Databases & External Memory
Indexes, Write Optimization, and

Crypto-searches

Tokutek & Stony Brook Tokutek & Rutgers

HPRAERY. lokutek
BRAWSK Sl ®
STATE UNIVERSITY OF Nt W YORK J N

What’s a Database?

DBs are systems for:
e Storing data
e Querying data.

count (¥*)
where a<120;

STOC ’12 Tutorial: Databases and External Memory

What's a Database?

DBs are systems for:
e Storing data
e Querying data.

e \We'll talk some about so-called NoSQL systems.

Data consists of a set of key,value pairs.

e Each value can consist of a well defined tuple, where
each component is called a field (e.g. relational DBs).

Big Data.
¢ Big data = bigger than RAM.

STOC ’12 Tutorial: Databases and External Memory

What’s this database tutorial?

Traditionally:
e [Fast queries = sophisticated indexes and slow inserts.

e Fast inserts = slow queries.

count (%)
where a<120;

We want fast data ingestion + fast queries.

STOC ’12 Tutorial: Databases and External Memory

What’s this database tutorial?

Database tradeoffs:
e There is a query/insertion tradeoft.

» Algorithmicists mean one thing by this claim.
» DB users mean something different.

o \\Ve'll look at both.

Overview of Tutorial:
¢ |[ndexes: The DB tool for making queries fast
¢ The difficulty of indexing under heavy data loads
¢ [heory and Practice of write optimization
e From data structure to database
¢ Algorithmic challenges from maintaining two indexes

STOC ’12 Tutorial: Databases and External Memory

Row, Index, and Table

a b C Row
100 5 45 e Key,value pair
101 92 2 e key = a, value = b,c
|56 | 56 45 Index
165 6 2 |
198 | 202 | 56 ¢ Ordering of rows by key
206 | 23 259 e Used to make queries fast
256 | 56 2 Table
412 | 43 45 e Set of indexes

create table foo (a int, b int, ¢ int,
primary key(a)) ;

STOC ’12 Tutorial: Databases and External Memory

An Index can select needed rows

a b C
|00 5 45
101 92 2
|56 | 56 45
165 6 2
198 | 202 | 56
206 | 23 [252
256 | 56 2
412 | 43 45

count (*) where a<120;

STOC ’12 Tutorial: Databases and External Memory

An Index can select needed rows

R R

156

165 6 2

198 | 202 [56

206 | 23 | 252 -
256 [56 2

412 | 43 45

count (*) where a<120;

STOC ’12 Tutorial: Databases and External Memory

NoO good index means slow table scans

a b C
100 5 45
101 92 2
|56 | 56 45
165 6 2
198 | 202 | 56
206 | 23 [252
256 | 56 2
412 | 43 45

count (*) where b>50 and b<100;

STOC ’12 Tutorial: Databases and External Memory

NoO good index means slow table scans

100

45

a b C
100 5 45
101 92 2
|56 | 56 45
165 6 2
198 | 202 | 56
206 | 23 [252
256 | 56 2
412 | 43 45

|65 2
|98 56
206 252
412 45

\4

count (*) where b>50 and b<100;

STOC ’12 Tutorial: Databases and External Memory

You can add an index

a b C b a
100 5 45 5 100
101 92 2 6 165
|56 | 56 45 23 | 206
165 6 2 43 | 412
198 | 202 | 56 56 |56
206 | 23 [252 56 | 256
256 | 56 2 92 101
412 | 43 45 202 | 198

alter table foo add key(b);

STOC ’12 Tutorial: Databases and External Memory

A selective iIndex speeds up queries

a b C b a
100 5 45 5 100
101 92 2 6 165
|56 | 56 45 23 | 206
165 6 2 43 | 412
198 | 202 | 56 56 |56
206 | 23 [252 56 | 256
256 | 56 2 92 101
412 | 43 45 202 | 198

count (*) where b>50

and b<100;

STOC ’12 Tutorial: Databases and External Memory

A selective iIndex speeds up queries

a b C b a
100 5 45 5 100
101 92 2 6 165
|56 | 56 45 23 | 206
165 6 2 43 | 412
198 | 202 | 56 56 |56
206 | 23 [252 56
256 | 56 2 56
412 | 43 45 92

count (*) where b>50

and b<100;

!

