Analyzing the Power Consumption of the Mobile Page Load

ABSTRACT

Modeling the energy consumption of applications on mobile
devices is an important topic that has received much atten-
tion in recent years. However, there has been very little re-
search on modeling the energy consumption of the mobile
Web. This is primarily due to the short-lived yet complex
page load process that makes it infeasible to rely on coarse-
grained resource monitoring for accurate power estimation.
We present RECON, a modeling approach that accurately
predicts the energy consumption of any Web page load. Our
key intuition is to leverage low-level application semantics in
addition to coarse-grained resource utilizations while mod-
eling the page load energy consumption. By exploiting fine-
grained information about the individual activities that make
up the page load, RECON enables fast and accurate energy
predictions without requiring complex models or analyses.
Experiments across 80 Web pages and under four differ-
ent optimizations show that RECON can predict the energy
consumption for a Web page load with an average error of
less than 7%. Further, RECON helps to analyze and explain
the energy effects of an optimization on Web page loads.

1. INTRODUCTION

Mobile Web page performance is extremely critical
to content providers [6, 28], service providers [14], and
users [7]. Slow Web pages are known to adversely affect
profits [6, 28] and lead to user abandonment [7]. Not
surprisingly, several optimizations have been proposed
to improve mobile Web performance [4,12,14,17,24].

However, an important problem that is often over-
looked is the energy consumption of Web page loads.
Mobile devices are severely constrained by energy; in
fact browser vendors tout their effect on battery life as
a critical selling point [3,11]. The problem is that en-
ergy and performance are separate metrics, and Web
optimizations that improve Web performance may not
have the same effect on energy consumption. Not know-
ing how a Web optimization affects energy consumption
can have severe consequences; a recent software update
on Chrome resulted in excessive battery drain, leading
to severe backlash [5].

As a result, content providers and browser vendors
often meticulously examine the impact of any enhance-
ment to their products on device energy consumption;
enhancements include optimizations, addition of new
features, or updates. Today, the energy consumption of
a Web page load is examined using power monitors such
as the Monsoon power monitor [9]. To assess the en-

ergy effects of Web enhancements, one needs to repeat
the power measurements on each enhancement or com-
binations thereof using the monitor. Since Web page
loads exhibit high variance [33], the power measure-
ments have to be repeated for several runs for every
update to the page. Worse, power meters can only re-
port aggregate power consumption of the device at any
time, without providing any information on how much
power was consumed by the individual page load activ-
ities such as image loading or javascript evaluation.
Our goal is to provide quick, accurate, and fine-grained
estimations of the energy consumption for a page load
instantiation. Unfortunately, estimating the energy con-
sumption of a page load is challenging because of:

e Transience: The page load process is relatively short-
lived, ranging from several milliseconds to a few sec-
onds. Fine-grained resource monitoring on such short
timescales to model energy consumption is known to
incur substantial overhead [19,27]; our experiments
on a Galaxy S4 reveal that resource monitoring at a
frequency of 100 Hz can incur 30% CPU overhead.

e Complexity: Web pages are complex [32]. A Web
enhancement can have widely varying effects on dif-
ferent page load activities. Thus, studying the energy
impact of a Web enhancement on page load requires
understanding its effects on each page load activity.
Further, Web page loads exhibit high variance [33].

Existing approaches to analyzing mobile energy typ-
ically focus on profiling and modeling the resource con-
sumption of the device during execution [27,29]. Such
approaches consider long-running services and apps such
as games, audio, and video streaming [19,36], for which
low-overhead, coarse-grained resource monitoring suf-
fices. For page loads, however, coarse-grained resource
monitoring is not sufficient to analyze the energy con-
sumption of individual, short-lived, page load activities.

We present RECON (REsource- and COmpoNent-
based modeling), a modeling approach that addresses
the above challenges to predict the energy consumption
of any Web page load. The key intuition behind RE-
CON is to go beyond resource-level information and ez-
ploit application-level semantics to capture the individ-
ual page load activities. In particular, instead of mod-
eling the energy consumption at the full page load level,
which is too coarse grained, RECON models at a much
finer component level granularity. Components are indi-
vidual page load activities such as loading objects, pars-
ing the page, or evaluating Javascript; RECON lever-



ages component-level information such as activity type,
start time, and end time. Such information can be ob-
tained from several sources including Scout [26] or a
combination of chrome://tracing and Chrome devel-
oper tools [2]; for RECON, we leverage WProf-M [25].

