
Databases & External Memory
Indexes, Write Optimization, and

Crypto-searches

Michael A. Bender
Tokutek & Stony Brook

Martin Farach-Colton
Tokutek & Rutgers

STOC ’12 Tutorial: Databases and External Memory

What’s a Database?
DBs are systems for:

• Storing data
• Querying data.

14
1

16
202

8
20

99 5 809

count (*)
where a<120;

9

STOC ’12 Tutorial: Databases and External Memory

What’s a Database?
DBs are systems for:

• Storing data
• Querying data.

DBs can have SQL interface or something else.
• We’ll talk some about so-called NoSQL systems.

Data consists of a set of key,value pairs.
• Each value can consist of a well defined tuple, where

each component is called a field (e.g. relational DBs).

Big Data.
• Big data = bigger than RAM.

STOC ’12 Tutorial: Databases and External Memory

What’s this database tutorial?
Traditionally:

• Fast queries ⇒ sophisticated indexes and slow inserts.

• Fast inserts ⇒ slow queries.

We want fast data ingestion + fast queries.

14
1

16
202

8
20

99 5 809

count (*)
where a<120;

9

STOC ’12 Tutorial: Databases and External Memory

What’s this database tutorial?
Database tradeoffs:

• There is a query/insertion tradeoff.
‣ Algorithmicists mean one thing by this claim.
‣ DB users mean something different.

• We’ll look at both.

Overview of Tutorial:
• Indexes: The DB tool for making queries fast
• The difficulty of indexing under heavy data loads
• Theory and Practice of write optimization
• From data structure to database
• Algorithmic challenges from maintaining two indexes

STOC ’12 Tutorial: Databases and External Memory

Row, Index, and Table
Row

• Key,value pair
• key = a, value = b,c

Index
• Ordering of rows by key
• Used to make queries fast

Table
• Set of indexes

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

create table foo (a int, b int, c int,
primary key(a));

STOC ’12 Tutorial: Databases and External Memory

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

An index can select needed rows

count (*) where a<120;

STOC ’12 Tutorial: Databases and External Memory

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

100 5 45
101 92 2

An index can select needed rows

100 5 45
101 92 2

2

}

count (*) where a<120;

STOC ’12 Tutorial: Databases and External Memory

No good index means slow table scans
a b c

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100;

STOC ’12 Tutorial: Databases and External Memory

No good index means slow table scans
a b c

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100;

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

101 92 2
156 56 45

256 56 2

0123

STOC ’12 Tutorial: Databases and External Memory

You can add an index
a b c

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

alter table foo add key(b);

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

STOC ’12 Tutorial: Databases and External Memory

A selective index speeds up queries
a b c

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100;

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

STOC ’12 Tutorial: Databases and External Memory

A selective index speeds up queries
a b c

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100;

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

3

}56 156
56 256
92 101

56 156
56 256
92 101

STOC ’12 Tutorial: Databases and External Memory

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

Selective indexes can still be slow

sum(c) where b>50;

STOC ’12 Tutorial: Databases and External Memory

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

Selective indexes can still be slow

56 156
56 256
92 101
202 198 Se

le
ct

in
g

on
 b

: f
as

t

sum(c) where b>50;

STOC ’12 Tutorial: Databases and External Memory

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

Selective indexes can still be slow

56 156
56 256
92 101
202 198

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

156

STOC ’12 Tutorial: Databases and External Memory

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

156 56 45

Selective indexes can still be slow

56 156
56 256
92 101
202 198

156 56 45

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

STOC ’12 Tutorial: Databases and External Memory

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

156 56 45

Selective indexes can still be slow

56 156
56 256
92 101
202 198

156 56 45

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

256

STOC ’12 Tutorial: Databases and External Memory

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45
256 56 2

156 56 45

Selective indexes can still be slow

56 156
56 256
92 101
202 198

156 56 45
256 56 2

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

STOC ’12 Tutorial: Databases and External Memory

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45
256 56 2

198 202 56

156 56 45
101 92 2

Selective indexes can still be slow

56 156
56 256
92 101
202 198

105

156 56 45
256 56 2
101 92 2
198 202 56

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

45
2
2
56Po

or
 d

at
a

lo
ca

lit
y

STOC ’12 Tutorial: Databases and External Memory

b,c a
5,45 100
6,2 165

23,252 206
43,45 412
56,2 256
56,45 156
92,2 101

202,56 198

Covering indexes speed up queries

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

alter table foo add key(b,c);

sum(c) where b>50;