STOC ’12 Tutorial: Databases and External Memory

Selective indexes can still be slow

a b C b a
100 5 45 5 100
|01 92 2 6 |65
156 | 56 45 23 | 206
|65 6 2 43 | 412
198 | 202 | 56 56 156
206 | 23 | 252 56 | 256
256 | 56 2 92 101
412 | 43 45 202 | 198

sum(c) where b>50;

STOC ’12 Tutorial: Databases and External Memory

Selective indexes can still be slow

a b C b a
|00 5 45 5 100
|01 92 2 6 |65
156 | 56 45 23 | 206
|65 6 2 43 | 412
198 | 202 | 56
206 | 23 | 252
256 | 56 2
412 | 43 45

sum(c) where b>50;

STOC ’12 Tutorial: Databases and Externa

Selecting
on b: fast

| Memory

Selective indexes can still be slow

a b C b a
|00 5 45 5 100
|01 92 2 6 |65
156 | 56 45 23 | 206
|65 6 2 43 | 412
198 | 202 | 56
206 | 23 | 252
256 | 56 2
412 | 43 45

sum(c) where b>50;

STOC ’12 Tutorial: Databases and Externa

Selecting
on b: fast

Fetching info for

summing c: slow

| Memory

Selective indexes can still be slow

a b C b a
100 5 45 5 100
|01 92 2 6 |65
156 | 56 45 23 | 206
|65 6 2 43 | 412
198 | 202 | 56
206 | 23 | 252
256 | 56 2
412 | 43 45

sum(c) where b>50;

156

56

45

STOC ’12 Tutorial: Databases and Externa

Selecting
on b: fast

Fetching info for

summing c: slow

| Memory

Selective indexes can still be slow

a b C b a
100 5 45 5 100
|01 92 2 6 |65
156 | 56 45 23 | 206
|65 6 2 43 | 412
198 | 202 | 56
206 | 23 | 252
256 | 56 2
412 | 43 45

sum(c) where b>50;

156

56

45

STOC ’12 Tutorial: Databases and Externa

Selecting
on b: fast

Fetching info for

summing c: slow

| Memory

Selective indexes can still be slow

a b C b a
100 5 45 5 100
|01 92 2 6 |65
156 | 56 45 23 | 206
|65 6 2 43 | 412
198 | 202 | 56
206 | 23 | 252
256 | 56 2
412 | 43 45

sum(c) where b>50;

156

56

45

256

56

STOC ’12 Tutorial: Databases and Externa

Selecting
on b: fast

Fetching info for

summing c: slow

| Memory

Poor data locality

Selective indexes can still be slow

a b C b a
00 5 45 5 100
Ol 92 2 6 |65
56 | 56 45 23 | 206
|65 6 2 43 | 412
198 | 202 | 56

206 | 23 | 252

256 | 56 2

412 | 43 45

sum(c) where b>50;

156 [56
256 | 56
101 | 92
198 | 202

I«

Selecting
on b: fast

Fetching info for

summing c: slow

STOC ’12 Tutorial: Databases and External Memory

Covering iIndexes speed up queries

a b C b,c a
100 5 45 5,45 100
|01 92 2 6,2 |65
156 | 56 45 23,252 206
|65 6 2 43,45 | 412
198 | 202 [56 56,2 | 256
206 | 23 | 252 56,45 | 156
256 | 56 2 92,2 | 101
412 | 43 45 202,56 | 198

alter table foo add key(b,c);

sum(c) where b>50;

STOC ’12 Tutorial: Databases and External Memory

Covering iIndexes speed up queries

a b C b,c a
|00 5 45 5,45 100
|01 92 2 6,2 |65
156 | 56 45 23,252 | 206
|65 6 2 43,45 | 412
198 | 202 | 56
206 | 23 | 252
256 | 56 2
412 | 43 45

alter table foo add key(b,c);

sum(c) where b>50;

STOC ’12 Tutorial: Databases and External Memory

DB Pertormance and Indexes

Read performance depends on having the right
iIndexes for a query workload.

