
Write-Optimized Data Structures
Michael A. Bender

Stony Brook & Tokutek



Don’t Thrash: How to Cache Your Hash in Flash

Tokutek
A few years ago I started collaborating with Martin 
Farach-Colton and Bradley Kuszmaul on I/O-efficient 
and cache-oblivious data structures. 

We started Tokutek to commercialize our research.

Michael Martin Bradley
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Storage engines in MySQL

Tokutek sells TokuDB, an ACID compliant, 
closed-source storage engine for MySQL.

File System

MySQL Database
SQL Processing, 

Query Optimization…

Application
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closed-source storage engine for MySQL.

File System

MySQL Database
SQL Processing, 

Query Optimization…

Application

I’ll talk about the 
data structures 

here. 
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For on-disk data, one sees funny tradeoffs in the speeds 
of data ingestion, query speed, and liveness of data. 

Important and universal problem.
Hot topic. 



Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries + 
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42

data 
ingestion

Funny tradeoff in ingestion, querying, liveness

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately. 

• “I'm trying to create indexes on a table with 308 million rows. It took ~20 
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field... 
Adding the index really helped our reporting, BUT now the inserts are taking 
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well, 
 And lo, did the queries run quick! 
 But that wasn’t the last of their troubles, to tell– 
 Their insertions, like molasses, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll



Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries + 
answers

???
42

data 
ingestion

Funny tradeoff in ingestion, querying, liveness

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately. 

• “I'm trying to create indexes on a table with 308 million rows. It took ~20 
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field... 
Adding the index really helped our reporting, BUT now the inserts are taking 
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well, 
 And lo, did the queries run quick! 
 But that wasn’t the last of their troubles, to tell– 
 Their insertions, like molasses, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

Why not just sort. 
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• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately. 

• “I'm trying to create indexes on a table with 308 million rows. It took ~20 
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field... 
Adding the index really helped our reporting, BUT now the inserts are taking 
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well, 
 And lo, did the queries run quick! 
 But that wasn’t the last of their troubles, to tell– 
 Their insertions, like treacle, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll



NSF Workshop on Research Directions in Principles of Parallel Computing

This talk
• Write-optimized 

structures 
significantly mitigate 
the insert/query/
liveness tradeoff.

• One can insert 
10x-100x faster than 
B-trees while 
achieving similar 
point query 
performance. 

Fractal-tree® 
index

LSM 
tree

Bɛ-tree
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How computation works: 
• Data is transferred in blocks between RAM and disk. 
• The number of block transfers dominates the running time. 

Goal: Minimize # of block transfers
• Performance bounds are parameterized by 

block size B, memory size M, data size N.

An algorithmic performance model

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]
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An algorithmic performance model
B-tree point queries: O(logB N) I/Os.

Binary search in array: O(log N/B)≈O(log N) I/Os.
Slower by a factor of O(log B)

O(logBN)
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Write-optimized data structures performance

• If B=1024, then insert speedup is B/logB≈100.
• Hardware trends mean bigger B, bigger speedup.
• Less than 1 I/O per insert.

B-tree Some write-optimized 
structures

Insert/delete O(logBN)=O(       ) O(       )logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00], 
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal, 
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. 
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB. 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
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Optimal Search-Insert Tradeoff  [Brodal, Fagerberg 03]
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Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]
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Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]
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Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]
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How to Build Write-
Optimized Structures
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A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B 

Inserts + deletes:
• Send insert/delete messages down from the root and store 

them in buffers. 
• When a buffer fills up, flush. 
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Analysis of writes
An insert/delete costs amortized O((log N)/B) per 
insert or delete

• A buffer flush costs O(1) & sends B elements down one 
level

• It costs O(1/B) to send element down one level of the tree.
• There are O(log N) levels in a tree.
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Analysis of point queries

To search: 
• examine each buffer along a single root-to-leaf path. 
• This costs O(log N). 
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Obtaining optimal point queries +  very fast inserts

Point queries cost O(log√B N)= O(logB N) 
• This is the tree height.

Inserts cost O((logBN)/√B) 
• Each flush cost O(1) I/Os and flushes √B elements.

√B

B

...

fanout: √B
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Cache-oblivious write-optimized structures

You can even make these data structures  
cache-oblivious. 

This means that the data structure can be made 
platform independent (no knobs), i.e., works 
simultaneously for all values of B and M.

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson, SPAA 07]
[Brodal, Demaine, Fineman, Iacono, Langerman, Munro, SODA 10]

Random 
accesses are 
expensive. 

You can be cache- and I/O-efficient with no 
knobs or other memory-hierarchy 

parameterization. 
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What the world looks like
Insert/point query asymmetry

• Inserts can be fast: >50K high-entropy writes/sec/disk. 
• Point queries are necessarily slow: <200 high-entropy reads/

sec/disk.

We are used to reads and writes having about the 
same cost, but writing is easier than reading. 

Reading is hard.Writing is easier.
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The right read-optimization is write-optimization

The right index makes queries run fast. 
• Write-optimized structures maintain indexes efficiently.

data indexing query processor

queries

???
42

answers

data 
ingestion
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The right read-optimization is write-optimization

The right index makes queries run fast. 
• Write-optimized structures maintain indexes efficiently.

Fast writing is a currency we use to accelerate 
queries. Better indexing means faster queries.

data indexing query processor

queries

???
42

answers

data 
ingestion
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The right read-optimization is write-optimization
I/O

 L
oa

d

Add selective indexes.

(We can now afford to maintain them.)
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The right read-optimization is write-optimization
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Add selective indexes.

(We can now afford to maintain them.)

Write-optimized structures can significantly 
mitigate the insert/query/liveness tradeoff. 3



Write-optimization also 
helps file systems



HEC FSIO Grand Challenges

Store 1 trillion files
Create tens of thousands of files 
per second
Traverse directory hierarchies 
fast (ls -R)

B-trees would require at least 
hundreds of disk drives.
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TokuFS
TokuFS

• A file-system prototype
• >20K file creates/sec 
• very fast ls -R
• HEC grand challenges on a cheap disk 

[Esmet, Bender, Farach-Colton, Kuszmaul HotStorage12]

4



Don’t Thrash: How to Cache Your Hash in Flash

Write-optimization going forward

Example: Time to fill a disk in 1973, 2010, 2022. 
• log high-entropy data sequentially versus index data in 

B-tree.

Better data structures may be a luxury now, but 
they will be essential by the decade’s end.

Year Size Bandwidth Access Time
Time to log 
data on disk 

Time to fill disk 
using a B-tree
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s

2010 3TB 150MB/s 10ms 5.5h 347d

2022 220TB 1.05GB/s 10ms 2.4d 70y
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Summary of Talk
Write-optimization changes the relative 
difficulty of database operations. 

• There is a provable point-query insert tradeoff. We can 
insert 10x-100x faster without hurting point queries.

• We can avoid much of the funny tradeoff between data 
ingestion, liveness, and query speed.

• We can avoid knobs.
• File systems also benefit. write-optimized


