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Available Memory Can Fluctuate in Real Systems

Memory fluctuations are common %100

*Jobs starting and stopping % 501 Process 1's RAM

* lrreqular parallel programs r_g 60+

* Any time-sharing system “S 404
SN
§ 209process 2 ~- Process 3
&3 ) requests more RAM leaves

Performance can be lost when algorithms can't adapt to
changes in available memory

* Thrashing (when available memory shrinks)
* Underutilization (when available memory grows)
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Adapting to Memory Changes: Empirical

Database papers on adaptive sorting or joins:
* Empirical good, but not provably good.
* Rarely present in production systems, despite the need.

[Pang, Carey, Livny, VLDB 93], [Zeller+Gray VLDB 90], [Zhang+Larson VLDB
971, [Zhang+Larson, CASCON 96], [Pang, Carey, Livny, SIGMOD/COMAD 93],
[Graefe 13]
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Adapting to Memory Changes: Theoretical

Barve and Vitter 98, Focs 991 generalize the I/O
model [Aggarwal+Vitter ’'88] to allow RAM to change

size.

* These are hard and technically sophisticated results
(sorting, FFT, matrix multiplication, etc).

* There's been little followup work over the last 15 years.

It's hard to write memory-adaptive code and harder
to prove bounds about it.
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Key Insight

We can design cache-
adaptive algorithms using
cache-oblivious algorithms.

i
Q\\} Stony Brook THw=
IllL University I III



EH S

Tools for cache-adaptive analysis.
* Extension to external-memory and cache-oblivious models.
* Square profiles and inductive charging
* Worst-case profile analysis
* Machinery for porting progress bounds from DAM to CA model

Characterization theorem for when CO algorithm is CA
) * Covers many Akra-Bazzi-style divide-and-conquer algorithms, e.qg.
* Matrix multiplication (two versions, one is CA, one is not)
* Matrix transpose * Edit distance
* Jacobi multi-pass filter * Longest common substring

* All-pairs shortest paths

Typical Master-theorem-style CO algorithms are either
optimal or log N off.

Cache-oblivious FFT is not CA, but is at most log log N off.
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Additional Results

Proof that Lazy Funnel Sort isrdal, ragemverg 021 IS Cache adaptive.

Paging results when the cache changes sizes.
* Farthest-in-future is still optimal (cf. [Belady 66]).
* LRU with 4-memory and 4-speed augmentation is competitive with OPT.

* LRU is constant-competitive even if cache hits are not free.
» And even if OPT gets to perform prefetching.

i
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Cache-Adaptive Model

Generalizes Disk Access Machine (DAM) model iaggarwai+viter 'ss).
* Data is transferred in blocks between RAM and disk.
* Performance is measured in terms of block transfers.

Now size of internal memory is a function of time.
* Can change arbitrarily
* Can change without advance notice

A

M(t)
M
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CaChe-Ob“VIOUS A|gOrItth [Frigo, Leiserson,

Prokop, Ramachandran '99]

|deal-cache model: DAM model + automatic paging
* Contents of cache are managed by a separate paging algorithm.
* Time bounds are parameterized by B, M, N.
* Goal: Minimize # of block transfers = time.

Beautiful restriction:
* Parameters B, M are unknown to the algorithm or coder.
* An optimal CO algorithm is universal for all B, M, N.

<-B=?->
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Example: Recursive Matrix Multiplication is Cache-

Oblivious

N x N matrix multiplication: 8 multiply-adds of N/2 X N/2 matrices:

A, A, B,, B, AnBy AnBy, A.By ABs;

) ¢ —
A21 A22 821 BZZ A21Bll A21312 + A22821 AZZBZZ

T(N) = O(N°/B) if N°=0(M)
8T (N/2)+O(N?/B) otherwise
N3
= 0
Bm)
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Proving Algorlthms Optlmal |n DAM

A progress bound p (M )
upper-bounds the amount of
useful work that any
algorithm can accomplish

given M memory and M/B 1/0Os.

A progress requirement
function R(N) lower bounds
the amount of work required

to solve all problems of size N.

".l Stony Brook
Univer: sily

;e
£ plications

time
p|M|=0(M"")
R(N|=0(N*

Example: Hong and
Kung's progress bound
for matrix multiplication

[Hong and Kung 81]



Why Recursive Matrix Multiply is Optimal

ne DAIVL IVIode

A
M/B
'§ ﬁJLﬂ
t, ™
% ?‘%;’f) So no algorithm can have running time less than
E ieenel 3 3
PR R(N)XM =Q2 Ng/z><M =€ =
time g p(M) B M B B\/M
3/2
p[M|=0(M*"
RIN|=0[N’|
NE
CO matrix multiply running time: T(N )=0
ply g ( ) B\/M
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What Can Go Wrong in the CA Model?

A*B
'\

R — All*Bll All*B12

! A, xB,, A, *B,, No matter how

> 8 recursive calls much memory

R A12*le A12>|< B22 is available.

=

A22*B21 AZZ*B22 ,

return R, +R, j»linear scan 6(% 1/Os

AuxBy ApxBy,  rer ApEBy,  RiFR,
.
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What Can Go Wrong in the CA Model?

We can recursively construct
a “bad” profile W, that

* Has lot's of memory when
algorithm doesn't need it

* Little memory when
algorithm could use it
8 copies of W, ,

A

S
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What Can Go Wrong in the CA Model?

W, supports a lot of progress:

p(Wy)=8p(Wy,)+O(p(N))
=8p(W ) +O(N’)
—O(N’log N)

8 copies of W, ,

A

e >\?

N—
~
WN
R +R
-\ ) .
i Y
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What Can Go Wrong in the CA Model?

W, supports a lot of progress:

p(Wy)=8p(Wy,)+O(p(N))

CO matrix multiply
makes only O(N?)

_ 3
—8P(YN/2)+@(N ) progress, so it is
—O(N°log N) not optimal. D
8 copies of W, ,
A

e <

s ,

~ i

——
WN
Ap*By ApxB;,  trr o ApxBy,  Ri*R,
A\ J
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(Simplified) Recipe for Analyzing

Ne Adal

Write down recurrence relation for the algorithm:
TIN|=aT(N/b)+®(N°/B)

Derive new recurrence by replacing additive terms
with progress bound p:

SIN|=aS(N/b)+0O(p(N°))

If S(N)=O(R(N)), then the algorithm is optimally
progressing.

-
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This Recipe Is General

Covers many different divide-and-conquer forms
* Master Theorem

* Akra-Bazzi

* Mutually recursive functions

* Plus others (e.g. cache-oblivious FFT)

Can answer several different questions
*|s an algorithm optimal?

*|s it not optimal?

*How far is it from optimal?

And it's easy!
* Just manipulating and solving recurrence relations

“.} Stony Brook
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Conclusions

The CA model works. 2100
* It is general enough to describe ¢ gps
real systems. ; Process 1's RAM
* It is easy to work with. > 001
©
Cache-oblivious algorithms g %
©
are a good way to make CA £ 204
-g y g 20 Process 2 ¥ Process 3
algorlthms. L 0 requests more RAM leaves

* Many cache oblivious
algorithms are CA.

* And are pretty close to
optimal otherwise.
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