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This Talk

- Efficiently execute a DAG on p asynchronous

processors

- Results: an analysis of
firing-squad scheduling on DAGs.

» Motivation: Using free cycles on networks of
workstations, running tasks on server farms,
grid computing, etc.
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Terminology for DAGs

« D = critical path length (longest path in DAG)
e W= total work (# nodes in DAG)

Ex:
Ww-=13

Theorem [Graham, Brent]: A greedy schedule has
makespan < W/P+D .

— 2-approx because both W/P& D are lower bounds on OPT.
— Inmost || programs, W/P>>D, = greedy is almost OPT.

Greedy is ideal. We want FSS to be as close as possible to Greedy.



What I mean by asynchrony...
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What I mean by asynchrony...

-roc 1 HHH-FFHFHHHFFFHHHHEHERE
Proc 2 HHHFFHHHHFHAHHHHHFFFFHHP
Proc 3 H-HHFHHHHRFHHHFFFAHHHFP

Proc p - HHHHHHHHRHEHHRHHEHHSHH

« Even if the hardware is synchronous, there can
be asynchrony at the application level



How We Model Asynchrony:
Oblivious Adversary

« We assume that the adversary determines the
processor speeds at each point in time.

 Oblivious adversary

— knows structure of DAG and initial state of system, but
— does NOT know outcome of coin tosses of DAG scheduler.

* Realistic model of many sources of asynchrony (but

hot all). Common in asynchronous || computing

— [Gibbons 89] [Cole, Zajicek 89] [Martel Park,Subramonian 90] [Nishimura 90] [Kedem,Palem,Spirakis 90]
[Kedem, Palem, Rabin, Raghunathan 92] [Aumann,Rabin 94] [Aumann,Kedem,Palem,Rabin, 93]
[Aumann,Bender,Zhang 96].

 Firing Squad Scheduling works well with asynchrony.
For convenience, we can assume synchronous timesteps.
Results carry over to asynchronous setting.



Firing-Squad Scheduling (FSS)

Used in papers on asynchronous || computing (eager scheduling)
[Gibbons 89] [Cole, Zajicek 89] [Martel Park,Subramonian 90] [Nishimura 90] [Kedem Palem,Spirakis 90]
[Kedem, Palem, Rabin, Raghunathan 92] [Aumann,Rabin 94] [Aumann,Kedem Palem,Rabin, 93]
[Aumann,Bender,Zhang 96].

Whenever a processor is free, it randomly and
independently chooses a task to execute from
(a subset of) the tasks that are ready to run.

Redundancy: Some tasks may be executed many times.



Firing-Squad Scheduling (FSS) Cont.

» Redundancy => no preemption or process migration.

— A task that is bogged down on one proc finishes on another.
« FSS is well adapted for oblivious adversary

— (Which is why we can pretend things are synchronous).

* Previous work: FSS for DAGs with synchronization
barriers.

This talk: analysis of FSS on general DAGs.



Question: Which Version of FSS is Better
or Are They the Same?

ALL—choose from
all ready tasks.

— Minimizes redundant
work in a time step.

— Pushes on the fotal
work.

LEVEL—choose from
ready tasks at the
Jowest level of DAG.

— Increases redundant
work in time step, but

— Pushes on the critical
path.




Really, which is better, ALL or LEVEL?

Question: Which Version of FSS is Better or
Are They the Same?

ALL—choose from LEVEL—choose from
all ready tasks. ready tasks at the
— Minimizes redundant lowest level of DAG.

work in a time step. — Pushes on the critical

Pushes on the fotal path.

work.




Results: LEVEL is Asymptotically Better

 Adding all dependencies between levels of the
DAG actually improves makespan.

I originally thought both algs
performed the same.

Most people T ask prefer ALL.



Results

Makespan of ALL
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Results

Makespan of ALL
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Overview

* DAGs
« Asynchrony + Oblivious Adversary

 Firing Squad Scheduling
« ALL vs. LEVEL @
« Asymptotic Bounds + explanation é)

 Firing Squad Scheduling w/o dependencies
« DAG exhibiting Lower Bound



FSS with No Dependencies

 Each processor randomly chooses a victim (task) and
executes that task.

« Question: how many rounds 'til all tasks finish?
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Constructing a Difficult DAG for ALL
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Makespan of DAG is O(D log*~).

So far things are good.
Now we add difficult structure to the DAG....



Adding 'Shark's Teeth' to Our Dag

Important aspect of sharks teeth: Whenever
one tooth falls out, another one fills the gap.

Goal: keep from executing each jaw for x steps.
Optimize so that x is as big as possible.
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Now Optimize for xand y

Sharks teeth
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What I'm not showing you...

« Asynchrony—how do we make it go away.

 Upper bound for ALL—Technical. Gives less
insight than lower bound.

« Correct proofs.



Conclusion

e Tight analysis of Firing Squad Scheduling of

DAG on Asynchronous Procs.
(Previous work was for DAGs with synchronization barriers.)

« LEVEL » ALL, i.e.,
removing dependencies between jobs can make
makespan asymptotically worse!



Results

Makespan of ALL

( W W

p— Wililell D < plog p
ol ! (logp) + (logp)"
PTlave Tave D
when — < L
\ \ Tave D l{jgp

Makespan of LEVEL

(T')( W - [log™ p — log™ (pD /W )] = )

I)T‘Tﬂ. = ﬂ-ﬂ- ve

“_rhen — p(l(}g }’))1_2&, f(:)l' v & [0.. J_]




Results

Makespan of ALL

( W W

p— Wililell D < plog p
ol ! (logp) + (logp)"
PTlave Tave D
when — < L
\ \ Tave D l{jgp

Makespan of LEVEL

(T')( W - [log™ p — log™ (pD /W )] = )

I)T‘Tﬂ. = ﬂ-ﬂ- ve

“_rhen — p(l(}g }’))1_2&, f(:)l' v & [0.. J_]













Other Related Work on Different-Speed Procs
 Intuitively: want fast procs on long paths in DAG.

¢ Scheduling on Related Procs [Jaffe 80] [Chudak, Shmoys 97] [Chekuri,
Bender 01]

— Speeds don't vary. Centralized scheduler.
— O(log P )-approx is best known.
« Graham/Brent bound for different speeds [BenderRabin 02]

— Speeds vary, but procs know their own speeds
— Applications to Cilk.
— Efficient in common case that w7, »p.
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