¢ \\e've scratched the surface of index selection.

e And there’s interesting query optimization going on.

Write performance depends on speed of
maintaining those indexes.

Next: how to implement indexes and tables.

STOC ’12 Tutorial: Databases and External Memory

An Index Is a dictionary

Dictionary APl: maintain a set S subject to
¢ insert(x): S « S u {x}
e delete(x): S + S - {x}
e search(x): is x e S7?
® SUCCESSOor(X): return miny > xs.t. ye S
e predecessor(y): return maxy < xs.t. ye S

STOC ’12 Tutorial: Databases and External Memory

A table I1s a set of Indexes

A table is a set of indexes with operations:
e Add index: add key (f1,f2, ...);
e Drop index: drop kev (f1,f2, ...);
e Add column: adds a field to primary key value.

e Remove column: removes a field and drops all indexes
where field is part of key.

e Change field type

Subject to index correctness constraints.

We want table operations to be fast too.

STOC ’12 Tutorial: Databases and External Memory

Indexes are typically B-trees

B-tree performance:
e Point queries: O(logs N) I/Os.

» Matches lower bound for DAM model.
e Range queries of K elements:
O(logs N + K/B) 1/0s.

» We’'ll talk about B-tree aging later.

e Insertions: O(logs N) |/Os.

Range query is scan
of data in leaves

STOC ’12 Tutorial: Databases and External Memory

Indexes are typically B-trees

B-tree performance:
e Point queries: O(logs N) I/Os.

» Matches lower bound for DAM model.

e Range queries of K elements:

O(logs N + K/B) |/Os.

» We'll talk about B-tree aging later.

e Insertions: O(logs N) |/Os.

Searching
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

¢ Finding an element x among N items requires
O(loggz,1 N) memory transfers
* Lower bound: (comparison model)
= kaeh block reveals where x fits among B items
rn < log(B + 1) bits per read
log(N + 1) bits

«— B items ——p

& delete
logg+1 N)

Range query is scan
of data in leaves

STOC ’12 Tutorial: Databases and External Memory

Worst-case analysis is a fall

Some indexes are easy to maintain, others not.
® [he database is chugging along nicely.
e YOou add an index.
e Performance tanks --- inserts can run 100x slower.

STOC ’12 Tutorial: Databases and External Memory

Indexes and Performance Anomalies

Databases can exhibit performance anomalies when
Indexes are modified.

* “I'm trying to create indexes on a table with 308 million rows. It
took ~20 minutes to load the table but 10 days to build indexes

on it.”
» MySQL bug #9544

e “Select queries were slow until | added an index onto the
timestamp field... Adding the index really helped our reporting,
BUT now the inserts are taking forever.”

» Comment on mysqlperformanceblog.com

e “They indexed their tables, and indexed them well,
And lo, did the queries run quick!
But that wasn’t the last of their troubles, to tell-
Their insertions, like molasses, ran thick.”

» Not from Alice in Wonderland by Lewis Carroll

STOC ’12 Tutorial: Databases and External Memory

B-trees and Caching: Sequential Inserts

Sequential B-tree inserts run fast because of
near-optimal data locality.

These B-tree nodes reside \ Insertions are into
in memory. this leaf node.

e One disk I/O per leaf (though many elements are inserted).
e O(1/B) I/Os per row inserted.
e Performance is limited by disk-bandwidth.

STOC ’12 Tutorial: Databases and External Memory

B-trees and Caching: Random Inserts

High entropy inserts (e.g., random, ad hoc) in
B-trees have poor data locality.