STOC ’12 Tutorial: Databases and External Memory

b,c a
5,45 100
6,2 165

23,252 206
43,45 412
56,2 256
56,45 156
92,2 101

202,56 198

56,2 256
56,45 156
92,2 101

202,56 198

Covering indexes speed up queries

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

56,2 256
56,45 156
92,2 101

202,56 198

105

alter table foo add key(b,c);

sum(c) where b>50;

56,2 256
56,45 156
92,2 101

202,56 198

STOC ’12 Tutorial: Databases and External Memory

DB Performance and Indexes
Read performance depends on having the right
indexes for a query workload.

• We’ve scratched the surface of index selection.
• And there’s interesting query optimization going on.

Write performance depends on speed of
maintaining those indexes.

Next: how to implement indexes and tables.

STOC ’12 Tutorial: Databases and External Memory

An index is a dictionary
Dictionary API: maintain a set S subject to

• insert(x): S ← S ∪ {x}
• delete(x): S ← S - {x}
• search(x): is x ∊ S?
• successor(x): return min y > x s.t. y ∊ S
• predecessor(y): return max y < x s.t. y ∊ S

STOC ’12 Tutorial: Databases and External Memory

A table is a set of indexes
A table is a set of indexes with operations:

• Add index: add key(f1,f2,...);
• Drop index: drop key(f1,f2,...);
• Add column: adds a field to primary key value.
• Remove column: removes a field and drops all indexes

where field is part of key.
• Change field type
• ...

Subject to index correctness constraints.
We want table operations to be fast too.

STOC ’12 Tutorial: Databases and External Memory

B-tree performance:
• Point queries: O(logB N) I/Os.
‣ Matches lower bound for DAM model.

• Range queries of K elements:
O(logB N + K/B) I/Os.
‣ We’ll talk about B-tree aging later.

• Insertions: O(logB N) I/Os.

O(logBN)

Indexes are typically B-trees

3

Range query is scan
of data in leaves

STOC ’12 Tutorial: Databases and External Memory

B-tree performance:
• Point queries: O(logB N) I/Os.
‣ Matches lower bound for DAM model.

• Range queries of K elements:
O(logB N + K/B) I/Os.
‣ We’ll talk about B-tree aging later.

• Insertions: O(logB N) I/Os.

O(logBN)

Indexes are typically B-trees

3

Range query is scan
of data in leaves

STOC ’12 Tutorial: Databases and External Memory

Worst-case analysis is a fail
Some indexes are easy to maintain, others not.

• The database is chugging along nicely.
• You add an index.
• Performance tanks --- inserts can run 100x slower.

STOC ’12 Tutorial: Databases and External Memory

Indexes and Performance Anomalies
Databases can exhibit performance anomalies when
indexes are modified.

• “I'm trying to create indexes on a table with 308 million rows. It
took ~20 minutes to load the table but 10 days to build indexes
on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the
timestamp field... Adding the index really helped our reporting,
BUT now the inserts are taking forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like molasses, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

STOC ’12 Tutorial: Databases and External Memory

Sequential B-tree inserts run fast because of
near-optimal data locality.

• One disk I/O per leaf (though many elements are inserted).
• O(1/B) I/Os per row inserted.
• Performance is limited by disk-bandwidth.

B-trees and Caching: Sequential Inserts

These B-tree nodes reside
in memory.

Insertions are into
this leaf node.