Modeling at the component level allows predicting
the energy consumption of sub-second Web page loads,
and lets us study the power consumption of each page
load activity. We use multiple linear regression to model
the Web page power consumption. While we do ini-
tially require the power monitor to train our regression
model, we can then predict the energy consumption of
the Web page when loaded again as-is or upon applying
any enhancement, without the power monitor.

We experimentally evaluate RECON on the Samsung
Galaxy S4, S5, and Nexus devices using 80 Web pages.
We validate our modeling approach by predicting the
energy consumption of Web page loads and comparing
with actual power measurements from a fine-grained
power meter; results show that RECON can predict
the energy consumption of the entire page load with
a mean error of 6.9% and that of individual page load
activity segments with a mean error of 13.1%. By con-
trast, modeling resources alone increases the activity
segments error by 14%. We further show that RECON
can accurately predict the energy consumption of a Web
page under different network conditions, even when the
model is trained under a default network condition.

One of the key applications of RECON is to study
how Web page enhancements affect energy consump-
tion. To this end, we study four optimizations: Com-
pression, Minification, Inlining, and Ad-block. RECON
is able to predict the energy consumption of a given
optimization with an average prediction error of 5.45%.
RECON trains its models on unoptimized runs of the
Web page, and predicts the energy consumption when
the optimized version of the page is loaded.

We leverage RECON’s component-level analysis to:
(i) show that compression optimization can increase the
power consumption of Javascript analysis and HTML
parsing, even though it reduces the power consumption
of network loads, (%) study why certain optimizations
such as inlining and compression can increase the en-
ergy consumption of specific Web page loads, and (i)
help choose the best design parameters for a given opti-
mization by quickly predicting the energy consumption
for a diverse set of optimization parameters.

To summarize, we make the following contributions:
1. We present RECON, a modeling approach that uses

component and resource information to predict Web

page energy consumption with a 6.9% mean error.

2. RECON accurately predicts the impact of four Web
optimizations on page load energy. RECON is able
to analyze how and why an optimization has varying
effects on the energy consumption of different pages.

3. RECON further allows us to quickly evaluate a large
number of optimization design choices with respect
to tradeoffs in energy and performance.

2. BACKGROUND

Page Load Process: The page load process starts
with the user issuing a URL. As a first step, the browser
downloads the HTML file corresponding to the URL
from the network. When the first part of the HTML file
is received, HTML parsing begins; parsing is a compu-
tationally intensive process. When the parser encoun-
ters a tag for an image, Javascript, or Cascading Style
Sheets (CSS), it downloads the object. If the object is
a Javascript or a CSS, then these are further evaluated,
and if needed, the embedded objects are fetched. The
HTML parser and the script evaluator together build
the Document Object Model (DOM) progressively. The
rendering engine reads the DOM and renders the page
on the browser. The time taken for the entire page to
load is called the Page Load Time (PLT).

WProf/WProf-M: Many of the components of the
page load process can be executed in parallel; for ex-
ample, the HTML parsing and an image download can
happen in parallel. However, some components depend
on each other and will have to be executed in order. The
WProf tool [32] is an in-browser profiler that extracts
both the browser dependencies and low-level timing in-
formation of page loads.

WProf-M [25] is an extension of WProf for mobile
browsers. RECON uses WProf-M for decomposing the
mobile page load process into its various components,
and for providing fine-grained timing information for
each component. While WProf-M also identifies the
critical path and dependencies, RECON does not use
these features. Figure 2 (a) shows the component level
decomposition of the page load process, as provided by
WProf-M.

While we use WProf-M, other tools that provide com-
ponent-level information such as the Scout tool [26] or
Google developer tools can also be used in RECON.

3. EXPERIMENTAL SETUP

RECON logs the power, Web page components, and
coarse-grained resources during the page load for mod-
eling. We describe each in turn, including our setup.

3.1 Devices and Network

Our experiments are conducted using three phones:
(i) Samsung Galaxy S4 (Android 4.3, Jelly Bean), (ii)
Samsung Galaxy S5 (Android 5.1.1, Lollipop), and (iii)
Galaxy Nexus (Android 5.1.1, Lollipop). Unless other-
wise specified, we present results from the Galaxy S4.

We experiment under several network conditions, in-
cluding WiFi with different traffic conditions, and a cel-
lular (4G) network. Unless specified otherwise, we use



Figure 1: Our hardware setup showing the Samsung S4
under test connected to the Monsoon power monitor.

the default WiFi network with 30 Mbps download and
20 Mbps upload bandwidth, and a 50ms RTT to a ref-
erence server hosted by pair Networks in Pittsburgh.

