D}?acos P Fasks

(R‘);jfuen +ask Sm:'nS] (I'"__) ~ ;’"
k E [H: fasks Survfuiha_] e Pe'

ef-!.

E:I%%

Tmro Rouwp

A‘

= After @Uag‘P) round8, all fasks have heen execded .

P Processos P Jusks o

4 e\ P |
TmrD Kouwp | R‘);jfuen-[ngk Sm:'va,s] = (I-"'%') 7 Tee

{
\ E [=H= fasks Survfuiha_] = ZEE

OF course. the f'mo"e
IS 'f'ukamuﬂ Wrong but
Correct m SPirit.

= After @Uoj‘P) rounds, all tasks have heen exeaed.

Constructing a Difficult DAG for ALL

AN A AN AN
VA4 2%

D

Makespan of DAG is O(D log*~).

So far things are good.
Now we add difficult structure to the DAG....

Adding 'Shark's Teeth' to Our Dag

Important aspect of sharks teeth: Whenever
one tooth falls out, another one fills the gap.

Goal: keep from executing each jaw for x steps.
Optimize so that x is as big as possible.

(onstruck ng Diffcult DaG-for ALL
xy=P ////;//x/////’/ 5’;“"5 e

Pe| node in jauo net -M] > --J-)Px -y
r): ¢ Ih jow het evece: ([Y
FF unexecuted nedes decresses BJ &(e™Y) factor v each rownd.

A‘Fhr' (log %) (M__) r‘ouhols all hodes Jaw are €Xecu.‘|'ecl

Now Optimize for xand y

Sharks teeth
xy="F / // //2///// ./’// :
{ y
K' ” ,-"I !,-’ ‘."" H_,-.f ;" ';/ “ / Sharks Ja‘d

Want to show X steps to finish jaw X= Y /og,P
and X is # levels of shark teeth: P

Total work is PD =W. X)/-"—‘ P

3

Substituting: qu_lﬂ_x:lf —>)(..—..,Sloap 9 ,Y-: P ZQ‘SP

Nesd (JloqP) rounds,, rher than 6(lsfp) rounds,
yr qe from one level of DAG +o heck.

What I'm not showing you...

« Asynchrony—how do we make it go away.

 Upper bound for ALL—Technical. Gives less
insight than lower bound.

« Correct proofs.

Conclusion

e Tight analysis of Firing Squad Scheduling of

DAG on Asynchronous Procs.
(Previous work was for DAGs with synchronization barriers.)

« LEVEL » ALL, i.e.,
removing dependencies between jobs can make
makespan asymptotically worse!

Results

Makespan of ALL

(W W

p— Wililell D < plog p
ol ! (logp) + (logp)"
PTlave Tave D
when — < L
\ \ Tave D l{jgp

Makespan of LEVEL

(T')(W - [log™ p — log™ (pD /W)] =)

I)T‘Tﬂ. = ﬂ-ﬂ- ve

“_rhen — p(l(}g }’))1_2&, f(:)l' v & [0.. J_]

Results

Makespan of ALL

(W W

p— Wililell D < plog p
ol ! (logp) + (logp)"
PTlave Tave D
when — < L
\ \ Tave D l{jgp

Makespan of LEVEL

(T')(W - [log™ p — log™ (pD /W)] =)

I)T‘Tﬂ. = ﬂ-ﬂ- ve

“_rhen — p(l(}g }’))1_2&, f(:)l' v & [0.. J_]

Other Related Work on Different-Speed Procs
 Intuitively: want fast procs on long paths in DAG.

¢ Scheduling on Related Procs [Jaffe 80] [Chudak, Shmoys 97] [Chekuri,
Bender 01]

— Speeds don't vary. Centralized scheduler.
— O(log P)-approx is best known.
« Graham/Brent bound for different speeds [BenderRabin 02]

— Speeds vary, but procs know their own speeds
— Applications to Cilk.
— Efficient in common case that w7, »p.

	Scheduling DAGs on Asynchronous Processors
	This Talk
	This Talk
	Terminology for DAGs
	What I mean by asynchrony…
	What I mean by asynchrony…
	How We Model Asynchrony: �Oblivious Adversary
	Firing-Squad Scheduling (FSS)
	Firing-Squad Scheduling (FSS) Cont.
	Question: Which Version of FSS is Better or Are They the Same?
	Results: LEVEL is Asymptotically Better
	Overview
	FSS with No Dependencies
	Constructing a Difficult DAG for ALL
	Adding “Shark’s Teeth” to Our Dag
	Now Optimize for x and y
	What I’m not showing you…
	Conclusion
	Other Related Work on Different-Speed Procs