STOC ’12 Tutorial: Databases and External Memory

High entropy inserts (e.g., random, ad hoc) in
B-trees have poor data locality.

• Most leaves are not in main memory.
• This achieves worst case performance: O(logB N).
• ≤ 100’s inserts/sec/disk (≤ 0.2% of disk bandwidth).

• Two orders of magnitude slower than sequential insertions.

B-trees and Caching: Random Inserts

These B-tree nodes reside
in memory.

STOC ’12 Tutorial: Databases and External Memory

B-tree insertion: DB Practice
People often don’t use enough indexes.
They use simplistic schema.

• Sequential inserts via an autoincrement key.
‣ Makes insertions fast but queries slow.

• Few indexes, few covering indexes.

t b c

1 5 45

2 92 2

3 56 45

4 6 2

5 202 56

6 23 252

7 56 2

8 43 45

STOC ’12 Tutorial: Databases and External Memory

B-tree insertion: DB Practice
People often don’t use enough indexes.
They use simplistic schema.

• Sequential inserts via an autoincrement key.
‣ Makes insertions fast but queries slow.

• Few indexes, few covering indexes.

Adding sophisticated indexes helps queries.
• B-trees cannot afford to maintain them.

t b c

1 5 45

2 92 2

3 56 45

4 6 2

5 202 56

6 23 252

7 56 2

8 43 45

STOC ’12 Tutorial: Databases and External Memory

B-tree insertion: DB Practice
People often don’t use enough indexes.
They use simplistic schema.

• Sequential inserts via an autoincrement key.
‣ Makes insertions fast but queries slow.

• Few indexes, few covering indexes.

Adding sophisticated indexes helps queries.
• B-trees cannot afford to maintain them.

If we speed up inserts, we can maintain the
right indexes, and speed up queries.

t b c

1 5 45

2 92 2

3 56 45

4 6 2

5 202 56

6 23 252

7 56 2

8 43 45

STOC ’12 Tutorial: Databases and External Memory

Write-Optimized External Dictionaries
What we want:

• B-tree API. Better insert/delete performance.

There’s a Ω(logB N) lower bound for searching...
... but not for inserting.

STOC ’12 Tutorial: Databases and External Memory

Write-Optimized External Dictionaries
Append-to-file beats B-trees at insertions.

Pros:
• Achieve disk bandwidth even for random keys.
• Ie, inserts cost amortized O(1/B).

Cons:
• Looking up anything requires a table scan.
• Searches cost O(N/B).

5 4 2 7 9 4

Write next key,value here

STOC ’12 Tutorial: Databases and External Memory

Some optimal write optimized structures:
• Buffered repository tree [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00]
• Bɛ-tree [Brodal, Fagerberg 03]
• Streaming B-tree [Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]
• Fractal Tree Index [Tokutek]
• xDict [Brodal, Demaine, Fineman, Iacono, Langerman, Munro 10]

Write-Optimized External Dictionaries

O

✓
logN

logB

◆
O

✓
logN

logB

◆

O

✓
1

B

◆
O

✓
N

B

◆

O

✓
logN

"B1�"
logB

◆
O

✓
logN

" logB

◆

O

✓
logNp

B

◆
O

✓
logN

logB

◆

structure insert point query

B-tree

append-to-file

write-optimized

write-optimized
(ɛ=1/2)

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

Online insert buffer
• InnoDB, Vertica

Offline insert buffers
• OLAP, OLAP, OLAP

Cascading
• LSM trees in Bigtable, Cassandra, H-Base

Asymptotically optimal data structures
• Buffered Repository Trees (BRT), Bɛ -tree: Tokutek
• Cache-oblivious Lookahead Arrays (COLA): Tokutek,

Acunu

Heuristic techniques for
getting more productive
work done when we
touch a B-tree leaf}

STOC ’12 Tutorial: Databases and External Memory

B-trees with an online in-RAM buffer
• Flush multiple operations to same leaf
• To query: search in buffer and in B-tree.

in-RAM buffer

Write optimization techniques in production

STOC ’12 Tutorial: Databases and External Memory

B-trees with an online in-RAM buffer
• Flush multiple operations to same leaf
• To query: search in buffer and in B-tree.