¢ These B-tree nodes reside

——B— in memory.
——8—.," [N\——B
-

|
A [

¢ Most leaves are not in main memory.
e This achieves worst case performance: O(logs N).

e < 100’s inserts/sec/disk (= 0.2% of disk bandwidth).

e [wo orders of magnitude slower than sequential insertions.

STOC ’12 Tutorial: Databases and External Memory

B-tree insertion: DB Practice

People often don’t use enough indexes.

They use simplistic schema. = e
. ' ' ' 2 92 2

e Seqguential inserts via an autoincrement key. T =

» Makes insertions fast but queries slow. 4 6 2

. . . 5 202 56

¢ Few indexes, few covering indexes. = [=

7 56 2

8 43 45

STOC ’12 Tutorial: Databases and External Memory

B-tree insertion: DB Practice

People often don’t use enough indexes.
They use simplistic schema.

e Seqguential inserts via an autoincrement key.

» Makes insertions fast but queries slow.

® Few indexes, few covering iIndexes.

202 56

23 252

oo ~ o (O} EN w N —_— (o)
o
N

Adding sophisticated indexes helps queries.
e B-trees cannot afford to maintain them.

STOC ’12 Tutorial: Databases and External Memory

B-tree insertion: DB Practice

People often don’t use enough indexes.
They use simplistic schema.

e Seqguential inserts via an autoincrement key.

» Makes insertions fast but queries slow.

® Few indexes, few covering iIndexes.

202 56

23 252

oo ~ o (O} EN w N —_— (o)
o
N

Adding sophisticated indexes helps queries.
e B-trees cannot afford to maintain them.

If we speed up inserts, we can maintain the
right indexes, and speed up queries.

STOC ’12 Tutorial: Databases and External Memory

Write-Optimized External Dictionaries

What we want:
e B-tree API. Better insert/delete performance.

There’s a Q(logs N) lower bound for searching...
... but not for inserting.

STOC ’12 Tutorial: Databases and External Memory

Write-Optimized External Dictionaries

Append-to-file beats B-trees at insertions.

Write next key,value here
Pros:

e Achieve disk bandwidth even for random keys.
e |e, inserts cost amortized O(1/B).

Cons:

¢ | ooking up anything requires a table scan.
e Searches cost O(N/B).

STOC ’12 Tutorial: Databases and External Memory

Write-Optimized External Dictionaries

mwee | 0(s) | 9lnn
tree log B log B

ot | 0(5) | 0(5)
append-to-file I I
wisapimzea|O (55)| O ep)
write-optimize "Bl log B Tlog B
el () | olus
e=1/2 B log B

Some optimal write optimized structures:
e Buffered repository tree [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00]

e Be&-tree [Brodal, Fagerberg 03]
Streaming B-tree [Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]

[J
e Fractal Tree Index [Tokutek]
e xDict [Brodal, Demaine, Fineman, lacono, Langerman, Munro 10]

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

Online insert buffer - .
Heuristic techniques for

* InnoDB, Vertica > getting more productive

Offline insert buffers work done when we
e OLAP OLAP OLAP) touch a B-tree leaf

Cascading
e | SM trees in Bigtable, Cassandra, H-Base

Asymptotically optimal data structures
e Buffered Repository Trees (BRT), BE -tree: Tokutek

e Cache-oblivious Lookahead Arrays (COLA): Tokutek,
Acunu

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

B-trees with an online in-RAM buffer
e Fush multiple operations to same leaf
e [0 query: search in buffer and in B-tree.

in-RAM buffer

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

B-trees with an online in-RAM buffer
e Fush multiple operations to same leaf
e [0 query: search in buffer and in B-tree.

Analysis Experience

e Smooths out the “dropping out of memory” cliff.
e Improves inserts by a small constant (say, 1x-4x).

in-RAM buffer

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

B-trees with an online in-RAM buffer
e Fush multiple operations to same leaf
e [0 query: search in buffer and in B-tree.