3.2 Power, Component, and Resource logging

Power Logging: To measure the device power con-
sumption, RECON uses an external power monitor, Mon-
soon [9], which performs fine-grained power measure-
ment at a 5KHz frequency. The power monitor is only
used to build the models and is not used for predictions.

Figure 1 shows the Samsung Galaxy S4 device load-
ing a mobile Web page, fico.com, while recording the in-
stantaneous current draw through the Monsoon power
monitor. We maintain a constant voltage level through-
out our experiments.

Logging Web page components: We leverage WProf-
M (described in §2) to log the components of the Web
page load. WProf-M instruments the Android Chromium
browser, Version 31.0.1626.0. We run all our experi-
ments on the instrumented browser. The instrumenta-
tion logs provide fine-grained timing information to de-
compose the page load process into various components
(an example decomposition is shown in Figure 2(a)).

Resource logging: RECON combines component-level
modeling with coarse-grained resource monitoring. To
monitor resources, we use a simple android service that
records resource consumption values. For CPU, we col-
lect per-core CPU utilization from /proc/stat and per-
core CPU frequency from /sys/devices. For network,
we collect number of bytes transmitted and received
during an interval from /proc/net/dev. To maintain
low monitoring overhead, we log resources every 0.1 sec-
onds. When we increase the resource monitoring fre-
quency to once every 0.01 seconds, the CPU utilization
increases by 30%, which is clearly infeasible.

Our resource monitoring only focusses on CPU and
network. Although the screen power consumption is
critical to Web page loads, Chen et al. [19] show that
screen power remains fairly constant when displaying
at a fixed brightness. Accordingly, we set the screen
brightness to a constant and model the baseline power
consumption of the device instead. In the future, we

will study the impact of newer OLED displays, whose
energy consumption changes with the content on the
screen. We find that monitoring memory usage does not
improve the prediction accuracy of RECON,; we thus
omit it from our monitoring.

Both WProf-M and resource monitoring use logcat,
Android’s logging software, to record raw data that is
then analyzed offline. WProf-M and resource logging
together add only about 0.2W to the total power con-
sumption. Compared to the average device power con-
sumption when loading a Web page without WProf-M
or resource logging, this 0.2W accounts for less than 5%
of the total power consumption.

An important step in our methodology is to synchro-
nize the power monitor measurements with the Web
page load times. Our testing framework is completely
automated using the calabash [1] scripting language that
starts the power monitor and then loads the Web page
programmatically. We let the power monitor run for a
few seconds to stabilize, and then load the Web page.
The start of the Web page load creates a spike in cur-
rent, that can be identified in the power monitor’s logs.
We mark this time as the start of the Web page loading
process. We note that this synchronization may not be
accurate at a microsecond scale, but given that the page
load times are on the order of several hundreds of mil-
liseconds, this level of synchronization suffices for our
purposes. We determine the end of the page load using
WProf-M logs; the page load ends when the DomLoad
event is fired [25]. These two events together allow us
to identify portions of the power logs that correspond
to the start and end time of the Web page load.

3.3 Web pages

We experiment with 80 Web pages. 60 Web pages are
randomly selected from top 100 Alexa Web Pages [15]
from 10 different countries. The remaining 20 Web
pages are randomly selected from pages ranked between
100 to 10,000 on the Alexa site. Since Web pages change
over time, we download the main HTML page locally
on our server, and load the page from this local copy.
Note that all the objects embedded in the page are still
fetched from the original remote server over the net-
work. The local HTML only ensures that the same set
of objects are embedded for each run of the Web page.

All Web page loads are cold loads and the cache is
cleared after each load.

4. RECON

The key idea in our modeling approach is to exploit
page-specific component-level information and integrate
it with coarse-grained resource logging; hence the term
RECON (resource- and component-based modeling).

In this section, we first discuss the challenges involved
in modeling Web page power consumption in §4.1. We



then present, in §4.2, the design of RECON, followed
by a description of our modeling approach in §4.3.

4.1 Challenges in Web page power modeling

The primary challenge in power modeling is the short-
lived nature of the page load process. Employing re-
source utilization-based approaches for modeling Web
pages will require very fine-grained (high frequency) re-
source monitoring, which is known to incur significant
overhead and leads to poor modeling accuracy [19,27].

The next challenge is the complexity of the page load
process. The page load consists of various components,
and a given page enhancement can affect each compo-
nent differently. Without component-level visibility, it
is difficult to investigate the impact of enhancements.