Analysis Experience
• Smooths out the “dropping out of memory” cliff.
• Improves inserts by a small constant (say, 1x-4x).

in-RAM buffer

Write optimization techniques in production

STOC ’12 Tutorial: Databases and External Memory

B-trees with an online in-RAM buffer
• Flush multiple operations to same leaf
• To query: search in buffer and in B-tree.

Analysis Experience
• Smooths out the “dropping out of memory” cliff.
• Improves inserts by a small constant (say, 1x-4x).

Used in
• InnoDB, Vertica, ...

in-RAM buffer

Write optimization techniques in production

STOC ’12 Tutorial: Databases and External Memory

OLAP: B-tree with an offline log of inserts
• When log gets big enough (say cN), sort and insert.
‣ Or do this operation during scheduled down time.

• To queries: search in B-tree.
‣ There’s a time lag before data gets into queryable B-tree, so queries are on stale data.
‣ This is called data latency.

Write optimization techniques in production

STOC ’12 Tutorial: Databases and External Memory

OLAP: B-tree with an offline log of inserts
• When log gets big enough (say cN), sort and insert.
‣ Or do this operation during scheduled down time.

• To queries: search in B-tree.
‣ There’s a time lag before data gets into queryable B-tree, so queries are on stale data.
‣ This is called data latency.

Analysis
• cB insertions per leaf.
• Increasing c increases throughput but also latency.

Write optimization techniques in production

STOC ’12 Tutorial: Databases and External Memory

OLAP: B-tree with an offline log of inserts
• When log gets big enough (say cN), sort and insert.
‣ Or do this operation during scheduled down time.

• To queries: search in B-tree.
‣ There’s a time lag before data gets into queryable B-tree, so queries are on stale data.
‣ This is called data latency.

Analysis
• cB insertions per leaf.
• Increasing c increases throughput but also latency.

Marketing is king
• Not clear why this is OnLine Analytical Processing.

Write optimization techniques in production

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

Cascading:
Log structured merge (LSM) trees

• Maintain cascading B-tree T1, ..., TlogN, |Ti| < ci

• When tree Tk gets full, flush to Tk+1.

LSM Analysis
• Inserts: O((log N)/B). ✔
• Queries: O(log N logB N). ✘

[O'Neil,Cheng, Gawlick, O'Neil 96]

T3 Tlog NT0 T1 T2

STOC ’12 Tutorial: Databases and External Memory

Write optimization techniques in production

LSMs in production:
• Big-Table, Cassandra, H-base
• Bloom filters to improve performance.
• Some LSM implementations (e.g. Cassandra, H-base)

don’t even have a successor operation, because it runs
too slowly.

T3 Tlog NT0 T1 T2

STOC ’12 Tutorial: Databases and External Memory

Simplified CO Lookahead Tree (COLA)

O((logN)/B) insert cost & O(log2N) search cost
• It’s an LSM, except we keep arrays instead of B-trees.
• A factor of O(logB N) slower on searches than an LSM.
• We’ll use “fractional cascading” to search in O(log N).

20 21 22 23

STOC ’12 Tutorial: Databases and External Memory

COLA Insertions (Similar to LSMs)

STOC ’12 Tutorial: Databases and External Memory

Analysis of COLA

Insert Cost:
• cost to flush buffer of size X = O(X/B)
• cost per element to flush buffer = O(1/B)
• max # of times each element is flushed = log N
• insert cost = O((log N))/B) amortized memory transfers

Search Cost
• Binary search at each level
• log(N/B) + log(N/B) - 1 + log(N/B) - 2 + ... + 2 + 1

 = O(log2(N/B))

STOC ’12 Tutorial: Databases and External Memory

Idea of Faster Key Searches in COLA

O(log (N/B)) search cost
• Some redundancy of elements between levels
• Arrays can be partially full
• Horizontal and vertical pointers to redundant elements
• (Fractional Cascading)

STOC ’12 Tutorial: Databases and External Memory

COLA Tradeoff
Arrays can grow by bigger factors

• Larger growth makes insertions slower but queries faster.
• It’s the same tradeoff curve as a Bɛ -tree. (See below.)
• In order to get the full tradeoff curve, you need a growth

factor that depends on B.
‣ You loose cache-obliviousness.

