
An Adaptive Packed-Memory Array

Michael A. Bender

Stony Brook University

and

Haodong Hu

Stony Brook University

The packed-memory array (PMA) is a data structure that maintains a dynamic set of N elements in sorted order
in a Θ(N)-sized array. The idea is to intersperse Θ(N) empty spaces or gaps among the elements so that only
a small number of elements need to be shifted around on an insert or delete. Because the elements are stored
physically in sorted order in memory or on disk, the PMA can be used to support extremely efficient range
queries. Specifically, the cost to scan L consecutive elements is O(1 + L/B) memory transfers.

This paper gives the first adaptive packed-memory array (APMA), which automatically adjusts to the input
pattern. Like the traditional PMA, any pattern of updates costs only O(log2 N) amortized element moves and
O(1 +(log2 N)/B) amortized memory transfers per update. However, the APMA performs even better on many
common input distributions achieving only O(logN) amortized element moves and O(1 +(logN)/B) amortized
memory transfers. The paper analyzes sequential inserts, where the insertions are to the front of the APMA,
hammer inserts, where the insertions “hammer” on one part of the APMA, random inserts, where the insertions
are after random elements in the APMA, and bulk inserts, where for constant α ∈ [0,1], Nα elements are inserted
after random elements in the APMA. The paper then gives simulation results that are consistent with the asymp-
totic bounds. For sequential insertions of roughly 1.4 million elements, the APMA has four times fewer element
moves per insertion than the traditional PMA and running times that are more than seven times faster.

Categories and Subject Descriptors: D.1.0 [Programming Techniques]: General; E.1 [Data Structures]: Ar-
rays; E.1 [Data Structures]: Lists, stacks, queues; E.5 [Files]: Sorting/searching; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation, Performance, Theory.

Additional Key Words and Phrases: Adaptive Packed-Memory Array, Cache Oblivious, Locality Preserving,
Packed-Memory Array, Range Query, Rebalance, Sequential File Maintenance, Sequential Scan, Sparse Array.

1. INTRODUCTION

A classical problem in data structures and databases is how to maintain a dynamic set of
N elements in sorted order in a Θ(N)-sized array. The idea is to intersperse Θ(N) empty
spaces or gaps among the elements so that only a small number of elements need to be
shifted around on an insert or delete. These data structures effectively simulate a library
bookshelf, where gaps on the shelves mean that books are easily added and removed.

Remarkably, such data structures can be efficient for any pattern of inserts/deletes. In-

Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-4400, USA.
Email: {bender,huhd}@cs.sunysb.edu. This research was supported in part by NSF Grants
CCF 0621439/0621425, CCF 0540897/05414009, CCF 0634793/0632838, and CNS 0627645.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2007 ACM 1529-3785/2007/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007, Pages 1–30.

2 · Michael A. Bender and Haodong Hu

deed, it has been known for over two decades that the number of element moves per update
is only O(log2 N) both amortized [Itai et al. 1981] and in the worst case [Willard 1982;
1986; 1992]. Since these data structures were proposed, this problem has been studied un-
der different names, including sparse arrays [Itai et al. 1981; Katriel 2002], sequential file
maintenance [Willard 1982; 1986; 1992], and list labeling [Dietz 1982; Dietz and Sleator
1987; Dietz and Zhang 1990; Dietz et al. 1994]. The problem is also closely related to
the order-maintenance problem [Dietz 1982; Tsakalidis 1984; Dietz and Sleator 1987;
Bender et al. 2002].

Recently there has been renewed interest in these sparse-array data structures because
of their application in I/O-efficient and cache-oblivious algorithms. The I/O-efficient and
cache oblivious version of the sparse array is called the packed memory array (PMA) [Ben-
der et al. 2000; 2005]. The PMA maintains N elements in sorted order in a Θ(N)-sized
array. It supports the operations insert, delete, and scan. Let B be the number of ele-
ments that fit within a memory block. To insert an element y after a given element x,
when given a pointer to x, or to delete x, costs O(log2 N) amortized element moves and
O(1+(log2 N)/B) amortized memory transfers. The PMA maintains the density invariant
that in any region of size S (for S greater than some small constant value), there are Θ(S)
elements stored in it. To scan L elements after a given element x, when given a pointer to
x, costs Θ(1+L/B) memory transfers.

The PMA has been used in cache-oblivious B-trees [Bender et al. 2000; Bender et al.
2002; Brodal et al. 2002; Bender et al. 2004; Bender et al. 2005; Bender et al. 2006], con-
current cache-oblivious B-trees [Bender et al. 2005], cache-oblivious string B-tree [Bender
et al. 2006], and scanning structures [Bender et al. 2002]. A sparse array in the same spirit
as the PMA was independently proposed and used in the locality-preserving B-tree of [Ra-
man 1999], although the asymptotic space bounds are superlinear and therefore inferior to
the linear space bounds of the earlier sparse-array data structures [Itai et al. 1981; Willard
1982; 1986; 1992] and the PMA [Bender et al. 2000; 2005].

We now give more details about how to implement search in a PMA. For example, the
update and scan bounds above assume that we are given a pointer to an element x; we now
show how to find such a pointer. A straightforward approach is to use a standard binary
search, slightly modified to deal with gaps. However, binary search does not have good
data locality. As a result, binary search is not efficient when the PMA resides on disk
because search requires O(1+ logdN/Be) memory transfers. An alternative approach is to
use a separate index into the array; the index is designed for efficient searches. In [Raman
1999] that index is a B-tree, and in [Bender et al. 2000; Bender et al. 2002; 2004; Bender
et al. 2005] the index is some type of binary search tree, laid out in memory using a so-
called van Emde Boas layout [Prokop 1999; Bender et al. 2000; 2005].

The primary use of the PMA in the literature has been for sequential storage in mem-
ory/disk of all the elements of a (cache-oblivious or traditional) B-tree. An early paper
suggesting this idea was [Raman 1999]. The PMA maintains locality of reference at all
granularities and consequently supports extremely efficient sequential scans/range queries
of the elements. The concern with traditional B-trees is that the 2K or 4K sizes of disk
blocks are too small to amortize the cost of disk seeks. Consequently, on modern disks,
random block accesses are well over an order-of-magnitude slower than sequential block
accesses. Thus, locality-preserving B-trees and cache-oblivious B-trees based on PMAs
support range queries that run an order of magnitude faster than those of traditional B-

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 3

trees [Bender et al. 2006]. Moreover, since the elements are maintained strictly in sorted
order, these structures do not suffer from aging unlike most file systems and databases.
The point is that traditional B-trees age: As new blocks are allocated and deallocated to
the B-tree, blocks that are logically near each other, are far from each other on the disk.
The result is that range-query performance suffers.

The PMA is an efficient and promising data structure, but it also has weaknesses. The
main weakness is that the PMA performs relatively poorly on some common insertion
patterns such as sequential inserts. For sequential inserts, the PMA performs near its worst
in terms of the number of elements moved per insert. The PMA’s difficulty with sequential
inserts is that the insertions “hammer” on one part of the array, causing many elements to
be shifted around. Although O(log2 N) amortized elements moves and O(1+(log2 N)/B)
amortized memory transfers is surprisingly good considering the stringent requirements
on the data order, it is relatively slow compared with traditional B-tree inserts. Moreover,
sequential inserts are common, and B-trees in databases are frequently optimized for this
insertion pattern. It would be better if the PMA could perform near its best, not worst, in
this case.

In contrast, one of the PMA’s strengths is its performance on common insertion patterns
such as random inserts. For random inserts, the PMA performs extremely well with only
O(logN) element moves per insert and only O(1 + (logN)/B) memory transfers. This
performance surpasses the guarantees for arbitrary inserts.

Results. This paper proposes an adaptive packed-memory array (abbreviated adaptive
PMA or APMA), which overcomes these deficiencies of the traditional PMA. Our struc-
ture is the first PMA that adapts to insertion patterns and it gives the largest decrease in
the cost of sparse arrays/sequential-file maintenance in almost two decades. The APMA
retains the same amortized guarantees as the traditional PMA, but adapts to common in-
sertion patterns, such as sequential inserts, random inserts, and bulk inserts, where chunks
of elements are inserted at random locations in the array.

We give the following results for the APMA:

• We first show that the APMA has the “rebalance property”, which ensures that any
pattern of insertions cost only O(1 + (log2 N)/B) amortized memory transfers and
O(log2 N) amortized element moves. Because the elements are kept in sorted order in
the APMA, as with the PMA, scans of L elements costs O(1 + L/B) memory trans-
fers. Thus, the adaptive PMA guarantees performance at least as good as that of the
traditional PMA.

We next analyze the performance of the APMA under some common insertion patterns.

• We show that for sequential inserts, where all the inserts are to the front of the ar-
ray, the APMA makes only O(logN) amortized element moves and O(1+(logN)/B)
amortized memory transfers.

• We generalize this analysis to hammer inserts, where the inserts hammer on any single
element in the array.

• We then turn to random inserts, where each insert occurs after a randomly chosen ele-
ment in the array. We establish that the insertion cost is again only O(logN) amortized
element moves and O(1+(logN)/B) amortized memory transfers.

• We generalize all these previous results by analyzing the case of bulk inserts. In the
bulk-insert insertion pattern, we pick a random element in the array and perform N α

inserts after it for α ∈ [0,1]. We show that for all values of α ∈ [0,1], the APMA also

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

4 · Michael A. Bender and Haodong Hu

only performs O(logN) amortized element moves and O(1 + (logN)/B) amortized
memory transfers.

• We next perform simulations and experiments, measuring the performance of the
APMA on these insertion patterns. For sequential insertions of roughly 1.4 million
elements, the APMA has over four times fewer element moves per insertion than the
traditional PMA and running times that are nearly seven times faster. For bulk inser-
tions of 1.4 million elements, where f (N) = N0.6, the APMA has over two times fewer
element moves per insertion than the traditional PMA and running times that are over
three times faster.

2. ADAPTIVE PACKED-MEMORY ARRAY

In this section we introduce the adaptive PMA. We first explain how the adaptive PMA
differs from the traditional PMA. We then show that both PMAs have the same amor-
tized bounds, O(log2 N) element moves and O(1 + (log2 N)/B) memory transfers per in-
sert/delete. Thus, adaptivity comes at no extra asymptotic cost.

Description of Traditional and Adaptive PMAs. We first describe how to insert into both
the adaptive and traditional PMAs. Henceforth, PMA with no preceding adjective refers
to either structure. When we insert an element y after an existing element x in the PMA,
we look for a neighborhood around element x that has sufficiently low density, that is,
we look for a subarray that is not storing too many or too few elements. Once we find
a neighborhood of the appropriate density, we rebalance the neighborhood by spacing
out the elements, including y. In the traditional PMA, we rebalance by spacing out the
elements evenly. In the adaptive PMA, we may rebalance the elements unevenly, based on
previous insertions, that is, we leave extra gaps near elements that have recently had inserts
after them.

We deal with a PMA that is too full or empty, as with a traditional hash table. Namely,
we recopy the elements into a new PMA that is a constant factor larger or smaller. In this
paper, this constant is stated as 2. However, the constant could be larger or smaller (say
1.2) with almost no change in running time. This is because most of the cost from element
moves come from rebalances rather than from recopies.

We now give some terminology. We divide the PMA into Θ(N/ logN) segments, each
of size Θ(logN), and we let the number of segments be a power of 2. We call a contiguous
group of segments a window. We view the PMA in terms of a tree structure, where the
nodes of the tree are windows. The root node is the window containing all segments, and
a leaf node is a window containing a single segment. A node in the tree that is a window
of 2i segments has two children, a left child that is the window of the first 2i−1 segments
and a right child that is the window of the last 2i−1 segments.

We let the height of the tree be h, so that 2h = Θ(N/ logN) and h = lgN− lglgN +
O(1). The nodes at each height ` have an upper density threshold τ` and a lower density
threshold ρ`, which together determine the acceptable density of keys within a window of
2` segments. As the node height increases, the upper density thresholds decrease and the
lower density thresholds increase. Thus, for constant minimum and maximum densities
Dmin and Dmax , we have

Dmin = ρ0 < · · ·< ρh < τh < · · ·< τ0 = Dmax. (1)

The density thresholds on windows of intermediate powers of 2 are arithmetically dis-

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 5

tributed. For example, the maximum density threshold of a segment can be set to 1.0, the
maximum density threshold of the entire array to 0.5, the minimum density threshold of
the entire array to 0.2, and the minimum density of a segment to 0.1. If the PMA has 32
segments, then the maximum density threshold of a single segment is 1.0, of two segments
is 0.9, of four segments is 0.8, of eight segments is 0.7, of 16 segments is 0.6, and of all 32
segments is 0.5.