A related challenge is the variance in the page load
process [33]. Our own experiments show that Web page
loads exhibit high variance, both in terms of PLT and
energy. Variance is caused by changes in the network,
mobile OS, web server, etc. Because of variance, mea-
suring (via power monitors) the power consumption of
one instantiation of the Web page load is not enough.
Since variance is inherent in the page load, the challenge
is to model energy consumption despite the variance.

4.2 The design of RECON

RECON uses component-level Web page information
that provides significant insight into the page load pro-
cess and augments this with coarse-grained resource
monitoring. Together, this information provides the
visibility needed to understand the complexities and
dependencies within the short-lived page load process
without incurring significant overhead. We show in §5.4
why both component-level and resource-level informa-
tion are necessary for achieving high accuracy.

At a high-level, RECON works by developing a pa-
rameterized power model that incorporates the compon-
ent- and resource-level information to make accurate
predictions using multiple linear regression. Linear re-
gression works by minimizing the variance of the pre-
diction error over the model, and is thus well suited for
the highly variable page load process. We also minimize
the effect of noise in the page load process by training
our model over several instantiations of the Web page.

4.3 RECON modeling

WProf-M gives us the decomposition of the Web page
into its components, as illustrated in Figure 2 for the in-
stagram.com page, juxtaposed with its power consump-
tion obtained via the power monitor. The problem is
that the monitored power consumption is a result of sev-
eral simultaneously executing components and their ag-
gregate resource demand. Given a new Web page load
with an arbitrary distribution of components and re-
source utilizations, how can we predict its energy?
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Figure 2: (a) Using WProf-M to decompose the compo-
nents when loading the instagram.com Web page. (b)
The instantaneous power draw recorded as the Web
page loads. Segments are shown in dotted lines.

Our modeling approach is to break down the page
load process into “segments”, where a segment is de-
fined as an interval of page load activity during which
the components of the Web page do not change. Seg-
ments of the instagram.com page are illustrated in Fig-
ure 2. By definition, a segment is composed of at least
one component. Further, the entire page load process
can be partitioned into discrete (non-overlapping) seg-
ments, as indicated by the dotted blue lines in Figure 2.

Modeling goal: Given a segmented page load process,
our goal is to decompose the monitored power consump-
tion of a segment to its constituent components and re-
source utilizations during that segment. We model the
power consumption of a segment, s, at any time as:

Ps = wo+ Z szz+ZwJ7 (].)
i€ Resources jEs

where i represents the various resources we monitor,
such as CPU utilization, and R; represents the aver-
age utilization for that resource during s; j represents
a component, and thus j € s is the set of all compo-
nents that make up segment s; finally, w; and w; are
coefficients (independent of s) representing the power
contribution of the resources and components, and are
variables that need to be determined. wg represents
the baseline power draw of the phone, and accounts for
background activities, screen brightness, etc. Given this
model, our goal now is to estimate the weights, .

Multiple Linear Regression: We use multiple linear
regression to derive the weights, w, that are indicative of

(a) Component level decomposition of loading instagram.com




the power contribution of each component and resource.
We obtain the components of a segment via Wprof-M
and represent their contribution to power in Eq. (1)
using indicator variables. For resources, we use 14 vari-
ables: the time-averaged cpu utilization, frequency, and
the product of utilization and frequency for all 4 logical
cores, and throughput of bytes sent and received. The
power consumed by the device CPU is known to de-
pend on the (utilization, frequency) pair [19,37]; we use
the product of utilization and frequency to account for
this dependence. Further, network throughput, CPU
frequency, and CPU utilization, are known to linearly
affect power consumption [21-23], thus motivating our
linear model in Eq. (1). Note that resource utilizations
are averaged over the length of the segment.

While more powerful (yet complicated) models, such
as neural networks, can be used for modeling the power
consumption, P, our focus here is on exploiting applica-
tion-level semantics to obtain a rich feature set. We find
that using simple multiple linear regression with these
features suffices to achieve high accuracy without incur-
ring substantial overhead or complexity.

Training: We train our regression model on nine in-
stantiations (or runs) of a given Web page and test on
the tenth instantiation. Our error results are based on a
10-fold cross validation. For each run, RECON records
the power, page load components, and resources. We
use the instantaneous power measurements to calculate
the average power consumption, ]3, for each segment.
We then use regression over the several segments col-
lected during the nine runs to derive weights, w, for
each observed component and resource variable.