• The xDict achieves O(logB N) searches while staying
cache-oblivious.
‣ We don’t know of an implementation, but would love to hear about it.

STOC ’12 Tutorial: Databases and External Memory

Bɛ -tree
k-tree with k/B edge buffers

• Branching factor of k.
• Each branch gets a buffer of size k/B.
‣ All buffers in a node total size B.

• When a buffer fills, flush to child.
k1 kb-1

k/B

k/B

k/B...

k1 kb-1

k/B

k/B

k/B...

k1 kb-1

k/B

k/B

k/B......
p1 pk-1

k/B

k/B

k/B...

pk-1

pk-1

pk-1

p1

p1

p1

STOC ’12 Tutorial: Databases and External Memory

Bɛ -tree
k-tree with k/B edge buffers

• Branching factor of k.
• Each branch gets a buffer of size k/B.
‣ All buffers in a node total size B.

• When a buffer fills, flush to child.
k1 kb-1

k/B

k/B

k/B...

k1 kb-1

k/B

k/B

k/B...

k1 kb-1

k/B

k/B

k/B......
p1 pk-1

k/B

k/B

k/B...

pk-1

pk-1

pk-1

p1

p1

p1

STOC ’12 Tutorial: Databases and External Memory

Bɛ -tree Performance
Searches: O(logkN)
Insertions:

• Cost to flush a buffer: O(1).
• Cost to flush a buffer, per element: O(k/B).
• # of flushes per element = height of tree: O(logkN).
• Total amortized cost to flush to a leaf: O(k logkN/B).
• Pick k = Bɛ
‣ Searches: O((1/ɛ)logBN), as good as B-tree for constant ɛ.
‣ Insertions: O(logBN/ɛB1-ɛ), as good as LSMs.

STOC ’12 Tutorial: Databases and External Memory

Write optimization. ✔ What’s missing?

A real implementation must deal with
• Variable-sized rows
• Concurrency-control mechanisms
• Multithreading
• Transactions, logging, ACID-compliant crash recovery
• Optimizations for the special case of sequential inserts

and bulk loads
• Compression
• Backup

STOC ’12 Tutorial: Databases and External Memory

Write optimization. ✔ What’s missing?

A real implementation must deal with
• Variable-sized rows
• Concurrency-control mechanisms
• Multithreading
• Transactions, logging, ACID-compliant crash recovery
• Optimizations for the special case of sequential inserts

and bulk loads
• Compression
• Backup

STOC ’12 Tutorial: Databases and External Memory

Write optimization. ✔ What’s missing?

A real implementation must deal with
• Variable-sized rows
• Concurrency-control mechanisms
• Multithreading
• Transactions, logging, ACID-compliant crash recovery
• Optimizations for the special case of sequential inserts

and bulk loads
• Compression
• Backup

But can you
do

Denmark?
Yep.

STOC ’12 Tutorial: Databases and External Memory

Fractal Trees are Bɛ-tree+COLA+Stuff
TokuDB®, an industrial-strength
Fractal Tree

• Berkeley DB API (a B-tree API)
• Full featured (ACID, compression, etc).

TokuDB is a storage engine for
MySQL

• Role of storage engine: maintains on-disk
data

TokuDB inherits Fractal Tree speed
• 10x-100x faster index inserts

Tokutek is marketing this technology.