Analysis Experience

e Smooths out the “dropping out of memory” cliff.
e Improves inserts by a small constant (say, 1x-4x).

Used in in-RAM buffer
¢ |NnnoDB, Vertica, ...

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

OLAP: B-tree with an offline log of inserts
¢ \When log gets big enough (say cNN), sort and insert.

» Or do this operation during scheduled down time.

e [0 queries: search in B-tree.

» There’s a time lag before data gets into queryable B-tree, so queries are on stale data.
» This is called data latency.

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

OLAP: B-tree with an offline log of inserts
¢ \When log gets big enough (say cNN), sort and insert.

» Or do this operation during scheduled down time.

e [0 queries: search in B-tree.

» There’s a time lag before data gets into queryable B-tree, so queries are on stale data.
» This is called data latency.

Analysis
e CcB insertions per leaf.
¢ |[ncreasing ¢ increases throughput but also latency.

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

OLAP: B-tree with an offline log of inserts
¢ \When log gets big enough (say cNN), sort and insert.

» Or do this operation during scheduled down time.

e [0 queries: search in B-tree.

» There’s a time lag before data gets into queryable B-tree, so queries are on stale data.
» This is called data latency.

Analysis
e CcB insertions per leaf.
¢ |[ncreasing ¢ increases throughput but also latency.

Marketing is king
e Not clear why this is OnLine Analytical Processing.

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

Cascading: [O'Neil,Cheng, Gawlick, O'Neil 96]
Log structured merge (LSM) trees

e Maintain cascading B-tree T+, ..., Tiogn, |Ti| < €

¢ \When tree T« gets full, flush to 7x+1.

To T T T3 Tiog N

LSM Analysis
e Inserts: O((log N)/B). ¢/
e Queries: O(log N logsN). X

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

LSMs in production:
¢ Big-Table, Cassandra, H-base
¢ Bloom filters to improve performance.

e Some LSM implementations (e.g. Cassandra, H-base)
don’t even have a successor operation, because it runs
too slowly.

To Tt T2 T3 Tiog N

STOC ’12 Tutorial: Databases and External Memory

Simplified CO Lookahead Tree (COLA)

O((logN)/B) insert cost & O(log®N) search cost

e [t's an LSM, except we keep arrays instead of B-trees.
e A factor of O(logs V) slower on searches than an LSM.
e \We’'ll use “fractional cascading” to search in O(log N).

STOC ’12 Tutorial: Databases and External Memory

COLA Insertions (Similar to LSMs)

INSERT 17 | ’ i i I

INSERT 12 |17

MERGE 12 117

INSERT 23 J_Lu 17 | [I

INSERT 30 |23 12 |17

MERGE 12 |17 |23 (30

INSERT 26 3 6 | 8 12 |17 |23 |30

MERGE 316 |8 12|17 |23|26(30

STOC ’12 Tutorial: Databases and External Memory

Analysis of COLA

17(5 |10 | |13 |41 {57 |90 316 |8 |12|17|23|26| 30

Insert Cost:
e cost to flush buffer of size X = OX/B)
e cost per element to flush buffer = O(1/B)
e max # of times each element is flushed = log N
e insert cost = O((log N))/B) amortized memory transfers

Search Cost

¢ Binary search at each level

¢ |[0g(N/B) + logIN/B) -1 + logIN/B) -2 + ... + 2 + 1
= O(log?(N/B))

STOC ’12 Tutorial: Databases and External Memory

|dea of Faster Key Searches in COLA

o | 12(90 |9

LG)

83196 99

3/212735 33%49\%7 ﬁ5§6287 ﬁ929§ 6
| 1\

"o d [30a0]a1] 8 a2 a3 |57 | @ [6¥ [70 [72] & [73 [[93

O(log (N/B)) search cost

e Some redundancy of elements between levels

e Arrays can be partially full

e Horizontal and vertical pointers to redundant elements
e (Fractional Cascading)

STOC ’12 Tutorial: Databases and External Memory

COLA Tradeoff

Arrays can grow by bigger factors
¢ | arger growth makes insertions slower but queries faster.
e |[t's the same tradeoff curve as a Bt -tree. (See below.)

