RUTGERS |

BetrFS: A right-optimized, write-
optimized file system

William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng
Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, Michael
Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.
Porter

Stony Brook University, Tokutek Inc., Rutgers University, Massachusetts Institute
of Technology

ext4 is good at sequential 1/O

Sequential /O * Disk bandwidth spec:
125 MB/s

 Workload: 1GiB sequential
write

ot e extd bandwidth:
= 104 MB/s

120 -

80 -

MB/s

Z

40

0_

*higher is better

ext4 struggles with random writes

120 -

80 -

MB/s

40

0 ¢

Random Overwrites

*higher is better

* Disk bandwidth spec:

125 MB/s

e Workload: Small, random
writes of cached data

e ext4 write bandwidth:

= 1.5 MB/s

What is going on here?

 Random write performance dominated by
seeks

* Back-of-the-envelope:
= Average disk seek time is 11ms
= Seek for every 4KB write
" Implies maximum 0.4MB/s bandwidth

* Previous benchmark benefits from locality, good 1/0O
scheduling

Avoiding seeks: log-structured
file systems

* Pros:
= writing data is just an append to the log

e Cons:
= file blocks can become scattered on disk

" reading data becomes slow

* Logging still presents a tradeoff between
random-write and sequential-1/O performance

BeirFS

* Use write-optimized indexes (WOIs)

" on-disk data structures that rapidly ingest new data
while maintaining logical locality

* Create a schema that maps file operations to
efficient WOI operations

* Implemented in the Linux kernel

= exposed new performance opportunities

Advancing write-optimized FSes

* Prior work: WOlIs can accelerate FS operations

u TO ku FS [Esmet, Bender, Farach-Colton, Kuszmaul ‘12], KV FS [Shetty, Spillane, Malpani,

Andrews, Seyster, and Zadok ‘13], Ta b | e FS [Ren and Gibson ‘13],
" Prior WOFSs in user space

e BetrFS goal: explore all the ways write-optimization
can be used in a file system

= explore the impact of write-optimization on the
interaction with the rest of the system

BeirFS uses B:-Trees

e Bé-trees: an asymptotically optimal key-value store

* BEtrees asymptotically dominate log-structured
merge-trees

 We use Fractal Trees, an open-source B&-tree
implementation from Tokutek

For this talk, we treat BE as a black box that performs
fast insertions and fast point and range queries

B:-Tree Operations

* Implement a dictionary on key-value pairs

" insert(k,v)

get, put, and delete

= v = search(k) elements one-at-a-time

" delete(k)

ery a range
" k’ = successor (k) qump\llaluesg
m k’

= predecessor (k)

* New operation:
= upsert(k, f)

Bt-frees search/insert asymmetry

* Queries (point and range) comparable to B-trees
= with caching, ~1 seek + disk bandwidth
" hundreds of random queries per second

* Extremely fast inserts
" tens of thousands per second

To get the best possible performance,
we want to do blind inserts (without searches)

upsert = update + insert

upsert(k, f)

* An upsert specifies a mutation to a value
" e.g. increment a reference count
= e.g. modify the 5t byte of a string
* upserts are encoded as messages and inserted
into the tree
= defer and batch expensive queries

= we can perform tens of thousands of upserts per
second

File System = Bt Tree

* Maintain two separate B&-tree indexes:

metadata index: path -> struct stat
dataindex: (path,blk#) -> data[4096]

* Implications:
= fast directory scans
" data blocks are laid out sequentially

Operation Roundup

Operation Implementatio

read range quer

write upsert

metadata update upsert Efficient
readdir range query B SEES

mkdir/rmdir upsert
unlink *delete each block gty o e
rename *delete then single WOI

) operation
reinsert each block .

Integrating BetrFS with the page
cache

* Write-back caching can convert single-byte to
full-page writes

* upserts enable BetrFS to avoid this write
amplification

Page cache integration #1:
blind write

write(/home/bill/foo.txt, D)

Page cache No cached

Is the /home/bill/foo.txt page.

target page
cached?

‘------—~

e —— -

upsert(/home/bill/foo.txt, D)

‘ upsert(/home/bill/foo.txt, D) \

Page cache integration #2:
write-after-read

write(/home/bill/foo.txt, D)

Target page

Is the is cached.

target p~- Is the

Target page
is clean.

dirty?