File System

Database

Application Layer

SQL Processing,
Query Optimization…

TokuDB for
MySQL

STOC ’12 Tutorial: Databases and External Memory

iiBench Insert Benchmark is CPU bound

Fractal Trees scale with disk bandwidth not seek time.
• But in practice, there’s another bottleneck -- we are CPU bound.

We cannot (yet) take full advantage of more cores or disks. This must change.
(not what I expected from theoretical mode).

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

0
 200,000,000
 400,000,000
 600,000,000
 800,000,000
 1,000,000,000

R
o

w
s
/S

e
c

o
n

d

Rows Inserted

iiBench - 1B Row Insert Test

InnoDB

TokuDB

STOC ’12 Tutorial: Databases and External Memory

Fun Thing about Write Optimization
Time to fill a disk in 1973, 2010, and 2022.

• log data sequentially, index data in B-tree, index in Fractal
Trees.

Fancy indexing structures may be a luxury now,
but they will be essential by the decade’s end.

Year Size Bandwidth
Access
Time

Time to log
data on disk

Time to fill disk
using a B-tree
(row size 1K)

Time to fill using
Fractal tree*
(row size 1K)

1973 35MB 835KB/s 25ms 39s

2010 3TB 150MB/s 10ms 5.5h

2022 220TB 1.05GB/s 10ms 2.4d

* Projected times for fully multi-threaded version

STOC ’12 Tutorial: Databases and External Memory

Fun Thing about Write Optimization
Time to fill a disk in 1973, 2010, and 2022.

• log data sequentially, index data in B-tree, index in Fractal
Trees.

Fancy indexing structures may be a luxury now,
but they will be essential by the decade’s end.

Year Size Bandwidth
Access
Time

Time to log
data on disk

Time to fill disk
using a B-tree
(row size 1K)

Time to fill using
Fractal tree*
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s

2010 3TB 150MB/s 10ms 5.5h 347d

2022 220TB 1.05GB/s 10ms 2.4d 70y

* Projected times for fully multi-threaded version

STOC ’12 Tutorial: Databases and External Memory

Fun Thing about Write Optimization
Time to fill a disk in 1973, 2010, and 2022.

• log data sequentially, index data in B-tree, index in Fractal
Trees.

Fancy indexing structures may be a luxury now,
but they will be essential by the decade’s end.

Year Size Bandwidth
Access
Time

Time to log
data on disk

Time to fill disk
using a B-tree
(row size 1K)

Time to fill using
Fractal tree*
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s 200s

2010 3TB 150MB/s 10ms 5.5h 347d 36h

2022 220TB 1.05GB/s 10ms 2.4d 70y 23.3d

* Projected times for fully multi-threaded version

STOC ’12 Tutorial: Databases and External Memory

Remember Tables?
A table is a set of indexes where:

• One index is distinguished as primary.
‣ The key of the primary index is unique.

• Every other index is called secondary.
‣ There’s a bijection ‘twixt the rows of a secondary and primary indexes.
‣ The value of a secondary index is the key of the primary index for the corresponding row.

Constraints have performance impact.
• Why? a b c

100 5 45

101 92 2

156 56 45

165 6 2

198 202 56

206 23 252

256 56 2

412 43 45

b a

5 100

6 165

23 206

43 412

56 156

56 256

92 101

202 198

STOC ’12 Tutorial: Databases and External Memory

Remember Tables?
A table is a set of indexes where:

• One index is distinguished as primary.
‣ The key of the primary index is unique.

• Every other index is called secondary.
‣ There’s a bijection ‘twixt the rows of a secondary and primary indexes.
‣ The value of a secondary index is the key of the primary index for the corresponding row.

Constraints have performance impact.
• Why? a b c

100 5 45

101 92 2

156 56 45

165 6 2

198 202 56

206 23 252

256 56 2

412 43 45

b a

5 100

6 165

23 206

43 412

56 156

56 256

92 101

202 198

STOC ’12 Tutorial: Databases and External Memory

Uniqueness Checking...
Uniqueness checking has a hidden search:

In a B-tree uniqueness checking comes for free
• On insert, you fetch a leaf.
• Checking if key exists is no biggie.