® |n order to get the full tradeoff curve, you need a growth
factor that depends on B.

» You loose cache-obliviousness.

e The xDict achieves O(logs N) searches while staying
cache-oblivious.

» We don’t know of an implementation, but would love to hear about it.

STOC ’12 Tutorial: Databases and External Memory

k-tree with k/B edge buffers

¢ Branching factor of k.
e Each branch gets a buffer of size k/B.

» All buffers in a node total size B.

¢ \When a buffer fills, flush to child.

v

) } . (FT T[] |

—

——

STOC ’12 Tutorial: Datab

ases and External Memory

k-tree with k/B edge buffers
e Branching factor of K.

e Each branch gets a buffer of size k/B.

» All buffers in a node total size B.

e \\Vhen a buffer fills, flush to child.

Blocking of B-tree: Buffer-tree

-
M elements

fan-out M@
o

1 8008

* Main idea: Logically group nodes together and add buffers
* Insertions done In a “lazy” way - elements inserted In buffers
* When a buffer runs full elements are pushed one level down

St Lars Arge
manaLGoO “.- . - .- 1029 /v

Databases and External Memory

B¢ -tree Performance

Searches: O(logkN)

Insertions:
e Cost to flush a buffer: O(1).
e Cost to flush a buffer, per element: Ok/B).
e # of flushes per element = height of tree: O(logk/V).
e Total amortized cost to flush to a leaf: Ok logk\N/B).
¢ Pick k = B¢

» Searches: O((1/¢g)logalN), as good as B-tree for constant €.
» Insertions: O(logaN/eB'-¢), as good as LSMs.

STOC ’12 Tutorial: Databases and External Memory

Write optimization. v/ What’s missing”

A real implementation must deal with
e \/ariable-sized rows
e Concurrency-control mechanisms
e Multithreading
e Transactions, logging, ACID-compliant crash recovery

e Optimizations for the special case of sequential inserts
and bulk loads

e Compression
e Backup

STOC ’12 Tutorial: Databases and External Memory

Write optimization. ¢ What’s missing?

A real implementation must deal with
e \/ariable-sized rows
e Concurrency-control mechanisms
e Multithreading
e Transactions, logging, ACID-compliant crash recovery

e Optimizations for the special case of sequential inserts
and bulk loads U

L What about disk-space?

e Compression
e Backup

STOC ’12 Tutorial: Databases and External Memory

Write optimization. v/ What’s missing”

A real implementation must deal with
e \/ariable-sized rows
e Concurrency-control mechanisms
e Multithreading
e Transactions, logging, ACID-compliant crash recovery

e Optimizations for the speC|a| case of sequential inserts
and bulk loads | 3

e Compression
e Backup (.

But can you |
do
Denmark?

STOC ’12 Tutorial: Databases and External Memory

Fractal Trees are BE-tree+COLA+Stuff

TokuDB®, an industrial-strength
— Fractal Tree
e Berkeley DB API (a B-tree API)
e Full featured (ACID, compression, etc).

Database

SQL Processing,

Query Optimization... TokuDB is a storage engine for
MySQL

TokuDB for * Role of storage engine: maintains on-disk
MySQL data

TokuDB inherits Fractal Tree speed
e 10x-100x faster index inserts

Tokutek is marketing this technology.

STOC ’12 Tutorial: Databases and External Memory

iIBench Insert Benchmark is CPU bound

iiBench - 1B Row Insert Test
50,000

45,000

40,000
35,000 \“
30,000

25,000

~=InnoDB
20,000 - h. t —TokuDB

15,000 “
10,000
5,000

0 200,000,000 400,000,000 600,000,000 800,000,000 1,000,000,000

Rows/Second

Rows Inserted

Fractal Trees scale with disk bandwidth not seek time.

e But in practice, there’s another bottleneck -- we are CPU bound.
We cannot (yet) take full advantage of more cores or disks. This must change.
(not what | expected from theoretical mode).