More formally, upper and lower density thresholds for nodes at height ` are defined as
follows:

τ` = τh +(τ0− τh)(h− `)/h (2)

ρ` = ρh− (ρh−ρ0)(h− `)/h. (3)

Moreover,

2ρh < τh, (4)

because when we double the size of an array that becomes too dense, the new array must
be within the density threshold.1 Observe that any values of τ0 , τh, ρ0, and ρh that satisfy
(1)-(4) and enable the array to have size Θ(N) will work. The important requirement is
that

τ`−1− τ` = O(ρ`−ρ`−1) = O(1/ logN) .

We now give more details about how to insert element y after an existing element x. If
there is enough space in the leaf (segment) containing x, then we rearrange the elements
within the leaf to make room for y. If the leaf is full, then we find the closest ancestor of the
leaf whose density is within the permitted thresholds and rebalance. To delete an element
x, we remove x from its segment. If the segment falls below its density threshold, then,
as before, we find the smallest enclosing window whose density is within threshold and
rebalance. As described above, if the entire array is above the maximum density threshold
(resp., below the minimum density threshold), then we recopy the keys into a PMA of
twice (resp., half) the size.

We introduce further notation. Let Cap(u`) denote the number of array positions in
node u` of height `. Since there are 2` segments in the node, the capacity is Θ(2` logN).
Let Gaps(u`) denote the number of gaps, i.e., unfilled array positions in node u`. Let
Density(u`) denote the fraction of elements actually stored in node u`, i.e., Density(u`) =
1−Gaps(u`)/Cap(u`).

Rebalance. We rebalance a node u` of height ` if u` is within threshold, but we detect
that a child node u`−1 is outside of threshold. Any node whose elements are rearranged in
the process of a rebalance is swept. Thus, we sweep a node u` of height ` when we detect
that a child node u`−1 is outside of threshold, but now u` need not be within threshold. Note
that with this rebalance scheme, this tree can be implicitly rather than explicitly maintained.
In this case, a rebalance consists of two scans, one to the left and one to the right of the
insertion point until we find a region of the appropriate density.

In a traditional PMA we rebalance evenly, whereas in the adaptive PMA we rebalance
unevenly. The idea of the APMA is to store a smaller number of elements in the leaves in

1There are straightforward ways to generalize (4) to further reduce space usage. Introducing this generalization
here leads to unnecessary complication in presentation.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

6 · Michael A. Bender and Haodong Hu

which there have been many recent inserts. However, since we must maintain the bound
of O(log2 N) amortized element moves, we cannot let the density of any child node be too
high or too low.

PROPERTY 1. (rebalance property) After a rebalance, if each node u` (except the root
of the rebalancing subtree) has density within u`’s parent’s thresholds, then we say that the
rebalance satisfies the rebalance property. We say that a node u` is within balance or well
balanced if u` is within its parent’s thresholds.

The following theorem shows if each rebalance satisfies the rebalance property, then we
achieve good update bounds. The proof is essentially that in [Bender et al. 2000; 2005],
but the rebalance property applies to a wide set of rebalancing schemes.

THEOREM 1. If the rebalance in a PMA satisfies the rebalance property, then inserts
and deletes take O(log2 N) amortized element moves and O(1 + (log2 N)/B) amortized
memory transfers.

PROOF. Let u` be a node at level `. A rebalance of u` is triggered by an insert or delete
that pushes one descendant node ui at each height i = 0, . . ., `−1 above its upper threshold
τi or below its lower threshold ρi. (If this were not the case, then we would rebalance a
node of a lower height than `.)

Consider one particular such node ui. Before the sweep of ui’s parent ui+1,

Density(ui) > τi or Density(ui) < ρi .

After the sweep of ui+1, by the rebalance property,

ρi+1 ≤ Density(ui)≤ τi+1 .

Therefore we need at least

(τi− τi+1)Cap(ui)

inserts or at least

(ρi+1−ρi)Cap(ui)

deletes before the next sweep of node ui+1. Therefore the amortized size of a sweep of
node ui+1 per insert into child node ui is at most

max

{

Cap(ui+1)

(τi− τi+1)Cap(ui)
,

Cap(ui+1)

(ρi+1−ρi)Cap(ui)

}

= max

{

2
τi− τi+1

,
2

ρi+1−ρi

}

= O(logN).

When we insert an element into the PMA, we actually insert into h = Θ(logN) such
nodes ui, one at each level in the tree. Therefore the total amortized size of a rebalance
per insertion into the PMA is O(log2 N). Thus, the amortized number of element moves
per insert is O(log2 N). Because a rebalance is composed of a constant number of sequen-
tial scans, the amortized number of memory transfers per insert is O(1 + (log2 N)/B), as
promised.

Observe that Theorem 1 applies to both insertions and deletions; in contrast, we focus
only on insertions in the rest of the paper, for the sake of simplicity. However, it is likely
that, with only minor modifications to the predictor, the same bounds for common insertion

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 7

Algorithm 1 Predictor.insert(x)
1: if ∃ a cell c such that c.element = x then
2: SWAP(c, c.nextcell) { If c is not the head pointer. }
3: c.count← c.count+1
4: if c.count > logN then
5: tail.count← tail.count−1 {When c.count is at the maximum logN . . .}
6: c.count← c.count−1 { Decrease the tail’s count instead of increasing c.count. }
7: end if
8: else
9: if head.nextcell = tail then

10: tail.count← tail.count−1 { Decrease tail’s count when no free space. }
11: else
12: head← head.nextcell
13: head.element← x
14: head.count← 1
15: head.leaf← x.leaf { In other cases, create a new cell for new element. }
16: end if
17: end if
18: if tail.count = 0 then
19: tail← tail.nextcell { The tail cell is removed when its count drops to zero.}
20: end if

distributions can be made to apply to deletion distributions and to distributions combining
both operations. There does not seem to be any significant additional difficulties in dealing
with deletions.

Prediction. In a predictor data structure we keep track of a small collection of elements,
called marker elements, that directly precede elements recently inserted into the APMA.
The predictor stores a pointer to those leaf nodes of the APMA (i.e., Θ(logN)-sized seg-
ments of the array) that contain marker elements. For each marker element, we count the
number of recently inserted elements that directly follow the marker.

We give terminology for prediction. For an element x, let insert number I(x) denote a
count from 0 to logN estimating the number of inserts after x in the last O(log2 N) inserts.
The predictor is designed so that

• I(x) is always an underestimate of the number of inserts, and
• I(x) never grows above logN .

Below, we explain why and how these properties are enforced. Furthermore, if element x
is not in the predictor, then we define I(x) = 0.

We now define the insert number I(u`) of a node u` at level ` in the APMA. Specifically,
let insert number I(u`) be the sum of the insert numbers of elements in u`. When rebalanc-
ing a node, we reallocate elements unevenly among its descendant leafs according to their
insert numbers. The larger the insert number, the fewer elements are allocated.

We now explain how the predictor determines (1) which elements to store as marker
elements and (2) what the count numbers are for each element. To do so, we explain how
to implement the predictor.

The predictor is a circular linked list, stored in an array. The predictor contains β logN
cells, for constant β. Two pointers, a head pointer and a tail pointer, indicate the front and

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

8 · Michael A. Bender and Haodong Hu

Tail Pointer
element

Header Pointer

1 log N
2

· · ·· · ·

3

Countleaf

· · ·

Fig. 1. The predictor. Each cell contains a marker element x, the leaf node in the APMA where x resides, and the
count number I(x).

the back of the linked list. Each cell in the circular linked list stores a marker element x.
Associated with x are two pieces of data, (1) a pointer to the leaf node in the APMA where
x currently resides and (2) the count number I(x) (see Fig. 1).

When a new element x is determined to be a marker element, it is inserted into the
predictor; x is inserted at the head of the linked list (where the head-pointer points). When
an element x is no longer needed as a marker element, it is deleted from the predictor;
before x is deleted, x will always be stored at the tail of the linked list (where the tail-
pointer points).

When a new element y is inserted into the APMA after an element x, we first check
whether x is a marker element (i.e., stored in the predictor). If x is a marker element, we
store x and its auxiliary information one cell forward in the APMA (unless x is already at
the head of the predictor). Let w be the element displaced by x. We store w (and auxiliary
information) in the cell vacated by x. We also increase the element x’s count number by 1
unless it is already at the maximum O(logN). Let z be the element stored in the tail of the
predictor. If x is already at the maximum O(logN), then we decrement z’s count number
instead of incrementing x’s count number. (This decrement is one reason why the count
number of x is an underestimate.)

If x is not a marker element, then there are two cases. If there are empty cells in the
predictor, then we store x at the head of the predictor. If there are no empty cells in the
predictor, then we decrease the count number of z (the element stored in the tail) instead of
storing x in the predictor. (This lack of space is another reason why the count number of x
is an underestimate.)

This decrement may reduce the count number of z to 0. If so, we delete z from the
predictor. A new free cell space is now available for future inserts.

The predictor algorithm is engineered to tolerate “random noise” in the insertions. By
random noise, we mean that some of the insertions may not follow an insertion distribution
(such as head insert, hammer insert, bulk insert, etc). Our guarantees still apply even if as
much as a constant fraction of insertions are after random elements in the APMA. To
understand why our predictor tolerates random noise, observe that a few arbitrary inserts

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 9

will not be stored in the predictor unless the tail count drops below zero. If a poor choice
of element is, in fact, stored in the predictor, it will soon be swapped to the tail if no new
inserts follow.

Uneven Rebalance. Now we present the algorithm for uneven rebalance (See Algo-
rithm 2). Assume that nodes u`−1 and v`−1 are left and right children of u` at level `
and that there are m ordered elements {x1,x2, . . .,xm} stored in u`. The uneven rebalance
performs as follows:

Algorithm 2 Rebalance.uneven(u`)
1: u`−1← u`’s left child;
2: v`−1← u`’s right child;
3: if (u`−1 is empty) or (v`−1 is empty) then
4: return;
5: end if
6: splitnum←max{Cap(u`−1)ρ`,m−Cap(v`−1)τ`};

7: optvalue←

∣

∣

∣

∣

∣

∑splitnum
j=1 I(x j)

Cap(u`−1)− splitnum
−

∑m
j=splitnum+1 I(x j)

Cap(v`−1)− (m− splitnum)

∣

∣

∣

∣

∣

;

8: for i = splitnum to min{Cap(u`−1)τ`,m−Cap(v`−1)ρ`} do

9: curvalue←

∣

∣

∣

∣

∣

∑i
j=1 I(x j)

Cap(u`−1)− i
−

∑m
j=i+1 I(x j)

Cap(v`−1)− (m− i)

∣

∣

∣

∣

∣

;

10: if optvalue > curvalue then
11: optvalue← curvalue;
12: splitnum← i;
13: end if
14: end for
15: u`−1←{x1, . . .,xsplitnum};
16: v`−1←{xsplitnum+1, . . .,xm};
17: Rebalance.uneven(u`−1);
18: Rebalance.uneven(v`−1);

• If I(xi) = 0 for all i∈ [1,m], then we perform an even rebalance for this node u`.
• Otherwise, we perform an uneven rebalance. Our uneven rebalance is designed so

that, the bigger the insert numbers, the more gaps we leave. Specifically, we minimize
the quantity

∣

∣

∣

∣

I(u`−1)

Gaps(u`−1)
−

I(v`−1)

Gaps(v`−1)

∣

∣

∣

∣

, (5)

subject to the constraint that the rebalance property must be satisfied. When we rebal-
ance, we split at an element xi, meaning that we put elements {x1, . . .,xi} in u`−1 and
{xi+1, . . .,xm} in v`−1. The objective is to find the index i to minimize

∣

∣

∣

∣

∣

∑i
j=1 I(x j)

Cap(u`−1)− i
−

∑m
j=i+1 I(x j)

Cap(v`−1)− (m− i)

∣

∣

∣

∣

∣

, (6)

subject to the constraints that the densities of both left child and right child are within
parent’s threshold, i.e.,

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

10 · Michael A. Bender and Haodong Hu

i ∈
[

Cap(u`−1)ρ`, Cap(u`−1)τ`

]

, (7)

i ∈
[

m−Cap(v`−1)τ`, m−Cap(v`−1)ρ`

]

. (8)

• We recursively allocate elements in u`−1 and v`−1’s child nodes and proceed down the
tree until we reach the leaves. Once we know the number of elements in each leaf, we
rebalance u` in one scan.

For example, in the insert-at-head case, the insert numbers of right descendants are
always 0. Thus, minimizing the simplified objective quantity |I(u`−1)/Gaps(u`−1)| means
maximizing Gaps(u`−1).

Now we show how to implement the rebalance so that there is no asymptotic overhead
in the bookkeeping for the rebalance. Specifically, the number of element moves in the
uneven rebalance is dominated by the size of the rebalancing node, as described in the
following theorem:

THEOREM 2. To rebalance a node u` at level ` unevenly requires O(Cap(u`)) opera-
tions and O(1+Cap(u`)/B) memory transfers.

