
Write-Optimized Data Structures
Michael A. Bender

Stony Brook & Tokutek

Don’t Thrash: How to Cache Your Hash in Flash

Tokutek
A few years ago I started collaborating with Martin
Farach-Colton and Bradley Kuszmaul on I/O-efficient
and cache-oblivious data structures.

We started Tokutek to commercialize our research.

Michael Martin Bradley

Don’t Thrash: How to Cache Your Hash in Flash

Storage engines in MySQL

Tokutek sells TokuDB, an ACID compliant,
closed-source storage engine for MySQL.

File System

MySQL Database
SQL Processing,

Query Optimization…

Application

Don’t Thrash: How to Cache Your Hash in Flash

Storage engines in MySQL

Tokutek sells TokuDB, an ACID compliant,
closed-source storage engine for MySQL.

File System

MySQL Database
SQL Processing,

Query Optimization…

Application

I’ll talk about the
data structures

here.

Big data problem

oy vey

???
???

???

data indexing query processor

queries + answers

???

365

42

data ingestion

Important and universal problem.
Hot topic.

Big data problem

oy vey

???
???

???

data indexing query processor

queries + answers

???

365

42

data ingestion

For on-disk data, one sees funny tradeoffs in the speeds
of data ingestion, query speed, and liveness of data.

Important and universal problem.
Hot topic.

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, liveness

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately.

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like molasses, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, liveness

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately.

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like molasses, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

Why not just sort.

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, liveness

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately.

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like molasses, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, liveness

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately.

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like treacle, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

NSF Workshop on Research Directions in Principles of Parallel Computing

This talk
• Write-optimized

structures
significantly mitigate
the insert/query/
liveness tradeoff.

• One can insert
10x-100x faster than
B-trees while
achieving similar
point query
performance.

Fractal-tree®
index

LSM
tree

Bɛ-tree

Don’t Thrash: How to Cache Your Hash in Flash

How computation works:
• Data is transferred in blocks between RAM and disk.
• The number of block transfers dominates the running time.

Goal: Minimize # of block transfers
• Performance bounds are parameterized by

block size B, memory size M, data size N.

An algorithmic performance model

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]

Don’t Thrash: How to Cache Your Hash in Flash

An algorithmic performance model
B-tree point queries: O(logB N) I/Os.

Binary search in array: O(log N/B)≈O(log N) I/Os.
Slower by a factor of O(log B)

O(logBN)

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimized data structures performance

• If B=1024, then insert speedup is B/logB≈100.
• Hardware trends mean bigger B, bigger speedup.
• Less than 1 I/O per insert.

B-tree Some write-optimized
structures

Insert/delete O(logBN)=O() O()logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Don’t Thrash: How to Cache Your Hash in Flash

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

insert point query

Optimal
tradeoff

(function of ɛ=0...1)

B-tree
(ɛ=1)

O

✓
logB Np

B

◆

O (logB N)

O (logB N)

ɛ=1/2

O

✓
logN

B

◆

O (logN)ɛ=0

O
�
log1+B" N

�
O

✓
log1+B" N

B1�"

◆

O (logB N)

10
x-

10
0x

 fa
st

er
 in

se
rt

s

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Insertions improve by
10x-100x with

almost no loss of point-
query performance

Target of opportunity

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Insertions improve by
10x-100x with

almost no loss of point-
query performance

Target of opportunity

How to Build Write-
Optimized Structures

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

Don’t Thrash: How to Cache Your Hash in Flash

Analysis of writes
An insert/delete costs amortized O((log N)/B) per
insert or delete

• A buffer flush costs O(1) & sends B elements down one
level

• It costs O(1/B) to send element down one level of the tree.
• There are O(log N) levels in a tree.

Don’t Thrash: How to Cache Your Hash in Flash

Analysis of point queries

To search:
• examine each buffer along a single root-to-leaf path.
• This costs O(log N).

Don’t Thrash: How to Cache Your Hash in Flash

Obtaining optimal point queries + very fast inserts

Point queries cost O(log√B N)= O(logB N)
• This is the tree height.