STOC ’12 Tutorial: Databases and External Memory

Fun Thing about Write Optimization

Time to fill a disk in 1973, 2010, and 2022.
¢ |0g data sequentially, index data in B-tree, index in Fractal

Trees.
Access Time to lo Time to fill disk | Time to fill using
Year Size Bandwidth : 8 using a B-tree Fractal tree*
Time data on disk : :
(row size |K) (row size 1K)
1973 | 35MB 835KB/s 25ms 39s
2010 3TB | 50MB/s |Oms 5.5h
2022 | 220TB |.05GB/s |Oms 2.4d

Fancy indexing structures may be a luxury now,
but they will be essential by the decade’s end.

* Projected times for fully multi-threaded version

STOC ’12 Tutorial: Databases and External Memory

Fun Thing about Write Optimization

Time to fill a disk in 1973, 2010, and 2022.
¢ |0g data sequentially, index data in B-tree, index in Fractal

Trees.
Access Time to lo Time to fill disk | Time to fill using
Year Size Bandwidth : 8 using a B-tree Fractal tree*
Time data on disk : :
(row size |K) (row size 1K)
1973 | 35MB 835KB/s 25ms 39s 975s
2010 3TB | 50MB/s |Oms 5.5h 347d
2022 | 220TB |.05GB/s | Oms 2.4d 70y

Fancy indexing structures may be a luxury now,
but they will be essential by the decade’s end.

* Projected times for fully multi-threaded version

STOC ’12 Tutorial: Databases and External Memory

Fun Thing about Write Optimization

Time to fill a disk in 1973, 2010, and 2022.
¢ |0g data sequentially, index data in B-tree, index in Fractal

Trees.
Access Time to lo Time to fill disk | Time to fill using
Year Size Bandwidth : 8 using a B-tree Fractal tree*
Time data on disk : :
(row size |K) (row size 1K)
1973 | 35MB 835KB/s 25ms 39s 975s
2010 3TB | 50MB/s |Oms 5.5h 347d
2022 | 220TB |.05GB/s | Oms 2.4d 70y

Fancy indexing structures may be a luxury now,
but they will be essential by the decade’s end.

* Projected times for fully multi-threaded version

STOC ’12 Tutorial: Databases and External Memory

Remember Tables?

A table is a set of indexes where:
e One index is distinguished as primary,.

» The key of the primary index is unique.

e Every other index is called secondary.

» There’s a bijection ‘twixt the rows of a secondary and primary indexes.
» The value of a secondary index is the key of the primary index for the corresponding row.

Constraints have performance impact.

e \Why?

y " a b c b a

100 5 45 5 100

101 92 2 6 165

156 56 45 23 206

165 6 2 43 412

198 202 56 56 156

206 23 252 56 256

256 56 2 92 101

412 43 45 202 198

STOC ’12 Tutorial: Databases and External Memory

Remember Tables?

A table is a set of indexes where:

e One index is distinguished as primary,.
('» The key of the primary index is unique.)

e Every other index is called secondary.

» There’s a bijection ‘twixt the rows of a secondary and primary indexes.
» The value of a secondary index is the key of the primary index for the corresponding row.

Constraints have performance impact.

e \Why?

y " a b c b a

100 5 45 5 100

101 92 2 6 165

156 56 45 23 206

165 6 2 43 412

198 202 56 56 156

206 23 252 56 256

256 56 2 92 101

412 43 45 202 198

STOC ’12 Tutorial: Databases and External Memory

Uniqueness Checking...

Uniqueness checking has a hidden search:

If Search (key) == True
Return Error;

Else
Fast Insert (key,value) ;

In a B-tree uniqueness checking comes for free
e On insert, you fetch a leaf.
e Checking if key exists is no biggie.