PROOF. There are three steps to rebalancing a node u` unevenly. First, we check the
predictor to obtain the insert numbers of the elements located in all descendant nodes of u`.
Because the size of the predictor is O(logN), this step takes O(logN) operations and O(1+
(logN)/B) memory transfers. Second, we recursively determine the number of elements
to be stored in u`’s children, grandchildren, etc., down to descendent leaves. Naively, this
procedure uses O(`Cap(u`)) operations and O(1+ `Cap(u`)/B) memory transfers; below
we show how to perform this procedure in O(Cap(u`)) operations and O(1+Cap(u`)/B)
memory transfers. Third, we scan the node u` putting each element into the correct leaf
node. Thus, this last step also takes O(Cap(u`)) operations and O(1+Cap(u`)/B) memory
transfers.

We now show how to implement the second step efficiently. We call the elements in
the predictor weighted elements and the remaining elements unweighted. Recall that only
weighted elements have nonzero insert numbers. In the first step, we obtain all information
about which elements are weighted. Then, we start the second step, which is recursive. At
the first recursive level, we determine which elements are allocated to the left and right
children of u`, i.e., we find the index i minimizing (6). At first glance, it seems necessary
to check all indices i in order to get the minimum, which takes O(Cap(u`)) operations,
but we can do better. Observe that when the index i is in a sequence of unweighted el-
ements between two weighted elements, the numerator in (6) does not change. Only the
denominator changes, and it does so continuously. So in order to minimize (6) at the first
recursive level, it is not necessary to check all elements in node u`. It is enough to check
which two contiguous weighted elements the index i is between such that (6) is minimized.
Since there are at most O(logN) weighted elements, the number of operations at each re-
cursive level is at most O(logN). Furthermore, because there are ` recursive levels, the
number of operations in the whole recursive step is at most O(` logN), which is less than
O(Cap(u`)). By storing these weighted elements contiguously during the rebalance, we
obtain O(1+Cap(u`)/B) memory transfers.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 11

3. ANALYSIS OF SEQUENTIAL AND HAMMER INSERTIONS

In this section we first analyze the adaptive PMA for the sequential insert pattern, where
inserts occur at the front of the PMA. Then we generalize the result to hammer inserts.

For sequential inserts, we prove the following theorem:

THEOREM 3. For sequential inserts, the APMA has O(logN) amortized element moves
and O(1+(logN)/B) amortized memory transfers.

We give some notation. In the rest of this section, we assume that u` is the leftmost node
at level ` and v`−1 is the right child of u`. Recall that leaves have height 0. Suppose that
we insert N elements in the front of an array of size cN (c > 1). Since we always insert
elements at the front, rebalances occur only at the leftmost node u` (0≤ `≤ h). If we know
the number of sweeps of u` in the process of inserting these N elements, then we also know
the total number of moves.

In order to bound the number of sweeps at each level, we need more notation. For
κ≤ `, let Nκ(`, i) be the number of sweeps of the leftmost node uκ at level κ between the
(i− 1)th sweep and the ith sweep of node u`. We imagine a virtual parent node uh+1 of
the root node uh, where uh+1 has size 2cN . Thus, the time when the root node uh reaches
its upper threshold τh , after we insert N elements, is the time when the virtual parent node
performs the first rebalance. Thus, Nκ(h + 1,1) is the number of sweeps of node uκ at
level κ during the insertion of these N elements (0≤ κ≤ h). Since each sweep of uκ costs
2κ logN moves, the total number of moves is:

h
∑

κ=0

Nκ(h+1,1)2κ logN.

This quantity is the sum of the sweep costs at each level, until the virtual node needs its
first rebalance. Thus, the amortized number of element moves is

1
N

h
∑

κ=0

Nκ(h+1,1)2κ logN. (9)

Sequential Inserts with Only Upper Thresholds. For pedagogical reasons, we now con-
sider the simpler case of a PMA with no lower-bound thresholds and show that Theorem 3
holds in this special case. This lack of lower-bound thresholds makes it significantly eas-
ier to achieve the bounds from Theorem 3. By providing this simpler analysis we give
insight into the origin of Theorem 3’s bounds and why the subsequent analysis is more
complicated.

LEMMA 4. For sequential inserts, the APMA with no lower-bound thresholds has
O(logN) amortized element moves and O(1+ logN/B) amortized memory transfers.

PROOF. Recall that Nκ(`,1) is the number of sweeps of the leftmost child uκ at level κ
until ancestor node u` performs its first rebalance. Observe that just before u` performs the
first rebalance, u`−1 reaches its threshold τ`−1. We want to find the number of sweeps of
uκ before u`−1 reaches its upper threshold τ`−1.

We decompose this process into two phases. Phase 1 ends before the first rebalance of
node u`−1 when we have τ`−22`−2 elements in the left child u`−2 of u`−1 and 0 elements in
the right child v`−2 of u`−1 (see Fig. 2). According to our uneven-rebalance strategy, since

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

12 · Michael A. Bender and Haodong Hu

`− 1

`− 2

u`

u`−1

u`−2

`

00

=⇒

u`

u`−1

u`−2

0τ`−2

Fig. 2. In the simple case, Phase 1 of node u` starts from Density(u`−2) = 0 (left) and ends at
Density(u`−2) = τ`−2 (right). The shaded region is rebalanced.

all inserts are to the left child, we allocate τ`−12`−2 elements to v`−2 and (τ`−2−τ`−1)2`−2

elements to u`−2 at the end of Phase 1, i.e., we give the maximum allowed number of
elements to the right child. Now we consider Phase 2, which takes place between the first
rebalance and the second rebalance of u`−1 (see Fig. 3). Since the right child v`−2 of u`−1

already has density τ`−1, when u`−2 reaches its threshold τ`−2 again, the density of u`−1 is
(τ`−2 + τ`−1)/2 > τ`−1 at the end of Phase 2, which is above its upper threshold.

`− 1

`− 2

u`

u`−1

u`−2

`

(τ`−2 − τ`−1)

τ`−1

=⇒

u`

u`−1

u`−2

τ`−1τ`−2

Fig. 3. In the simple case, Phase 2 of node u` starts from Density(u`−2) = τ`−2− τ`−1 (left) and ends
at Density(u`−2) = τ`−2 (right). The shaded region is rebalanced.

To summarize, the first time that we rebalance u`−1 is when we move elements from u`−2

into v`−2 . This rebalance is triggered because u`−2 is above its threshold. The next time
u`−2 goes above its threshold τ`−2, u`−1 is also above its threshold τ`−1, and we trigger the
first rebalance of u`. Thus, there are at most two sweeps of node u`−1 before it reaches its
threshold τ`−1. That is

Nκ(`,1)≤Nκ(`−1,1)+Nκ(`−1,2). (10)

To calculate (9), we first show that Nκ(`−1,2) < Nκ(`−1,1). Recall that Nκ(`−1,2)
is the number of sweeps of the leftmost child uκ at level κ between ancestor node u`−1’s
first sweep (rebalance) and second sweep. The above inequality is true because at the
end of both phases u`−2 reaches its threshold, but the first phase starts with u`−2 having
density 0 (an empty data structure), and the second phase starts with u`−2 having density
τ`−2−τ`−1 . Thus, by plugging Nκ(`−1,2) < Nκ(`−1,1) in (10), we have the recurrence

Nκ(`,1)≤ 2Nκ(`−1,1).

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 13

The amortized number of element moves is

1
N

h
∑

κ=0

Nκ(h+1,1)2κ logN =

h
∑

κ=0

Nκ(h+1,1)2κ−h

≤

h
∑

κ=0

[

2h−κ+1Nκ(κ,1)
]

2κ−h

=

h
∑

κ=0

2 = O(logN).

Sequential Inserts in APMA with Lower and Upper Thresholds. We now consider the
general case of a PMA with both the lower- and upper-bound thresholds and are ready to
prove Theorem 3.

PROOF OF THEOREM 3: The proof is a generalization of the proof of Lemma 4; we
bound Nκ(`,1), the number of sweeps of the leftmost child uκ at level κ until the ancestor
node u` performs the first rebalance. The difficulty with both the lower- and upper-bound
thresholds is that we must decompose the time before the first rebalance of u` into more
than 2 phases, and thus we obtain a more complicated recurrence to solve. We decompose
this process into three phases. Phase i of node u` (1 ≤ i ≤ 3), starts after the (i− 1)th
sweep of u`−1 and ends at the ith sweep of u`−1. At the end of the last phase, u` performs
its first rebalance, which is the third sweep of u`−1. Thus, we have at most three sweeps of
node u`−1 before the first rebalance of u`:

Nκ(`,1)≤Nκ(`−1,1)+Nκ(`−1,2)+Nκ(`−1,3).

Now we prove the above claim analyzing the densities in each phase.

`− 1

`− 2

u`

u`−1

u`−2

`

00

=⇒

u`

u`−1

u`−2

0τ`−2

Fig. 4. Phase 1 of node u` starts from Density(u`−2) = 0 (left) and ends at Density(u`−2) = τ`−2

(right). The shaded region is rebalanced.

I) We consider the densities of child nodes u`−2 and v`−2 of u`−1 at the end of Phase 1.
The first rebalance of u`−1 occurs (see Fig. 4) when u`−2 reaches its upper threshold
τ`−2. For sequential inserts, we allocate as many free spaces as possible to u`−2, while

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

14 · Michael A. Bender and Haodong Hu

ensuring that u`−2 and v`−2 have densities between ρ`−1 and τ`−1. Thus, after the first
rebalance, which happens after τ`−2Cap(u`−2) inserts, we have densities:

Density(u`−2) = ρ`−1,

Density(v`−2) = τ`−2−ρ`−1.

It is immediate that the density setting of u`−2 is legal; we now explain why the
above density setting of v`−2 is legal, i.e., satisfies the rebalance property. Notice that
ρ`−1≤ τ`−2−ρ`−1 ≤ τ`−1, since 2ρ`−1 ≤ τ`−1 < τ`−2 by (1) and (4) and τ`−2−τ`−1 =
O(1/ logN) < ρ`−1 by (1) and (2).

`− 1

`− 2

u`

u`−1

u`−2

`

ρ`−1

(τ`−2 − ρ`−1)

=⇒

u`

u`−1

u`−2 (τ`−2 − ρ`−1)

τ`−2

Fig. 5. Phase 2 of node u` starts from Density(u`−2) = ρ`−1 (left) and ends at Density(u`−2) = τ`−2

(right). The shaded region is rebalanced.

II) We now consider the densities of child nodes u`−2 and v`−2 at the end of Phase 2.
When u`−2 reaches its threshold again, Phase 2 of node u` ends (see Fig. 5). After
u`−1 does the second rebalance, which happens after (τ`−2−ρ`−1)Cap(u`−2) inserts,
we have densities:

Density(u`−2) = 2τ`−2−ρ`−1− τ`−1,

Density(v`−2) = τ`−1.

It is immediate that the density setting of v`−2 is legal; we now show that the den-
sity setting of u`−2 is legal. Notice that ρ`−1 < 2τ`−2− ρ`−1− τ`−1 < τ`−1 , because
2ρ`−1 < τ`−2 < τ`−2 +(τ`−2−τ`−1) by (1) and (4) and 2(τ`−2−τ`−1) = O(1/ logN)<
ρ`−1 by (1) and (2).

III) Now we consider the densities of child nodes u`−2 and v`−2 at the end of Phase 3.
When u`−2 reaches its threshold a third time, which happens after (τ`−1 − τ`−2 +
ρ`−1)Cap(u`−2) inserts, Phase 3 of node u` ends (see Fig. 6). When u`−1 does the
third sweep, the density of u`−1 is (τ`−2 + τ`−1)/2 > τ`−1 , so u`−1 is above threshold.
Thus, the end of Phase 3 is the first rebalance of u`.

Thus, there are at most three sweeps of u`−1 before the first rebalance of u`, that is,

Nκ(`,1)≤Nκ(`−1,1)+Nκ(`−1,2)+Nκ(`−1,3). (11)

We cannot simply use the bound Nκ(`,1)≤ 3Nκ(`−1,1) for our analysis, since this bound
naively leads to O(N log(3/2)) amortized moves, which is far from our goal of O(logN).