/
i
i
I
I
I

cac’ target page :
I
I
I
I
I
i
1

upsert(/home/bill/foo.txt, D)
\ Cached page is
"""""" now consistent

with disk.
‘ upsert(/home/bill/foo.txt, |:|) \

Page cache integration #3:
write fo mmap’ed file

write(/home/bill/foo.txt, D)

Page cache
Target page

Is the . oo
/home/bill/foo.txt Is cached.

targetpa” [sthe
cac’ target page
dirty?

We wait for page Target page

writeback to persist is dirty.

ournew data. AEEEEE Ll

Page-cache takeaways

* By rethinking the interaction between the
page cache and the file system, we benefit
more than simply speeding up individual
operations

" use upserts to avoid unnecessary reads
" use upserts to avoid write amplification

System Architecture

I‘ unmodiﬁed*:

BetrFS Kernel I '

|

module registered : - new code |
0 \ ’
with the Vis ;M Bt -

BetrFS

Use an existing
file system as
Imported as a B® Tree block manager

binary blob
E Disk j

Performance Questions

* Do we meet our performance goals for small,
random, unalighed writes?

* |s BetrFS competitive for sequential I/0?

* Do any real-world applications benefit?

Experimental Setup

* Dell optiplex desktop:
= 4-core 3.4 GHz i7, 4 GB RAM
= 7200RPM 250GB Seagate Barracuda

 Compare with btrfs, ext4, xfs, zfs
= default settings for all

e All tests are cold cache

NN ... R —
Small, random, unaligned writes are

an order-of-magnitude faster

1000 Random 4-byte writes - 1GiB file, random data
100+ e 1,000 random 4-byte writes
 fsync() atend

Log Scale

BetrFS benefits

Time (s)

0.17s vs. > 10s

from blind and
sub-block writes

*lower is better

Small file creates are an order-of-
maghnitude faster

Small File Creation

e create 3 million files and

100000 After creating the write 200-bytes to each
1 m'"'o?th file, balanced directory tree
what is the with fanout 128
throughput performance over time
'8 10000 -
8 o BetrFS
) @ btrfs
@€ > ext4
8 e xfs
T 1000- =izt
Log Scale
100 -

0 1M oM 3M
Files Created
*higher is better

Sequential I/O

1GiB Sequential 1/0

100-

75~

MiB/s

25-

relad _
Operation
*higher is better

Write random data to file,
10 4K-blocks at a time
Sequentially read data back

Write all data at
least 2x

(Bs-tree journaling)

III%HI

BetrFS forgoes indirection for
locality: delete, rename O(n)

300+

200+

Time (s)

100+

BetrFS Delete Scaling

Q Q
RS &
File Size

* write random data to file,
fsync() it
* deletefile

O(n) scaling:
o BetrFS must delete
each block

individually

III%!\

BetrFS forgoes indirection for
locality: fast directory scans

GNU Find

grep —r recursive scans from root of

a0 Linux 3.11.10 source

* GNU find scansfile
metadata

20

60 -
15+

grep —r scans file
contents

Time (s)

140

full-path keys let
BetrFS efficiently
20- implement scans using
range queries

BeilrFS Benefits Mailserver
Workloads

IMAP e Dovecot 2.2.13 mail server
(50% read, 50% mark or move) using maildir

* 26,000 sync () operations

BetrFS
btrfs
ext4
xfs

zfs

600 -

400 -

Time (s

200-

*lower is better

BetrFS Benefits rsync

In—place rsync of « rsync Linux source tree to
Linux 3.11.10 to new directory on same FS
e copying to an empty directory
30-
020+ BetrFS —--in-place
- btrfs flag | BetrFS i
o oxta ag lets BetrFS issue
= xfs blind writes
zfs
10-
0_

*higher is better

Performance Questions

Do we meet our performancegog¥h for small,

random writes?

* |s BetrFS competitive for sequential I/O~ *®
* More work to do here

* Do any real-world applications benefit?

=" More experiments in paper

BetrFS

* Cake && Eat: One file system can have good
sequential and random 1/O performance

 WOI performance requires revisiting many
design decisions

" jnodes
= write-through vs. write-back caching
= perform blind writes whenever possible

betrfs.org - github.com/oscarlab/betrfs