STOC ’12 Tutorial: Databases and External Memory

Uniqueness Checking...

Uniqueness checking has a “crypto-search”:

If Search (key) == True
Return Error;

Else
Fast Insert (key,value) ;

In a write-optimized structure, that pesky
search can throttle performance

¢ |[nsertion messages are injected.

¢ [hese eventually get to “bottom™ of structure.

e [nsertion w/Uniqueness Checking 100x slower.

¢ Bloom filters, Cascade Filters, etc help.

[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok 12]

STOC ’12 Tutorial: Databases and External Memory

Uniqueness Checking...

Uniqueness checking has

If Search (key) == True
Return Error;

ElKV

by ,value) ;

ed structurc—rax

searg le performance
® NS 5 are injected.
J Thekse eventuaiy \ \ to “bottom” of strucﬂ Ire.
e [nsertion w/Uniquengss Checking 100x slipwer.
¢ Bloom filters, Cascady Filters, etc help.

[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok 12]

_.

Inaw

STOC ’12 Tutorial: Databases and External Memory

Are there other crypto searches?

A table is a set of indexes where:
e One index is distinguished as primary,.

» The key of the primary index is unique.

e Every other index is called secondary.

» There’s a bijection ‘twixt the rows of a secondary and primary indexes.
» The value of a secondary index is the key of the primary index for the corresponding row.

Constraints have performance impact.

e \Why?

y " a b c b a

100 5 45 5 100

101 92 2 6 165

156 56 45 23 206

165 6 2 43 412

198 202 56 56 156

206 23 252 56 256

256 56 2 92 101

412 43 45 202 198

STOC ’12 Tutorial: Databases and External Memory

Are there other crypto searches?

A table is a set of indexes where:
e One index is distinguished as primary,.

» The key of the primary index is unique.

e Every other index is called secondary.

»(There’s a bijection ‘twixt the rows of a secondary and primary indexes)
» The value of a secondary index is the key of the primary index for the corresponding row.

Constraints have performance impact.

e \Why?

y " a b c b a

100 5 45 5 100

101 92 2 6 165

156 56 45 23 206

165 6 2 43 412

198 202 56 56 156

206 23 252 56 256

256 56 2 92 101

412 43 45 202 198

STOC ’12 Tutorial: Databases and External Memory

How do deletes work?

Tombstone message?

e A tombstone message is a message that kills a row once
it meets up with it.

e But in order to insert a tombstone message into
secondary indexes, we need to know the value by which
they have been indexed.

¢ This requires a search in the primary index.

How do we solve this?

® |n this case, by considering the use cases for deletions in
DBs.

¢ \\le can make range deletions fast, for exampile.

STOC ’12 Tutorial: Databases and External Memory

Are there other crypto searches?

Oh yes!
¢ [raditional row locking for transactions.

» Solve by having a new data structure for locking, rather than locking at the leaf.

e Deletions with primary-only index.

» Even without secondary indexes, the semantics of deletion usually require a return message
to say that the deleted key existed, and an error if you try to delete something that didn’t

exist to begin with.
» Solve by convincing customers to accept the faster semantics.

STOC ’12 Tutorial: Databases and External Memory

Conclusion

DB indexing is a rich field.
Data structures make a big difference here.

There are loads of open problems.

e But they are usually only interesting if you take the time to
really learn the use case.

What does Tokutek mean?

STOC ’12 Tutorial: Databases and External Memory

What does Tokutek mean?

7
Toku —> 1% - To Profit

Cacher > Cache —> Cache-Oblivious Analysis

v
To Hide

STOC ’12 Tutorial: Databases and External Memory

What does Tokutek mean?

7
Toku —> 1% - To Profit

Cacher > Cache —> Cache-Oblivious Analysis

v

To Hide
|. Cache-Oblivious Analysis

2.1
3. Profit

STOC ’12 Tutorial: Databases and External Memory