To establish our bound, we prove the following recurrences for Phase 2 and Phase 3:

Nκ(`−1,2)≤ 2Nκ(`−2,2), (12)

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 15

`− 1

`− 2

u`

u`−1

u`−2

`

τ`−1

(2τ`−2 − τ`−1 − ρ`−1)

=⇒

u`

u`−1

u`−2 τ`−1

τ`−2

Fig. 6. Phase 3 of node u` starts from Density(u`−2) = 2τ`−2 − τ`−1 − ρ`−1 (left) and ends at
Density(u`−2) = τ`−2 (right). The shaded region is rebalanced.

and

Nκ(`−1,3)≤ Nκ(`−1,2). (13)

Solving (11), (12), and (13) will yield the desired bound.
We already showed (11); now we show (12). We proceed by breaking Phase 2 into two

subphases. The first subphase begins when Phase 2 begins, i.e., after the first rebalance of
u`−1, and it ends after the next sweep of u`−2. The second subphase begins when the first
subphase ends, and it ends after the next another sweep of u`−2. We will show that at the
end of Subphase 2, u`−2 is above threshold, meaning that Subphase 2 ends with a sweep
of u`−1, i.e., Phase 2 ends as well.

• At the beginning of Subphase 1, node u`−3 has density ρ`−2 by the rebalance property.
(Since insertions are at the beginning of the array, we want u`−3 to be as sparse as
possible, and the rebalance property says that after a rebalance Density(u`−3)≥ ρ`−2.)
The sweep of u`−2 is triggered once the density of u`−3 reaches τ`−3 (see Fig. 7). At
the end of Subphase 1, after (τ`−3− ρ`−2)Cap(u`−3) inserts, the density of u`−3 and
v`−3 are:

Density(u`−3) = 2ρ`−1−ρ`−2 + τ`−3− τ`−2,

Density(v`−3) = τ`−2.

It is immediate that the density of v`−3 is legal; we show that the density of u`−3 is legal
too. Notice that ρ`−2 < 2ρ`−1−ρ`−2 +τ`−3−τ`−2 < τ`−2, because 2ρ`−2 < 2ρ`−1 and
τ`−2 < τ`−3 by (1) and 2ρ`−1 < τ`−1 < τ`−2 and τ`−3− τ`−2 = O(1/ logN) < ρ`−2 by
(1) and (4).
We now show that the number of sweeps of uκ in Subphase 1 is equal to Nκ(`−2,2).
Observe that Subphase 1 is exactly Phase 2 of the node u`−1 because they both start
with the node u`−3 having density ρ`−2 and end with the node u`−3 having density
τ`−3. Although in Subphase 1 and Phase 2 of node u`−1, node v`−3 has different
densities, this difference does not matter because the density of v`−3 does not affect
when Subphase 1 and Phase 2 of node u`−1 end.

• At the beginning of Subphase 2, u`−3 has density 2ρ`−1−ρ`−2 + τ`−3− τ`−2 > ρ`−2,
and the subsequent sweep of u`−2 is triggered once the density of u`−3 reaches τ`−3

again (see Fig. 8). Since the density of v`−3 is τ`−2 , the density of u`−2 is (τ`−3 +
τ`−2)/2 > τ`−2 at the end of Subphase 2, so u`−2 is above its upper threshold. Thus,
the end of Subphase 2 is the sweep of u`−1.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

16 · Michael A. Bender and Haodong Hu

ρ`−1
τ`−2 − ρ`−1

u`

u`−1

ρ`−2

2ρ`−1 − ρ`−2 > ρ`−2
u`−3

u`−2

=⇒

τ`−2 − ρ`−1

u`

u`−1

τ`−3

2ρ`−1 − ρ`−2 > ρ`−2
u`−3

u`−2

Fig. 7. Subphase 1 starts from Density(u`−3) = ρ`−2 (left) and ends at Density(u`−3) = τ`−3 (right). The
shaded region is rebalanced.

We now prove that the number of sweeps of uκ in Subphase 2 is less than Nκ(`−2,2),
because both Subphase 2 and Phase 2 of node u`−1 end with node u`−3 reaching its
upper threshold τ`−3 , but Subphase 2 starts with node u`−3 having density greater than
ρ`−2 while Phase 2 of node u`−1 starts with node u`−3 having density ρ`−2.

τ`−2 − ρ`−1

u`

u`−1

u`−2

u`−3

(> ρ`−2) τ`−2

=⇒

τ`−2
− ρ`−1

u`

u`−1

u`−2

u`−3

τ`−3
τ`−2

Fig. 8. Subphase 2 starts from Density(u`−3) ≥ ρ`−2 (left) and ends at Density(u`−3) = τ`−3 (right).
The shaded region is rebalanced.

Thus, there are at most two subphases in Phase 2 of node u` and each subphase has the
number of sweeps of node uκ at most Nκ(`− 2,2), which shows (12). Since Recurrence
(12) has the base case Nκ(κ,2) = 1, we obtain the solution

Nκ(`−1,2)≤ 2`−κ−1. (14)

Now we establish the recurrence in (13). Both Phase 2 and Phase 3 end with node u`−2

reaching its upper threshold τ`−2, while Phase 3 starts with the node u`−2 having density
2τ`−2− τ`−1−ρ`−1 > ρ`−1. Phase 2 starts with node u`−2 having density ρ`−1.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 17

We now establish the desired bound. Plugging (14) and (13) into (11), we have

Nκ(`,1) ≤ Nκ(`−1,1)+Nκ(`−1,2)+Nκ(`−1,3)

≤ Nκ(`−1,1)+2Nκ(`−1,2)

≤ Nκ(`−1,1)+2 ·2`−κ−1

≤ 2`−κ+1. (15)

Finally, the amortized number of moves is

1
N

h
∑

κ=0

Nκ(h+1,1)2κ logN =

h
∑

κ=0

Nκ(h+1,1)2κ−h

≤

h
∑

κ=0

(2h−κ+2)2κ−h =

h
∑

κ=0

4 = O(logN).

Observe that after any insert the elements are moved from a contiguous group, and the
moves can be performed with a constant number of scans. Therefore the amortized number
of memory transfers is O(1+(logN)/B).

Hammer Inserts. We now consider the hammer insertion distribution, where we always
insert the elements at the same rank. We show that the analysis from sequential insertion
distribution (Theorem 3) applies here.

THEOREM 5. When inserted elements have fixed rank (hammer inserts), the APMA has
O(logN) amortized element moves and O(1+(logN)/B) amortized memory transfers.

PROOF. In the hammer-insert case, we always insert new elements after a given element
x. Notice that in the rebalancing subtree rooted at u`, there is a unique path from the leaf
node containing the element x to the root node u`. Let node ui (i≤ `) be the ancestor of
x at level i, and let vi be ui’s sibling. An important difference between this proof and the
proof of Theorem 3 is that ui−1 and sibling vi−1 may now be either left or right children of
ui for i < `.

Recall that, as in the proof of Theorem 3, for level κ ≤ `, Nκ(`, t) is the number of
sweeps of the leftmost node uκ at level κ between the (t−1)th sweep and the tth sweep of
node u`.

Intuitively, we want to use a similar argument as in the proof of Theorem 3, to show that
Nκ(`,1) is bounded as in (15), up to a constant factor, that is, for constant β,

Nκ(`,1)≤ β2`−κ+1.

This approach comes close to working, but requires a much more technical generaliza-
tion. In particular, as we show, Recurrences (11) and (13) still hold, but there is one value
of i+1 below which Recurrence (12) might not.

In the following, we explain why there may exist a node ui+1 below which Recur-
rence (12) does not hold. Then we explain that

Nκ(i+1,2) = O(2i+1−κ),

which is the same as the solution of Recurrence (12) up to a constant factor. Finally, we
explain why the analysis from Theorem 3 still applies even when there exists such a node
ui+1.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

18 · Michael A. Bender and Haodong Hu

We first explain why there may exist a node ui+1 for which Recurrence (12) does not
hold. To do so, we examine the density of the child ui after the first sweep of ui+1 and
demonstrate that Density(ui) can be different with sequential inserts and hammer inserts.
With sequential inserts, a rebalance tries to put as few elements as possible in ui and as
many elements as possible in vi without disobeying the upper and lower density thresholds.
With hammer inserts, we also want ui to be as sparse as possible while still maintaining
the rebalance property.

But now we have an additional constraint, the hammer constraint, that node x must
remain in ui. What we mean by this additional constraint is the following. Suppose that
ui is a left child, and vi is a right child. In a rebalance we try to put as few elements as
possible in ui and as many elements as possible in vi. But if the last element in ui is x then
we cannot reduce the density of ui any further — the next element to move into vi is x, but
then vi becomes ui.

To summarize, there are two cases in which hammer inserts may differ from sequential
inserts. The first case is when ui is a left child and x is the rightmost element in ui after
a sweep of ui+1. The second case is when ui is a right child and x is the leftmost element
in ui after a sweep of ui+1. In both cases Recurrence (12) may not hold for ui+1. (If x is
not in one of these two positions at the end of a rebalance, then the critical constraint is the
rebalance property rather than the hammer constraint, as with sequential inserts.)

We now explain that in both cases, the number of sweeps of uκ between the first sweep
and the second sweep of ui+1, Nκ(i+1,2), still has the solution O(2i+1−κ). When node ui

is a right child and x is the leftmost element in ui, the bound follows from the analysis in
Theorem 3 because the insert pattern of ui matches the sequential-insert case. The difficult
case is when ui is a left child and x is the rightmost element in ui after the first sweep of
ui+1. We call this the tail-insert case. This case corresponds to a stage beginning after any
sweep of ui+1 when the element x is the rightmost element in ui and ending when node ui

reaches its upper threshold, i.e., at the next sweep of ui+1. We call this interval the tail-
insert stage of ui. Below, we give a bound on the number of sweeps of uκ in the tail-insert
case.

We use the following claim:

CLAIM 6. Consider the tail-insert stage of ui: the stage starts after one sweep of ui+1

and ends just before the next sweep of ui+1, and x is the rightmost element in ui at the
beginning of the stage. Then the number of sweeps of node uκ during the stage is O(2i−κ).

We prove the above claim in the appendix. The proof is similar to Theorem 3, but signifi-
cantly more technical.

Finally, we show why, given Claim 6, the analysis from Theorem 3 applies to hammer
inserts. Recurrence (12) is true above an intermediate node ui, that is,

Nκ(`−1,2)≤ 2`−i−2Nκ(i+1,2).

Moreover, by Claim 6,

Nκ(i+1,2)≤ β2i+1−κ

for some constant β at node ui. Therefore,

Nκ(`−1,2)≤ β2`−κ−1.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 19

Thus, the solution for Recurrence (11) is

Nκ(`,1)≤ 2`−κ+1β,

and the theorem follows.

4. ANALYSIS FOR RANDOM AND BULK INSERTIONS

In the previous section we analyze the sequential and hammer insertion distributions,
where the inserts hammer on one part of the PMA. In this section we first analyze ran-
dom insertion distribution, where we insert after random elements in the array. Then we
generalize all of these distributions and consider the bulk insertion distribution.

The bulk insertion distribution for function Nα, 0 ≤ α ≤ 1, is defined as follows: pick
a random element and insert Nα elements after it; then pick another element and repeat.
Bulk insert generalizes all distributions seen so far: For α = 0, we have random inserts,
and for α = 1, we have sequential or hammer inserts.

Random Inserts. We now give the performance for the traditional PMA and APMA
with random inserts. In the traditional PMA or APMA, each insertion causes only a small
number of elements to be moved or triggers a recopying of the entire array.

THEOREM 7 [ITAI ET AL. 1981; BENDER ET AL. 2004]. Consider random insertions
into a traditionalPMA or APMA, in which each new element is inserted after a random ele-
ment in the PMA or APMA. Whenever the density of the entire array is below the maximum
density threshold, then each insert causes O(logN) element moves and O(1+(logN)/B)
memory transfers with high probability, i.e., probability polynomially small in N. Specifi-
cally, each insert causes O(α logN) element moves and O(1+α(logN)/B) memory trans-
fers with probability at least 1−1/Nα.

Even simpler rebalance schemes perform well under random inserts, as shown in [Itai
et al. 1981; Bender et al. 2004]. Publications [Itai et al. 1981; Bender et al. 2004] show
that there are O(logN) moves with high probability for random inserts, even with the
following simple rebalance procedure: When we insert an element y after an element x, we
simply push the elements to the right or left to make room for y. The maximum number of
elements moved is O(logN) with high probability. Thus, for the traditional PMA, as long
as the density thresholds in the leaves is a constant less than 1, we need no big rebalances
in the tree.

Bulk Inserts. For bulk inserts, we have the following theorem:

THEOREM 8. For bulk inserts with f (N) = Nα (0≤α≤ 1), the APMA achieves O(logN)
amortized element moves and O(1+(logN)/B) memory transfers.

The intuition for Theorem 8 is as follows: Conceptually, we divide the virtual tree into a
top tree with Θ(N/(f (N) logN)) leaves, each of which is the root of a bottom tree T with
Θ(f (N)) leaves, i.e., Θ(f (N) logN) array positions. Thus, we split the virtual tree at height
h′ = dα logNe. Bulk inserts can be analyzed by looking at the process as a combination of
random and hammer inserts: random inserts in the top tree A with big leaf nodes of size
f (N) logN and hammer inserts in a bottom tree T of size f (N) logN . In an insertion, we

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

20 · Michael A. Bender and Haodong Hu

A

T

log N − dα log Ne

dα log Ne

Fig. 9. An illustration showing the tree divided at height dα logNe.

randomly choose a leaf node of top tree A and do a hammer insert at the bottom subtree of
the chosen leaf node of A.