Inserts cost O((logBN)/√B)
• Each flush cost O(1) I/Os and flushes √B elements.

√B

B

...

fanout: √B

Don’t Thrash: How to Cache Your Hash in Flash

Cache-oblivious write-optimized structures

You can even make these data structures
cache-oblivious.

This means that the data structure can be made
platform independent (no knobs), i.e., works
simultaneously for all values of B and M.

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson, SPAA 07]
[Brodal, Demaine, Fineman, Iacono, Langerman, Munro, SODA 10]

Random
accesses are
expensive.

You can be cache- and I/O-efficient with no
knobs or other memory-hierarchy

parameterization.

Don’t Thrash: How to Cache Your Hash in Flash

Cache-oblivious write-optimized structures

You can even make these data structures
cache-oblivious.

This means that the data structure can be made
platform independent (no knobs), i.e., works
simultaneously for all values of B and M.

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson, SPAA 07]
[Brodal, Demaine, Fineman, Iacono, Langerman, Munro, SODA 10]

Random
accesses are
expensive.

You can be cache- and I/O-efficient with no
knobs or other memory-hierarchy

parameterization.

Don’t Thrash: How to Cache Your Hash in Flash

What the world looks like
Insert/point query asymmetry

• Inserts can be fast: >50K high-entropy writes/sec/disk.
• Point queries are necessarily slow: <200 high-entropy reads/

sec/disk.

We are used to reads and writes having about the
same cost, but writing is easier than reading.

Reading is hard.Writing is easier.

Don’t Thrash: How to Cache Your Hash in Flash

The right read-optimization is write-optimization

The right index makes queries run fast.
• Write-optimized structures maintain indexes efficiently.

data indexing query processor

queries

???
42

answers

data
ingestion

Don’t Thrash: How to Cache Your Hash in Flash

The right read-optimization is write-optimization

The right index makes queries run fast.
• Write-optimized structures maintain indexes efficiently.

Fast writing is a currency we use to accelerate
queries. Better indexing means faster queries.

data indexing query processor

queries

???
42

answers

data
ingestion

Don’t Thrash: How to Cache Your Hash in Flash

The right read-optimization is write-optimization
I/O

 L
oa

d

Add selective indexes.

(We can now afford to maintain them.)

Don’t Thrash: How to Cache Your Hash in Flash

The right read-optimization is write-optimization
I/O

 L
oa

d

Add selective indexes.

(We can now afford to maintain them.)

Write-optimized structures can significantly
mitigate the insert/query/liveness tradeoff. 3

Write-optimization also
helps file systems

HEC FSIO Grand Challenges

Store 1 trillion files
Create tens of thousands of files
per second
Traverse directory hierarchies
fast (ls -R)

B-trees would require at least
hundreds of disk drives.

Don’t Thrash: How to Cache Your Hash in Flash

TokuFS
TokuFS

• A file-system prototype
• >20K file creates/sec
• very fast ls -R
• HEC grand challenges on a cheap disk

[Esmet, Bender, Farach-Colton, Kuszmaul HotStorage12]

4

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimization going forward

Example: Time to fill a disk in 1973, 2010, 2022.
• log high-entropy data sequentially versus index data in

B-tree.

Better data structures may be a luxury now, but
they will be essential by the decade’s end.

Year Size Bandwidth Access Time
Time to log
data on disk

Time to fill disk
using a B-tree
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s

2010 3TB 150MB/s 10ms 5.5h 347d

2022 220TB 1.05GB/s 10ms 2.4d 70y

Don’t Thrash: How to Cache Your Hash in Flash

Summary of Talk
Write-optimization changes the relative
difficulty of database operations.

• There is a provable point-query insert tradeoff. We can
insert 10x-100x faster without hurting point queries.

• We can avoid much of the funny tradeoff between data
ingestion, liveness, and query speed.

• We can avoid knobs.
• File systems also benefit. write-optimized