If Search(key) == True
Return Error;

Else
Fast_Insert(key,value);

STOC ’12 Tutorial: Databases and External Memory

Uniqueness Checking...
Uniqueness checking has a “crypto-search”:

In a write-optimized structure, that pesky
search can throttle performance

• Insertion messages are injected.
• These eventually get to “bottom” of structure.
• Insertion w/Uniqueness Checking 100x slower.
• Bloom filters, Cascade Filters, etc help.

If Search(key) == True
Return Error;

Else
Fast_Insert(key,value);

[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok 12]

STOC ’12 Tutorial: Databases and External Memory

Uniqueness Checking...
Uniqueness checking has a “crypto-search”:

In a write-optimized structure, that pesky
search can throttle performance

• Insertion messages are injected.
• These eventually get to “bottom” of structure.
• Insertion w/Uniqueness Checking 100x slower.
• Bloom filters, Cascade Filters, etc help.

If Search(key) == True
Return Error;

Else
Fast_Insert(key,value);

[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok 12]

STOC ’12 Tutorial: Databases and External Memory

Are there other crypto searches?
A table is a set of indexes where:

• One index is distinguished as primary.
‣ The key of the primary index is unique.

• Every other index is called secondary.
‣ There’s a bijection ‘twixt the rows of a secondary and primary indexes.
‣ The value of a secondary index is the key of the primary index for the corresponding row.

Constraints have performance impact.
• Why? a b c

100 5 45

101 92 2

156 56 45

165 6 2

198 202 56

206 23 252

256 56 2

412 43 45

b a

5 100

6 165

23 206

43 412

56 156

56 256

92 101

202 198

STOC ’12 Tutorial: Databases and External Memory

Are there other crypto searches?
A table is a set of indexes where:

• One index is distinguished as primary.
‣ The key of the primary index is unique.

• Every other index is called secondary.
‣ There’s a bijection ‘twixt the rows of a secondary and primary indexes.
‣ The value of a secondary index is the key of the primary index for the corresponding row.

Constraints have performance impact.
• Why? a b c

100 5 45

101 92 2

156 56 45

165 6 2

198 202 56

206 23 252

256 56 2

412 43 45

b a

5 100

6 165

23 206

43 412

56 156

56 256

92 101

202 198

STOC ’12 Tutorial: Databases and External Memory

How do deletes work?
Tombstone message?

• A tombstone message is a message that kills a row once
it meets up with it.

• But in order to insert a tombstone message into
secondary indexes, we need to know the value by which
they have been indexed.

• This requires a search in the primary index.

How do we solve this?
• In this case, by considering the use cases for deletions in

DBs.
• We can make range deletions fast, for example.

STOC ’12 Tutorial: Databases and External Memory

Are there other crypto searches?
Oh yes!

• Traditional row locking for transactions.
‣ Solve by having a new data structure for locking, rather than locking at the leaf.

• Deletions with primary-only index.
‣ Even without secondary indexes, the semantics of deletion usually require a return message

to say that the deleted key existed, and an error if you try to delete something that didn’t
exist to begin with.

‣ Solve by convincing customers to accept the faster semantics.

• ...

STOC ’12 Tutorial: Databases and External Memory

Conclusion
DB indexing is a rich field.
Data structures make a big difference here.
There are loads of open problems.

• But they are usually only interesting if you take the time to
really learn the use case.

What does Tokutek mean?

STOC ’12 Tutorial: Databases and External Memory

What does Tokutek mean?

Toku

Cacher

To Hide

Cache Cache-Oblivious Analysis

To Profit

STOC ’12 Tutorial: Databases and External Memory

What does Tokutek mean?

Toku

Cacher

To Hide

Cache Cache-Oblivious Analysis

To Profit

1. Cache-Oblivious Analysis
2. ???
3. Profit