We first show that f (N) = Nα (0≤ α ≤ 1) hammer inserts into T costs O(logN) amor-
tized moves when all the nodes are well balanced. Then, we explain that these f (N) inserts
trigger at most one rebalance in the top tree A. Thus, from the point of view of A, there is
a big element of size f (N) inserted, and this big insert costs O(logN) amortized moves in
the leaf node.

We prove the following lemma for f (N) = Nα.

LEMMA 9. Consider inserting f (N) = Nα elements after a fixed element x in subtree
T of size Nα logN. Suppose that at the beginning of these insertions, each node in T is well
balanced. Then, the amortized number of moves is O(logN) and the amortized number of
memory transfers is O(1+(logN)/B).

PROOF. We first show that all sweeps during the insertions of Nα elements occur in
subtree T . Because the root node is well balanced, the density of the root is at most
τh′+1. Thus, before root uh′ goes outside of its upper threshold, we can insert at least
(τh′ − τh′+1)(N

α logN) = Θ(Nα) elements without triggering sweeps above level h′.
Now we give some assumptions and notation. For simplicity we assume that there are

sequential insertions within T . (We know from the proof of Theorem 5 that sequential
inserts and hammer inserts have the same analysis except at one level of the recurrence
relations.) Now we denote the leftmost node in T at level ` as u`. As in the proof of
Theorem 5, we use Nκ(`, i) to denote the number of sweeps of node uκ at level κ between
the (i−1)th and ith sweep of u`. Thus, the amortized number of element moves is at most

1
Nα

h′
∑

κ=0

Nκ(h
′+1,1)2κ logN. (16)

We bound (16) by considering the worst case when all u` have density as high as τ`+1,
0 ≤ ` ≤ h′. The time when u` does its first rebalance is the time when u`−1 reaches its
upper threshold τ`−1. This period can be decomposed into two phases, as before:

• Phase 1 of node u` starts with node u`−2 having density τ`−1 and node v`−2 having
density τ`+1. Phase 1 ends with node u`−2 having density τ`−2 . Thus, after the first
rebalance of u`−1 (see Fig. 10), which occurs after (τ`−2−τ`−1)Cap(u`−2) inserts, we

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 21

have densities:

Density(u`−2) = τ`,

Density(v`−2) = τ`−1.

`− 1

`− 2

τ`+1

τ`

`

τ`+1

τ`+2

τ`−1

=⇒ τ`+2

τ`−2 τ`+1

Fig. 10. Phase 1 of node u` starts from Density(u`−2) = τ`−1 (left) and ends at Density(u`−2) = τ`−2

(right). The shaded region is rebalanced.

• Phase 2 of node u` starts with node u`−2 having density τ` and ends with node u`−2

having density τ`−2. When node u`−1 does its second sweep (see Fig. 11), which
occurs after (τ`−2−τ`)Cap(u`−2) inserts, the density of node u`−1 is (τ`−2 +τ`−1)/2 >
τ`−1, so node u`−1 is above its threshold. Thus, the end of Phase 2 is the first rebalance
of node u`.

`− 1

`− 2

`

τ`+2

τ`−1τ`

=⇒ τ`+2

τ`−2 τ`−1

Fig. 11. Phase 2 of node u` starts from Density(u`−2) = τ` (left) and ends at Density(u`−2) = τ`−2

(right). The shaded region is rebalanced.

Thus, we have recurrence Nκ(`,1)≤ Nκ(`−1,1)+Nκ(`−1,2). However, we cannot
use the straightforward bound Nκ(`,1) ≤ 2Nκ(`− 1,1) as we did in Lemma 4. When
we try to use this bound, we obtain the solution Nκ(`,1) ≤ 2`−κ+1. Thus, we obtain an
amortized number of moves

1
Nα

h′
∑

κ=0

Nκ(h
′+1,1)2κ logN ≤

1
Nα

h′
∑

κ=0

2h′−κ+22κ logN

= O(log2 N),

which is greater than our goal of O(logN). Instead, we need a tighter analysis.
Now we analyze Nκ(`− 1,2) in more detail. The bound Nκ(`− 1,2) is the number

of sweeps of node uκ at level κ between the first and second sweeps of u`−1. After the

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

22 · Michael A. Bender and Haodong Hu

first rebalance of u`−1, we have Density(v`−2) = τ`−1 and Density(v`−3) = τ`−2 according
to our rebalance strategy for the sequential-insert pattern, i.e., both v`−2 and v`−3 already
have densities as high as their parents’ upper thresholds (see Fig. 12). The time when u`−1

does its next sweep is the time when u`−2 reaches its threshold. Because v`−3 has density
τ`−2, this is also the first time when u`−2 does its next sweep, and because v`−4 has density
τ`−3, this is also the first time when u`−3 does its next sweep, i.e., both N`−2(`− 1,2)
and N`−3(`− 1,2) are 1. This process continues a number of levels down the tree to be
determined below, but not to the leaves.

`− 2

`− 3

`− 4

`− 5

τ`+7 τ`−3

τ`+2 τ`−2

τ`−4τ`+18

τ` τ`−1

Fig. 12. The densities of node u`’s descendants at the beginning of Phase 2 of node u`.

The process does not continue to the leaves because after the first rebalance of u`−1, the
density of each leftmost child is decreasing from top to bottom. Thus, at some level `− j,
node u`− j may be so sparse that there are not enough elements to fill its right child v`− j−1

to density τ`− j. Specifically, we claim that as long as Density(u`− j)≥ τh , then we can fill
v`− j−1 to density τ`− j. Because

Density(u`− j) ≥ τh

≥ (τh +ρh)/2

= (τ`− j +ρ`− j)/2

by (2) and (3), we can fill v`− j−1 to density τ`− j while keeping the density of u`− j−1 great
than ρ`− j. Thus, there is only one sweep of u`− j in Phase 2 of u`, i.e., N`− j(`−1,2) = 1.

We now calculate the lowest level x such that Density(ux) ≥ τh . First, we give the
densities of the nodes above level x after the first rebalance of u`−1.

CLAIM 10. For level `− j > x,

Density(u`− j) = τ`+3·2 j−2− j−1. (17)

The proof of this claim is by induction on j. The base case is j = 2. Eq. (17) is satisfied
because Density(u`−2) = τ`. Now assume that the claim is true for level `− j and all
levels above. We show that the claim is also true for level `− j− 1. Because `− j > x,

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 23

Density(u`− j)≥ (τ`− j +ρ`− j)/2. Thus, we can fill v`− j−1 to density τ`− j. Thus, we obtain

Density(u`− j−1) = 2Density(u`− j)−Density(v`− j−1)

= 2τ`+3·2 j−2− j−1− τ`− j

= τ`+3·2 j−1− j−2.

So (17) is true for level `− j−1.
Now we need solve the inequality

τ`+3·2 j−2− j−1 ≥ τh (18)

to determine x. Ineq. (18) is equivalent to

3 ·2 j−2− j−1≤ h− `.

Because ` ≤ h′ = α logN for some fixed constant α, j = lglgN−O(1). That is, the lowest
level that x can be is `− lg lgN +λα , where λα is a constant that depends only on α. Thus,
we have formula

Nκ(`−1,2) = 1 (19)

for `−1≥ κ≥ `− lglgN +λα.
For those levels lower than `− lg lgN +λα , we use simple but straightforward bounds:

each sweep of a node costs at most two sweeps of its left child, assuming that each node is
within balance. Thus, we have formula

Nκ(`−1,2)≤ 2`−lglgN+λα−κ, (20)

for 0≤ κ≤ `− lglgN +λα.
Combining (19) and (20), we obtain

Nκ(`−1,2)≤ d2`−lglgN+λα−κe. (21)

Now we are ready to bound Nκ(`,1) by using (21):

Nκ(`,1) ≤ Nκ(`−1,1)+Nκ(`−1,2)

≤ Nκ(κ,1)+

`−1
∑

i=κ
Nκ(i,2)

= 1+

`−1
∑

i=κ
Nκ(i,2)

≤ 1+

`−1
∑

i=κ
d2i−lglgN+λα−κe

≤ `−κ+1+

`−1
∑

i=κ+lglg N−λα

2i−lglg N+λα−κ

≤ `−κ+1+2`−lglg N+λα−κ.

Finally, we establish that the amortized number of movements for these Nα elements is

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

24 · Michael A. Bender and Haodong Hu

at most

1
Nα

h′
∑

κ=0

Nκ(h
′,1)2κ logN

≤
1

Nα

dα log Ne
∑

κ=0

(h′−κ+1)2κ logN +
1

Nα

dα log Ne
∑

κ=0

2h′−lglg N+λα−κ2κ logN

= O(logN).

Now we bound the number of memory transfers. Observe that after any insert, the
elements moved from a contiguous group, and the moves can be performed with a con-
stant number of scans. Therefore the amortized number of memory transfer is O(1 +
(logN)/B).

Based on Lemma 9, Theorem 8 is proved as follows.
PROOF OF THEOREM 8: We consider each bottom subtree T . Suppose that an ancestor

of the root of T does a rebalance. Then the root of T has density at most τh′+1. Thus, we can
insert at least (τh′−τh′+1)Θ(Nα logN) = Θ(Nα) elements without triggering sweeps above
level h′ , i.e., inserting Nα elements in T triggers at most one rebalance in top subtree A.

Now we consider a round of Nα inserts into some bottom subtree T . We show that there
are O(logN) amortized element moves in the APMA. Recall that we use the predictor to
store recent inserts. For the first Nα inserts, the predictor only uses one cell. When the
next Nα inserts start to hammer, the predictor uses the second cell to store new elements.
After the count number in the second cell reaches logN , which means there are logN new
elements at the second position, the count number in the first cell begins to decrease. Thus,
at most 2 logN inserts remove the first cell, meaning that the hammer-insert pattern starts
after the first 2 logN inserts. Thus, we divide the Nα inserts in the round into two parts: the
first 2 logN ones and the Nα−2 logN subsequent ones. This is one dividing point.

The second dividing point is when some insert triggers a rebalance in the top subtree A.
We assume the second dividing point is after the first one. The alternative is similar to the
following analysis, although somewhat easier. These two dividing points split the round
into three parts. We analyze the cost of the rebalance in the bottom subtree T for these
parts as follows:

1. The rebalance cost for the first part, the insertion of the first 2 logN elements, is at most
3Nα logN . To see why, observe that there exists a node u′ of size Nα, such that these
2 logN elements trigger at most one rebalance above u′, by an argument similar to that
above. This rebalance is within T , and therefore costs at most Nα logN . Thus, the
total cost is the cost of this rebalance, at most Nα logN , plus the cost of the rebalances
below u′, at most (2 logN−1)Nα.

2. The second part is from the (2 logN)th element insert to the element insert triggering
the rebalance in the top subtree A. The total cost is at most the worst-case cost in
Lemma 9, which is O(Nα logN).

3. The third part is from the element insert triggering the rebalance in the top subtree A
to the last element insert of these Nα elements. From Lemma 9, the cost is less than
the cost to insert all Nα elements in subtree T whose ancestor did the rebalance, which
is O(Nα logN).

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 25

Thus, without counting the rebalance cost in the top subtree A, the average cost for each
round is O(Nα logN)/Nα = O(logN). If we can show that the average cost in the top
subtree A is also logN , then the theorem is proved.

From the view point of top subtree A, the bulk insert is similar to random inserts of “big
elements” of size Nα in A, because big element triggers at most one rebalance in A and a
leaf node of size Nα logN is a black box that has O(logN) amortized moves. So the bulk
insert is: randomly choose a leaf node in A, a black-box operation to insert Nα elements
in the leaf node, each with O(logN) moves. If the leaf node reaches its threshold, then a
rebalance is triggered at most once in A. Thus, as in Theorem 7, we have O(logN) element
moves in the top subtree A. As before, the memory-transfer bound follows because all
rebalances are to contiguous groups of elements.

5. EXPERIMENTAL RESULTS

In this section we describe our simulation and experimental study. We show that our
results are consistent with the asymptotic bounds from the previous sections and suggest
the constants involved. We also demonstrate that the bookkeeping for the adaptive structure
has little computational overhead.

We ran our experiments as follows: For each insert pattern, we began with an empty
array and added elements until the array contained roughly 1.4 million elements. We began
our measurements once the array had size at least 100,000. We recorded the amortized
number of element moves per insert as well as the running times. We considered the
sequential, hammer, random, and bulk insertion distributions from the previous sections.
We also added noise to the distributions, combining, for example, the hammer and random
distributions, showing that the predictor is resilient to this noise. Each graph plots the
intermediate data points in a single run.