Testing: The weights, derived via training, for our
power model in Eq. (1) can now be used to predict the
power and energy consumption of any new instantiation
of the Web page without requiring the power monitor.
The inputs are the set of components involved in the
page load process and the corresponding coarse-grained
resource consumptions for the new instantiation. We
apply our trained model on the test data by substitut-
ing the learned weights, @, in Eq. (1) along with the
above-mentioned inputs. This gives us the predicted
power consumption for every segment; we then predict
the energy consumption by multiplying the predicted
power with the observed segment length (obtained via
Wprof-M). Summing up the energy consumption across
all segments of the instantiated page gives us the pre-
dicted energy consumption of the new Web page load.

Note that the energy consumption of the new Web
page load is likely to vary significantly from the page
load instantiations used for model training because of
variance that affects the page components. To address
this, RECON models per-component power consump-
tion (and not energy). This allows us to predict the en-
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Figure 3: Modeling error (sorted) for predicted Web
page energy consumption for all 80 pages. Red crosses
indicate specific pages that we analyze in Figure 4.

ergy consumption of a new page load, despite the vari-
ance, by obtaining the component lengths and multiply-
ing them with the component power estimates (weights).

An advantage of RECON is that we can train our
model online in a few minutes without having to build
detailed subsystem-level models as in prior work. For
example, recent work [19] developed a CPU specific
power model by running microbenchmarks at each pos-
sible frequency for each combination of CPU cores to
train their model. Similar training experiments were
carried out for other subsystems. Instead, RECON runs
a handful of Web page loads for training, that together
take a few minutes to complete. Of course, our focus
here is only on modeling the energy consumption for
the browser which allows for much faster model train-
ing. We discuss the usage scenarios for RECON in §8.

S. MODEL VALIDATION AND RESULTS

We now validate our model and present results from
our RECON study. The validation results are presented
in §5.1. We then present results under different network
conditions in §5.2 and for different devices in §5.3. Fi-
nally, we compare RECON, quantitatively and qualita-
tively, with resource-only modeling in §5.4.

5.1 Model validation

Web page energy consumption: We employ RE-
CON to predict the energy consumption of 80 Web
pages (as discussed in §3.3) and compare the model-
predicted values with actual measurements from the
Monsoon power meter. The average prediction error
across these Web pages is 6.9% (using 10-fold cross val-
idation for each). Figure 3 shows the sorted model pre-
diction error for the 80 Web pages; note that each pre-
diction error value is obtained by averaging over ten
instantiations for each Web page as described in §4.3.
Figure 4 takes a closer look at the error for ten well-
known Web pages indicated by the red crosses in Fig-
ure 3. Figure 4 shows the actual and predicted mean en-
ergy for these pages along with the 95th percentile con-
fidence intervals. The confidence intervals are obtained
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Figure 4: Actual versus predicted energy consumption for ten selected Web pages from Figure 3. The percentages
above the bars indicate modeling error. Confidence intervals around the predicted mean energy are also shown.

T 20

S

S

EI 10M%

9? Mean error = 13.1%

(@]

=

S o \ \ \

§ 1 20 40 60 80
Web pages —

Figure 5: Average modeling seg_error (sorted) for pre-
dicted segment energy consumption for all 80 pages.

from the standard deviation of the ten per-instantiation
energy predictions for each page. The tight intervals
suggest that our energy predictions have low variability.

Segment energy consumption: RECON can also be
used to predict fine-grained segment-level energy con-
sumption directly using Eq. (1). This is a valuable fea-
ture that allows us to analyze the impact of Web opti-
mizations on the energy consumption of individual com-
ponents of a page; we highlight this advantage later in
§6. The average segment-level modeling error, referred
to as seg_error (to distinguish from full page prediction
error), across all 80 Web pages is 13.1%. Note that the
full Web page prediction error is lower than seg_error
as the over-estimation of energy for some segments is
countered by the under-estimation of energy for other
segments when computing full page energy.

Figure 5 shows the sorted model energy prediction
seg_error for the 80 Web pages; the order of the Web
pages here is slightly different from that in Figure 3. As
before, each prediction error value is obtained by aver-
aging the per-instantiation seg_error over ten instantia-
tions for each Web page. Figure 6 shows the actual and
predicted segment-level power consumption for specific
instantiations of three Web pages. We see that the pre-
dicted values closely track the measured values.

Analysis of model weights: One immediate applica-
tion of RECON is to study the relative energy consump-

tion of different page load activities (or components)
such as HTML parsing and image loads. Recall (§4.3)
that RECON derives weights, w, for each component of
the page load to estimate total power. These weights
represent the relative contribution of each component
and resource to total power consumption.