We ran our experiments on a Pentium 4 CPU 3.0GHZ, with 2GB of RAM, running
Windows XP professional, and a 100G ATA disk drive. Our file contained up to 221 keys,
and the total memory used was up to 1.4 GB. We implemented a search into the PMA
as a simple binary search. The binary search was appropriate since our experiments were
small enough that they did not involve paging to disk. Consequently, the search time was
dominated by the insertion time into the PMA.

The adaptive PMA is ultimately targeted for used in cache-oblivious and locality pre-
serving B-trees, where the search time becomes relatively more expensive because the data
structures do not fit in main memory. In this case the binary search will be too slow be-
cause it lacks sufficient data locality. (The number of memory transfers for the PMA insert
is O(1+(logN)/B), which is dominated by the cost of a binary search, O(logdN/Be), as
well as the optimal external-memory search cost, O(1+ logB N).) Thus, our next round of
experiments on larger data sets is to be run with the objective of speeding up inserts in the
cache-oblivious B-tree.

Sequential inserts. We first compared the adaptive and traditional PMAs on sequential
insertions. For sequential inserts of roughly 1.4 million elements, the APMA has four
times fewer element moves per insertion than the traditional PMA and running times that
are nearly seven times faster.

Fig. 13 shows the average number of element moves in the PMAs. The x-axis indicates
the number of inserted elements up to 1.4 million. The y-axis indicates the number of
element moves divided by lgN . For both the adaptive and traditional PMA, we choose

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

26 · Michael A. Bender and Haodong Hu

 0

 2

 4

 6

 8

 10

 12

 14

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006

 a
ve

ra
ge

 m
ov

em
en

ts
 fo

r
A

P
M

A
 a

nd
 P

M
A

 o
ve

r
lg

 N

 The Number of Inserted Elements

Head-Insert pattern comparison between APMA and traditional PMA

traditional PMA with head-insert
APMA with head-insert

Fig. 13. Sequential inserts: average moves per insert
divided by lgN. The array size grows to two million
and 1.4 million elements are inserted.

 0

 20

 40

 60

 80

 100

 120

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006

 th
e

to
ta

l t
im

e
(s

ec
on

d)
 d

ur
in

g
al

l i
ns

er
ts

 The Number of Inserted Elements

Head-Insert pattern comparison between APMA and traditional PMA

traditional PMA with head-insert
APMA with head-insert

Fig. 14. Sequential inserts: the running time to insert
up to 1.4 million elements.

the upper and lower density thresholds as follows: τ0 = 0.92, τh = 0.7, ρh = 0.3, and
ρ0 = 0.08. In our experiments, we double when the array gets too full. Thus, before
doubling, the array has density over 0.7 and after, the array has density over 0.35. (By
increasing the array size by only a (1+ ε)-factor for constant ε, we can make the density
of the entire array at least (1 + ε)ρh with only a small additive increase in the number of
elements moved. Thus, we can have an array whose density is always arbitrary close to
70% full.) The roughly flat line shows the performance of the APMA. These experiments
suggest that the constant in front of the lgN (see Theorem 3) is roughly 2.5 for the density
thresholds chosen. Because we are measuring number of element moves, these results are
machine independent. Fig. 14 gives the running times for our experiment. Observe that the
APMA runs almost 7 times faster even though the amortized number of element moves is
only 4 times smaller. Hence, the overhead for the adaptive PMA is small. We suspect that
this decrease has to do with caching issues; the APMA has a smaller working set than the
traditional PMA.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006

 a
ve

ra
ge

 m
ov

em
en

ts
 fo

r
A

P
M

A
 a

nd
 P

M
A

 o
ve

r
lg

 N

 The Number of Inserted Elements

Random-Insert pattern comparison between APMA and traditional PMA

traditional PMA with random-insert
APMA with random-insert

Fig. 15. Random inserts: average moves per insert di-
vided by lgN. The array size grows to two million and
1.4 million elements are inserted.

 0

 5

 10

 15

 20

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006

 th
e

to
ta

l t
im

e
(s

ec
on

d)
 d

ur
in

g
al

l i
ns

er
ts

 The Number of Inserted Elements

Random-Insert pattern comparison between APMA and traditional PMA

traditional PMA with random-insert
APMA with random-insert

Fig. 16. Random inserts: the running time to insert up
to 1.4 million elements.

Random inserts. For random insertions the traditional PMA performs slightly better than
the APMA because there is seemingly no advantage in uneven rebalalances and because the

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 27

traditional PMA has less overhead. For random insertions of 1.4 million elements with the
same density thresholds and axes as in Figures 13 and 14, both the adaptive and traditional
PMAs have the same asymptotic performance (see Theorem 7). The traditional PMA’s
constant seem to be less than 10% smaller. Figures 15 and 16 show that both the amortized
number of element moves and the running times are comparable, with the traditional PMA
performing slightly better, as expected. Fig. 16 indicates that the bookkeeping overhead
for the APMA is small.

 0

 2

 4

 6

 8

 10

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006

 a
ve

ra
ge

 m
ov

em
en

ts
 fo

r
A

P
M

A
 a

nd
 P

M
A

 o
ve

r
lg

 N

 The Number of Inserted Elements

Bulk-Insert pattern comparison between APMA and traditional PMA, Bulk size f(N)=N^0.6

traditional PMA with bulk-insert
APMA with bulk-insert

Fig. 17. Bulk inserts: average moves per insert divided
by lgN. The array size grows to two million and 1.4
million elements are inserted.

 0

 20

 40

 60

 80

 100

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006

 th
e

to
ta

l t
im

e
(s

ec
on

d)
 d

ur
in

g
al

l i
ns

er
ts

The Number of Inserted Elements

Bulk-Insert pattern comparison between APMA and traditional PMA, Bulk size f(N)=N^0.6

traditional PMA with bulk-insert
APMA with bulk-insert

Fig. 18. Bulk inserts: the running time to insert up to
1.4 million elements.

Bulk inserts. We next investigated the bulk-insert distribution, comparing both the adap-
tive and traditional PMAs. For bulk insertions of 1.4 million elements, the APMA has
roughly 2.3 times fewer element moves per insertion than the traditional PMA and running
times that are over 3.4 times faster. Fig. 17 shows the average number of elements moves
in the PMAs with the same thresholds as in Fig. 13 and bulk parameter N0.6. The roughly
flat line shows the performance of the APMA. These experiments suggest that the constant
in front of the lgN (see Theorem 8) is roughly 4 for the chosen density thresholds and bulk
parameter. Fig. 18 shows the running times of the traditional and adaptive PMAs.

 0

 2

 4

 6

 8

 10

 12

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006

 a
ve

ra
ge

 m
ov

em
en

ts
 fo

r
A

P
M

A
 a

nd
 P

M
A

 o
ve

r
lg

 N

 The Number of Inserted Elements

Bulk-similar-Insert pattern comparison between APMA and traditional PMA, 5 fixed elements are chosen

traditional PMA with bulk-similar-insert
APMA with bulk-similar-insert

Fig. 19. Multiple sequential inserts: average moves per
insert divided by lgN. The array size grows to two mil-
lion and 1.4 million elements are inserted.

 0

 20

 40

 60

 80

 100

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006

 th
e

to
ta

l t
im

e
(s

ec
on

d)
 d

ur
in

g
al

l i
ns

er
ts

 The Number of Inserted Elements

Bulk-similar-Insert pattern comparison between APMA and traditional PMA, 5 fixed elements are chosen

traditional PMA with bulk-similar-insert
APMA with bulk-similar-insert

Fig. 20. Multiple sequential inserts: the running time to
insert up to 1.4 million elements.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

28 · Michael A. Bender and Haodong Hu

Multiple sequential inserts. We next consider a distribution that performs sequential
inserts into multiple parts of the array at once. We first choose R random elements and then
insert one element at a time after one of these chosen elements. As long as the number
of chosen elements R is less than the number of elements stored in the predictor, most
predictions are good and the performance of APMA remains O(logN). Figures 19 and 20
compare the performance of the traditional and adaptive PMAs when we choose 5 fixed
elements. The APMA in this case has a performance only slightly worse than that in the
sequential-insert case while tradition PMA still performs much worse.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006

 a
ve

ra
ge

 m
ov

em
en

ts
 fo

r
A

P
M

A
 a

nd
 P

M
A

 o
ve

r
lg

 N

 The Number of Inserted Elements

Half-Random-Half-Head-Insert pattern comparison between APMA and traditional PMA

traditional PMA with half-random-half-head-insert
APMA with half-random-half-head-insert

Fig. 21. Half random, half sequential inserts: average
moves per insert divided by lgN. The array size grows
to two million and 1.4 million elements are inserted.

 0

 10

 20

 30

 40

 50

 60

 70

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006

 th
e

to
ta

l t
im

e
(s

ec
on

d)
 d

ur
in

g
al

l i
ns

er
ts

The Number of Inserted Elements

Half-Random-Half-Head-Insert pattern comparison between APMA and traditional PMA

traditional PMA with half-random-half-head-insert
APMA with half-random-half-head-insert

Fig. 22. Half random, half sequential inserts: the run-
ning time to insert up to 1.4 million elements.

Half random and half sequential inserts. Finally, we analyze a distribution that adds
noise to sequential inserts. We decide randomly whether to insert a new element at the
front of the PMA or after a random element. Thus, roughly half of the inserted elements
form random noise. Figures 21 and 22 compare the performance of the traditional PMA
and APMA. The roughly flat curve in Fig. 21 is the performance of APMA, which is
slightly worse than that in random inserts and better than that in sequential inserts, while
the performance of traditional PMA is about 3 times worse than that of random inserts.

6. CONCLUSION

We introduced an adaptive packed-memory array. The adaptive PMA guarantees a per-
formance at least as good as that of the traditional PMA, while simultaneously adapt-
ing to common insertion distributions. Thus, the adaptive PMA always achieves at most
O(log2 N) amortized element moves and O(1+(log2 N)/B) memory transfers per update,
but it achieves only O(logN) amortized element moves and O(1 + (logN)/B) memory
transfers for sequential inserts, hammer inserts, random inserts, and bulk inserts. Our
simulations and experiments are consistent with these asymptotic bounds. Several open
problems remain. For example, can we show some type of working-set property for an
adaptive PMA? Perhaps such an investigation will require study into the design of other
predictors. The next step in this research is to use the adaptive PMA in a cache-oblivious
B-tree and to measure the speedup obtained for updates.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 29

ACKNOWLEDGMENTS

We are grateful to Ziyang Duan for proposing an early uneven-rebalance strategy. We are
grateful to Bradley Kuszmaul for suggesting that we focus on sequential inserts. We thank
Yue Wang for important discussions and for reading early drafts of this paper. Finally, we
thank our anonymous referees for many important comments that significantly improved
our presentation.

REFERENCES

BENDER, M. A., COLE, R., DEMAINE, E. D., AND FARACH-COLTON, M. 2002. Scanning and traversing:
Maintaining data for traversals in a memory hierarchy. In Proc. 10th Annual European Symposium on Algo-
rithms (ESA). Lecture Notes in Computer Science, vol. 2461. 139–151.

BENDER, M. A., DEMAINE, E. D., AND FARACH-COLTON, M. 2000. Cache-oblivious B-trees. In Proc. 41st
Annual Symposium on Foundations of Computer Science (FOCS). 399–409.

BENDER, M. A., DEMAINE, E. D., AND FARACH-COLTON, M. 2005. Cache-oblivious B-trees. SIAM Journal
on Computing 35, 2, 341–358.

BENDER, M. A., DUAN, Z., IACONO, J., AND WU, J. 2002. A locality-preserving cache-oblivious dynamic
dictionary. In Proc. of the 13th Annual Symposium on Discrete Mathematics (SODA). 29–38.

BENDER, M. A., DUAN, Z., IACONO, J., AND WU, J. 2004. A locality-preserving cache-oblivious dynamic
dictionary. Journal of Algorithms 3, 2, 115–136.

BENDER, M. A., FARACH-COLTON, M., AND KUSZMAUL, B. 2006. Cache-oblivious string B-trees. In Proc.
25th Symposium on Principles of Database Systems (PODS). 233–242.

BENDER, M. A., FARACH-COLTON, M., AND MOSTEIRO, M. 2004. Insertion sort is O(n logn). In Proc. 3rd
International Conference on Fun with Algorithms (FUN). 16–23.

BENDER, M. A., FINEMAN, J. T., GILBERT, S., AND KUSZMAUL, B. C. 2005. Concurrent cache-oblivious
B-trees. In Proc. 17th Annual Symposium on Parallelism in Algorithms and Architectures (SPAA). 228–237.

BRODAL, G. S., FAGERBERG, R., AND JACOB, R. 2002. Cache oblivious search trees via binary trees of small
height. In Proc. 13th Annual Symposium on Discrete Algorithms (SODA). 39–48.

DIETZ, P. F. 1982. Maintaining order in a linked list. In Proc. Symposium on the Theory of Computing (STOC).
122–127.

DIETZ, P. F., SEIFERAS, J. I., AND ZHANG, J. 1994. A tight lower bound for on-line monotonic list labeling.
In Proc. 4th Scandinavian Workshop on Algorithm Theory (SWAT). Lecture Notes in Computer Science, vol.
824. 131–142.

DIETZ, P. F. AND SLEATOR, D. D. 1987. Two algorithms for maintaining order in a list. In Proc. 19th Annual
Symposium on Theory of Computing (STOC). 365–372.

DIETZ, P. F. AND ZHANG, J. 1990. Lower bounds for monotonic list labeling. In Proc. 2nd Scandinavian
Workshop on Algorithm Theory (SWAT). Lecture Notes in Computer Science, vol. 447.

ITAI, A., KONHEIM, A. G., AND RODEH, M. 1981. A sparse table implementation of priority queues. In
Proc. 8th Internationl Colloquium on Automata, Languages, and Programming (ICALP). Lecture Notes in
Computer Science, vol. 115. 417–431.

KATRIEL, I. 2002. Implicit data structures based on local reorganizations. M.S. thesis, Technion – Israel Inst.
of Tech., Haifa.

PROKOP, H. 1999. Cache-oblivious algorithms. M.S. thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology.

RAMAN, V. 1999. Locality-preserving dictionaries: theory and application to clustering in databases. In Proc.
18th Symposium on Principles of Database Systems (PODS). 337–345.

TSAKALIDIS, A. K. 1984. Maintaining order in a generalized linked list. Acta Informatica 21, 1, 101–112.

WILLARD, D. 1982. Maintaining dense sequential files in a dynamic environment (extended abstract). In Proc.
14th Annual Symposium on Theory of Computing (STOC). 114–121.

WILLARD, D. E. 1986. Good worst-case algorithms for inserting and deleting records in dense sequential files.
In Proc. International Conference on Management of Data (SIGMOD). 251–260.

WILLARD, D. E. 1992. A density control algorithm for doing insertions and deletions in a sequentially ordered
file in good worst-case time. Information and Computation 97, 2, 150–204.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

30 · Michael A. Bender and Haodong Hu

APPENDIX

PROOF OF CLAIM 6: We give more details of what happens during the tail-insert stage.
During the tail-insert stage, new elements are inserted after x, the rightmost element of ui

at the beginning of the stage. At the end of the stage, node ui reaches its upper threshold,
which triggers the next sweep of node ui+1. Observe that sweeps occurring during the tail-
insert stage do not involve vi , ui’s sibling. This is because the tail-insert stage ends when ui

reaches its upper threshold, which triggers the sweep of ui+1. We will bound the number
of sweeps of uκ during the tail-insert stage of ui.

Below, we show that it suffices to prove Claim 6 when the tail-insert stage begins with
Density(ui) = ρi+1. To do so, we show that the fewer elements there are in ui at the start
of the tail-insert stage, the more sweeps there will be of uκ (descendant of ui) during the
stage. That is, the number of sweeps of uκ is maximized when node ui starts with density
ρi+1, the lowest density possible after a sweep of ui+1.

We now explain why the worst case is when Density(ui) = ρi+1. Recall that x is in
uκ, and since all inserts are after x, they are all in uκ. If node ui has a low density at the
beginning of the stage, then more elements can be inserted after x and into uκ without
triggering a sweep of ui+1, which means that there are more sweeps of uκ during the stage.

We present additional notation. We define Cκ(i, t) to be the number of sweeps of uκ
between the (t−1)th and the tth sweep of ui since the beginning of the tail-insert stage.2

We define Phase t of ui to be the phase starting after the (t−1)th sweep of ui and ending
at the tth sweep of ui since the beginning of the tail-insert stage. Thus, by the above two
definitions, the number of sweeps of uκ in the Phase t of ui equals Cκ(i, t). To simplify the
proof, we constrain the density thresholds τ0 , τh , ρ0, and ρh as follows:

τ0− τh = ρh−ρ0 and τ0 ≤ 5ρ0. (22)

For example, setting ρ0 = 0.16, ρh = 0.32, τh = 0.64 and τ0 = 0.8 satisfies (1)-(4) and
(22). Therefore, by (2) and (3), for any 0≤ `≤ h we obtain

τ` +ρ` = τ0 +ρ0 = τh +ρh and τ` ≤ 5ρ`. (23)

Observe that for any choice of constants ρ0 and τ0 , there exists a constant β, such that
τ0 ≤ βρ0. In this proof, we adopt the constraint that τ0 ≤ 5ρ0 for the sake of relative
simplicity; we will explain why the results also carry through if we choose some bigger
constant instead.

To establish Claim 6, we decompose the sequence of insertions before the first sweep of
ui+1 since the beginning of the tail-insert stage into phases of ui, as defined above. By the
similar analysis to that of Theorem 3, we show that there are at most three phases of node
ui before the first sweep of ui+1.

Now we prove that there are at most three phases of ui in the tail-insert stage of ui; we
do so by analyzing the densities in each phase.

I) Consider the densities of child nodes ui−1 and vi−1 of node ui at the end of Phase 1
of ui. The first sweep of ui occurs, when ui−1 reaches its threshold τi−1 (see Fig. 23).
After the first sweep of ui (which is the beginning of Phase 2), we claim that the marker

2Thus, Cκ(i, t) is defined analogously to Nκ(i, t), except that we begin counting from the beginning of the tail-
insert stage rather than from the first insert into the APMA.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 31

��

���
���
���
���

��

i

i− 1

i + 1

vi

ρi+1

ui

vi−1 ui−1

2ρi+1 − ρi ρi

ui+1

=⇒

��

	�	
�

��

ui+1

vi
ui

2ρi+1 − ρi τi−1

vi−1

Fig. 23. Phase 1 of ui starts from Density(ui−1) = ρi (left) and ends at Density(ui−1) = τi−1 (right).
The marker element x is indicated by a black dot. The region that is rebalanced at the end of the phase
is shaded.

element x is either the leftmost element of the right child of ui or the rightmost element
of the left child of ui.
We now prove this claim. Notice that the number of elements in ui before x is
2ρi+1Cap(ui−1) and the number of elements in ui after x is (τi−1−ρi)Cap(ui−1). To
see why, observe that by assumption the phase begins when Density(ui) = ρi+1. Since
all inserts are after x, the number of elements before x stays the same. A rebalance
of node ui is triggered when ui−1 reaches its threshold, after (τi−1−ρi)Cap(ui−1) ele-
ments have been inserted.
It is legal for ui−1 and vi−1 to contain 2ρi+1Cap(ui−1) elements and (τi−1−ρi)Cap(ui−1)
elements, and therefore the sweep at level i− 1 is constrained by the hammer con-
straint (not density constraints). Marker element x is always stored in the child having
the smaller density (by the hammer constraint). Thus, if there are more elements be-
fore x than after x, then x is in the right child of ui (ui−1 is a right child). Otherwise, x
is in the left child of ui (ui−1 is a left child).
In the first case, when x is the leftmost element of the right child of ui, the insert pattern
into ui−1 in Phase 2 is exactly the head-insert case. Thus, by Theorem 3, the number
of sweeps of uκ in Phase 2 is given by Cκ(i,2) = O(2i−κ).
In the following we consider the second case, when x is the rightmost element of the
left child of ui. Thus, after the first sweep of ui, by the hammer constraint, we have
the the following densities:

Density(ui−1) = 2ρi+1,

Density(vi−1) = τi−1−ρi.

II) Now (for the above second case) we consider the densities of child nodes ui−1 and vi−1

of node ui at the end of Phase 2. The second sweep of ui occurs when ui−1 reaches its
upper threshold again (see Fig. 24). Recall that at the beginning of the phase, we chose
to put the marker element x in the child of ui having the smaller density, and since we
are in the second case, this was the left child of ui. Thus, by the hammer constraint,

2ρi+1 < τi−1−ρi . (24)

When ui−1 reaches its threshold, the number of elements after x in ui is the number
of elements in ui−1 after x (the new elements inserted in Phase 2) plus the number of

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

32 · Michael A. Bender and Haodong Hu

��

��

������
ui+1

i

i + 1

i− 1

τi−1 − ρi

vi

vi−1

2ρi+1

ui−1

ui

=⇒

���	�	

�
�

�

ui+1

vi

vi−1

τi−1 τi−1 − ρi

ui

Fig. 24. Phase 2 of ui starts from Density(ui−1) = 2ρi+1 (left) and ends at Density(ui−1) = τi−1 (right).
The marker element x is indicated by a black dot. The region that is rebalanced at the end of the phase
is shaded.

elements in vi−1 , i.e.,

(τi−1−2ρi+1)Cap(ui−1)+ (τi−1−ρi)Cap(vi−1). (25)

Observe that (25) is greater than τi−1Cap(vi−1) by (24). Therefore, the second sweep
of ui is constrained by the rebalance property, not the hammer constraint. In particular,
after the second sweep of ui, node vi−1 has density τi, the upper threshold of its parent
ui; node ui−1 has (the remaining) density τi−1 +(τi−1−ρi)− τi, which equals τi−1−
ρi−1 by (23). Thus, after the second sweep, we have the following densities:

Density(ui−1) = τi−1−ρi−1,

Density(vi−1) = τi.

III) We now consider the densities of child nodes ui−1 and vi−1 of node ui at the end of
Phase 3. (We focus on the above second case in the following, but the first case is now
essentially the same.) The third sweep of ui occurs when ui−1 reaches its threshold
for a third time (see Fig. 25). When ui does the third sweep, the density of ui is
(τi−1 + τi)/2 > τi, so ui is above its upper threshold. Thus, the end of Phase 3 is the
first sweep of ui+1 since the beginning of the tail-insert stage.

����

����

���
�

τi−1 − ρi−1 τi

ui+1

i

i + 1

i− 1

ui
vi

vi−1

=⇒

������

������

��

ui+1

ui

vi−1

vi

τiτi−1

Fig. 25. Phase 3 of ui starts from Density(ui−1) = τi−1−ρi−1 (left) and ends at Density(ui−1) = τi−1

(right). The marker element x is indicated by a black dot. The region that is rebalanced at the end of
the phase is shaded.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 33

We have therefore shown that (for the second case) there are at most three sweeps of ui

before the first sweep of ui+1, that is,

Cκ(i+1,1)≤ Cκ(i,1)+Cκ(i,2)+Cκ(i,3) . (26)

For the first case, we have the similar recurrence

Cκ(i+1,1)≤ Cκ(i,1)+O(2i−κ)+Cκ(i,3) . (27)

As we will show in (28), Recurrence (27) in the first case is actually bounded by Recur-
rence (26). In the rest of this appendix, we only need focus on (26).

Until now, the proof has been similar to the proof of Theorem 3. However, if we continue
to decompose Phase 2, we find that in the worst case there are three subphases. Further-
more, we cannot use the recurrence Cκ(i,3)≤ Cκ(i,2) to prove our bound as in Theorem 3,
because the recurrence is true but too weak.

To establish our bound, we instead prove the following recurrences for Phases 2 and 3:

Cκ(i,2)≤ Cκ(i−1,1)+Cκ(i−3,1)+O(2i−κ) , (28)

and

Cκ(i,3)≤ Cκ(i−3,1)+O(2i−κ) . (29)

Before we establish Recurrences (28) and (29), we prove the following claim, which de-
scribes a subphase in both Phases 2 and 3:

CLAIM 11. Consider a tail-insert stage of ui−2 starting at Density(ui−2) = 4ρi+1 and
ending when node ui−2 reaches its upper threshold. The number of sweeps of uκ during
this stage is at most Cκ(i−3,1).

PROOF OF CLAIM 11: We first give the densities of nodes ui−3, ui−4, vi−3, and vi−4 at the

��

������

���
�

i − 3

i − 4

4ρi+1
i − 2

τi−2

vi−4 ui−4

≥ 3ρi+1

≥ ρi+1τi−3

=⇒

��

	
	�

�
��
�

≥ τi−2

τi−2

vi−4 ui−4

τi−3 τi−4

≥ τi−3

Fig. 26. The tail-insert stage of ui−2 starts from Density(ui−4) ≥ ρi+1 (left) and ends at
Density(ui−4) = τi−4 (right). The marker element x is indicated by a black dot. At the end of the
tail-insert stage of ui−2, node ui−1 is rebalanced.

beginning of the tail-insert stage of ui−2. We show that the rebalance is constrained by the
upper density thresholds of vi−3 and vi−4, that is, at the beginning of the tail-insert stage,
Density(vi−3) = τi−2 and Density(vi−4) = τi−3.

The tail-insert stage of ui−2 begins after a sweep of ui−2, and therefore by the rebalance
property

Density(vi−3)≤ τi−2 and Density(vi−4)≤ τi−3 .

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

34 · Michael A. Bender and Haodong Hu

From (23), we obtain

Density(vi−3) ≤ 5ρi−2 and Density(vi−4)≤ 5ρi−3 .

From (1), we obtain

Density(vi−3) ≤ 5ρi+1 and Density(vi−4)≤ 5ρi+1 . (30)

Now we bound the densities of ui−3 and ui−4. The number of elements in ui−3 is the
number of elements in ui−2 minus the number of elements in vi−3 (and similarly for ui−4),
that is,

Density(ui−3) = 2Density(ui−2)−Density(vi−3) , (31)

Density(ui−4) = 2Density(ui−3)−Density(vi−4) . (32)

From (30), we obtain

Density(ui−3) ≥ 8ρi+1−5ρi+1 = 3ρi+1 . (33)

Now from (30) and (33),

Density(ui−4)≥ 6ρi+1−5ρi+1 = ρi+1 . (34)

Inequalities (33) and (34) show that at the beginning of the stage, the densities of ui−3

and ui−4 are above the lower bound thresholds ρi−2 and ρi−3, respectively, which means
that vi−3 and vi−4 are at their parents’ upper thresholds, i.e., Density(vi−3) = τi−2 and
Density(vi−4) = τi−3.

We now explain that when node ui−4 reaches its upper threshold, then ui−2 also reaches
its upper threshold (see Fig. 26). This is because when Density(ui−4) = τi−4, we already
have Density(vi−4) = τi−3. Therefore, ui−3 is above its upper threshold. We already have
Density(vi−3) = τi−2, and therefore ui−2 is also above its upper threshold.

Therefore, the number of sweeps of uκ in the tail-insert stage of ui−2 is equal to the
number of sweeps of uκ in the tail-insert stage of ui−4 (since ui−4 is the rightmost grand-
child of ui−2; see Fig. 26). By the definition of the tail-insert stage, the number of sweeps
of uκ in the tail-insert stage of ui−4 (which starts with Density(ui−4) ≥ ρi+1) is less than
Cκ(i− 3,1) (the number of sweeps of uκ in the tail-insert stage of ui−4 that starts with
Density(ui−4) = ρi−3).

Now we are ready to prove (29). To do so, we give the densities of the sibling nodes
ui−2 and vi−2 at the beginning of Phase 3. Recall that Phase 3 starts with node ui−1 having
density τi−1 − ρi−1, vi−1 having density τi, and the marker element x residing in ui−1.
Since the number of elements before x does not change, node ui−1 thus has 2ρi+1Cap(ui−1)
elements before x and (τi−1−ρi−1−2ρi+1)Cap(ui−1) elements (the remaining elements)
after x.

We now show that the number of elements after x is smaller than the number of elements
before x in node ui−1. Because τi−1 ≤ 5ρi−1 by (23), we obtain

τi−1−ρi−1−2ρi+1 ≤ 4ρi−1−2ρi+1.

From ρi−1 < ρi+1 by (1), we have

τi−1−ρi−1−2ρi+1 ≤ 2ρi+1 . (35)

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 35

Equation (35) says that the number of elements after x is smaller than the number of el-
ements before x. Thus, the marker element x resides in the right child of ui−1, which is
ui−2.

We now break Phase 3 of ui into subphases and bound the number of sweeps of uκ in the
subphases. Subphase t of Phase 3 of ui is the period between the (t−1)th and tth sweeps
of ui−1.

Now there are two cases. Case A is that node vi−2 has density τi−1, i.e., this level is
constrained by the rebalance property. Then we only have one subphase in Phase 3 of
ui because when ui−2 reaches its upper threshold τi−2, then its parent ui−1 has density
(τi−1 + τi−2)/2 > τi−1, which means the end of Phase 3.

In the following, we consider Case B when the sweep at level i−2 is constrained by the
hammer constraint. In Case B, we decompose Phase 3 into two subphases as follows:

����

��

i − 2

i − 1 ui−1

4ρi+1 2τi−1 − 2ρi−1 − 4ρi+1

vi−2 ui−2

=⇒

��

���	

ui−1

4ρi+1 τi−2

vi−2 ui−2

Fig. 27. Subphase 1 of Phase 3 starts from Density(ui−2) = 2τi−1−2ρi−1 −4ρi+1 (left) and ends at
Density(ui−2) = τi−2 (right). The marker element x is indicated by a black dot. The region that is
rebalanced at the end of Subphase 1 is shaded.

• We consider the densities of ui−2 and vi−2 at the beginning and end of Subphase 1
(see Fig. 27). At the beginning of Subphase 1, because of the hammer constraint, the
density of the left child vi−2 is 4ρi+1 (since the number of elements before x is always
ρi+1Cap(ui) – see the beginning of the appendix) and the density of the right child
ui−2 is 2τi−1− 2ρi−1− 4ρi+1 (the remaining elements in node ui−1). At the end of
Subphase 1, node ui−2 reaches its upper threshold τi−2.
Notice that during Subphase 1, the marker element x is the first element in node ui−2

and thus within ui−2 we have the head-insert case. Therefore, by Theorem 3, there are
O(2i−2−κ) sweeps of uκ in Subphase 1.

• We now consider the densities of ui−2 and vi−2 at the beginning and end of Subphase 2
(see Fig. 28). The beginning of Subphase 2 is right after the sweep of node ui−1. By
the rebalance property, the density of the right child at the beginning of Subphase 2 is
τi−1 because before the sweep its density was τi−2 (> τi−1). After the sweep of node
ui−1, the marker element x moves to the left child of ui−1. Therefore, the left child
becomes node ui−2 and Density(ui−2) = 4ρi+1 +(τi−2− τi−1).
Subphase 2 ends when node ui−2 reaches its upper threshold τi−2. Because the density
of vi−2 is already at parent ui−1’s threshold τi−1, the end of Subphase 2 is the end of
Phase 3.
We now prove that the number of sweeps of uκ in Subphase 2 is less than Cκ(i−3,1),
the number of sweeps from Claim 11. Both Subphase 2 and the tail-insert stage of
ui−2 in Claim 11 end when node ui−2 reaches its threshold τi−2.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

36 · Michael A. Bender and Haodong Hu

��

��i − 2

i − 1 ui−1

4ρi+1 τi−2 − τi−1 τi−1

vi−2

=⇒

��

����
vi−2

4ρi+1

ui−1

τi−2 − 4ρi+1 τi−1

≥ τi−1

Fig. 28. Subphase 2 of Phase 3 starts from Density(ui−2) = 4ρi+1 + τi−2 − τi−1 (left) and ends at
Density(ui−2) = τi−2 (right). The marker element x is indicated by a black dot. At the end of Sub-
phase 2, node ui, the parent of ui−1, is rebalanced.

However, Subphase 2 starts with more elements after the marker element x than does
the tail-insert stage of ui−2 and the same number of elements before the marker el-
ement x. In particular, Subphase 2 has 4ρi+1Cap(ui−2) elements before and (τi−2−
τi−1)Cap(ui−2) elements after x. In contrast, the tail-insert stage of ui−2 has no ele-
ments after and 4ρi+1Cap(ui−2) elements before x.
Thus, the number of sweeps of uκ in Subphase 2 is at most the number of sweeps of uκ
in the tail-insert stage of ui−2 because fewer elements can be inserted into ui−2 before
ui−2’s upper threshold is reached.

In summary, there are at most two subphases in Phase 3 and the number of sweeps of uκ in
these two subphases is at most Cκ(i−3,1) plus O(2i−2−κ), which establishes (29).

We now prove (28). To do so, we decompose Phase 2 of ui into three subphases, and we
analyze the densities of ui−2 and vi−2 in each subphase.

• We consider the densities of ui−2 and vi−2 at the beginning and end of Subphase 1 (see
Fig. 29). At the beginning of Subphase 1, Density(ui−2) = ρi−1 and Density(vi−2) =
4ρi+1−ρi−1 by the rebalance property.
Here and below we assume that 4ρi+1− ρi−1 ≤ τi−1. The alternative, that 4ρi+1−
ρi−1 > τi−1, is the simple case. Then Density(vi−2) = τi−1. As a consequence, there
are only two subphases in Phase 2 of ui, and the recurrence is simpler.
Subphase 1 ends with the density of ui−2 reaching its upper threshold τi−2. The num-
ber of sweeps of uκ in Subphase 1 is exactly equal to Cκ(i−1,1) because both of them
start at Density(ui−2) = ρi−1 and end with Density(ui−2) = τi−2.

	

��
i − 2

i − 1

ρi−14ρi+1 − ρi−1

ui−1

vi−2 ui−2

2ρi+1

=⇒

�

��

ui−1

4ρi+1 − ρi−1 τi−2

vi−2 ui−2

Fig. 29. Subphase 1 of Phase 2 starts from Density(ui−2) = ρi−1 (left) and ends at Density(ui−2) =

τi−2 (right). The marker element x is indicated by a black dot. The region that is rebalanced at the end
of Subphase 1 is shaded.

• We next consider the densities of ui−2 and vi−2 at the beginning and end of Sub-
phase 2 (see Fig. 30). The beginning of Subphase 2 is right after the rebalance of

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

An Adaptive Packed-Memory Array · 37

ui−1. Notice that there are 4ρi+1Cap(ui−2) elements before the marker element x and
(τi−2−ρi−1)Cap(ui−2) elements after x. Because τi−2 ≤ 5ρi−2 by (23), we obtain

τi−2−ρi−1 ≤ 5ρi−2−ρi−1.

Because ρi−2 < ρi−1 < ρi+1 by (1), we have

τi−2−ρi−1 < 4ρi+1 . (36)

Equation (36) says that the number of elements after x is less than the number of ele-
ments before x in node ui−1. Therefore, the marker element x will be in the right child
of ui−1 after the sweep. By the same argument as in Phase 3, we assume the sweep at
level i−2 is constrained by the hammer constraint. Otherwise, Density(vi−2) = τi−1,
and there are only two subphases in Phase 2.
Thus, we consider the case that vi−2 is still below its parent’s threshold, i.e., Phase 2
needs a third subphase before it finishes.
We now bound the number of sweeps of uκ in Subphase 2. Since the marker element
x is the leftmost element in ui−2, and thus within ui−2 we have the head-insert case.
Therefore, by Theorem 3, there are O(2i−2−κ) sweeps of uκ in Subphase 2.

������

��

i − 2

i − 1 ui−1

4ρi+1 τi−2 − ρi−1

vi−2 ui−2

=⇒

��

����

ui−1

4ρi+1 τi−2

vi−2 ui−2

Fig. 30. Subphase 2 of Phase 2 starts from Density(ui−2) = τi−2 − ρi−1 (left) and ends at
Density(ui−2) = τi−2 (right). The marker element x is indicated by a black dot. The region that is
rebalanced at the end of Subphase 2 is shaded.

• Finally, we consider the densities of ui−2 and vi−2 at the beginning and end of Sub-
phase 3 (see Fig. 31). Subphase 3 is same as Subphase 2 of Phase 3. By the same
argument, the number of sweeps of uκ in Subphase 3 is Cκ(i−3,1).

	

����

i − 2

i − 1 ui−1

4ρi+1 τi−2 − τi−1 τi−1

vi−2

=⇒

�

����

4ρi+1 τi−1

ui−1

vi−2

τi−2 − 4ρi+1

≥ τi−1

Fig. 31. Subphase 3 of Phase 2 starts from Density(ui−2) = 4ρi+1 + τi−2 − τi−1 (left) and ends at
Density(ui−2) = τi−2 (right). The marker element x is indicated by a black dot. At the end of Sub-
phase 3, node ui is rebalanced.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

38 · Michael A. Bender and Haodong Hu

In summary, there are at most three subphases in Phase 2 and the number of sweeps in these
three subphases is at most Cκ(i−1,1) plus O(2i−3−κ) plus Cκ(i−3,1), which establishes
(28).

We can now prove our desired bound. Plugging (28) and (29) into (26), we obtain

Cκ(i+1,1)≤ Cκ(i,1)+Cκ(i−1,1)+2Cκ(i−3,1)+O(2i−κ) .

We prove our bound by induction. Assume Cκ(j,1)≤ β2 j−κ for j ≤ i and the constant in
O(2i−κ) is α. If we choose β bigger than 4α, then

Cκ(i+1,1) ≤ β2i−κ +β2i−1−κ +2β2i−3−κ +α2i−κ

=
7
4

β2i−κ +α2i−κ

≤ β2i+1−κ .

Therefore, Cκ(i+1,1)≤ β2i+1−κ is true for all i > 0, as claimed.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