Figure 7 shows the relative component power contri-
butions for alexa.com and fico.com. For ease of pre-
sentation, we adjust the power numbers such that the
smallest contribution is 0 while holding the relative dif-
ferences constant. Here, js refers to Javascript. Note
that we often encounter multiple types of components,
such as different types of Javascript, CSS, etc. We clas-
sify them as different components in our modeling. In
our experiments, we find that the baseline weight, wy,
typically accounts for 14-61% of the total power.

In general, we find that the highest contributors to
power consumption are objects that require external or
internal application support, such as application/octet-
stream and Javascript. However, as is evident from
the figures, the relative ordering of the components is
different. For example, text and Javascript are the
most power consuming components for alexa.com, while
octet-stream (typically binary files or executables) is the
most power consuming component for fico.com.

We can apply the same weight analysis to determine
the power contribution of resources. For example, a
similar analysis over the lifetime of alexa.com reveals
that network-related activities consume 57.7% less power
than CPU-related activities, indicating that alexa.com’s
page load process is more computationally intensive in
terms of power consumption (not shown in figure).

5.2 Modeling results under different networks

Thus far our experimental results employed the de-
fault WiFi network described in §3.1. It is interesting
to ask whether the power model trained on this default
network can be used to accurately predict the power
consumption on a different network. Specifically, can
the weights (in Eq. (1)) derived via training on one net-
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Figure 6: Actual versus predicted segment-level power consumptions for specific Web page instantiations.

work provide accurate estimates for power and energy
consumption on another network? We use the above-
derived model (trained on the default network) to pre-
dict energy consumption of ten different Web pages un-
der three different networks.

Lower bandwidth: We use Linux’s traffic control (tc)
to lower the upload and download bandwidth to 5 Mbps;
this increases the average PLT by about 10%. Our av-
erage energy prediction error across ten different Web
pages is an impressive 4.8% and the seg_error is 14.9%.

Higher RTT: We use tc to increase the RTT (150ms
to the reference server) while keeping the default net-
work bandwidth; this increases average PLT by about
50%. Our average prediction error across ten different
Web pages is only 5.7% and the seg_error is 18%.

Cellular network: We also experiment with a 4G LTE
cellular network (AT&T) instead of WiFi. The cellu-
lar network has 10 Mbps download and 2 Mbps upload
bandwidth, and 70ms RTT to the reference server; this
increases the average PLT by about 27% over the de-
fault WiFi network. Our average energy consumption
prediction error across ten different Web pages is a dis-
appointing 21.2% and the seg_error is 22.3%.

The above results reveal that cross-network model
predictions can be accurate, as long as the same network
interface is used for training and testing. Intuitively,
this makes sense as the behavior and dynamics of the
network are interface-specific, and can thus affect PLT
and energy consumption [36]. In fact, when we train
on the cellular network and then test our model on ten
different Web pages also on the cellular network, our
modeling error decreases to a satisfactory 4.8% and the
seg_error also reduces to 14.2%.

5.3 Modeling results for different devices

RECON’s online modeling approach is not specific to
the S4 device we use and can be extended to other de-
vices as well. We use our modeling approach to train
and predict the energy consumption of ten Web pages
on the Galaxy S5 and Galaxy Nexus devices (see §3).

We obtain a low full page mean modeling error of 7.1%
and seg_error of 15.6% for the S5, and modeling error of
9.1% and seg_error of 15.7% for the Nexus. Note that
the model has to be retrained for each device because
of the significant differences in the architecture and fea-
tures between them; the need for device-specific models
was also emphasized in prior work [27,36].

5.4 Comparison with resource-only modeling

RECON leverages both resource-level information and
component-level information when modeling Web page
and segment-level energy consumption. Instead, one
could leverage only resources, as in prior work [19,31,34,
36], to construct similar models. However, such models
do not perform as well as RECON.

In particular, when we model power consumption us-
ing only resource-level information, the seg_error is 14%
higher than RECON. This result was obtained using
the exact same 14 resource metrics used for RECON,
collected at the same frequency (once every 0.1s), and
using the same linear regression model. The seg_error is
much higher in specific cases; in particular, the seg_error
is 30% higher than RECON for segment sizes smaller
than 0.1s. This is because such resource-only models
are limited by the resource monitoring frequency which
needs to be low (10/second, in our case) to ensure low
CPU and power overhead (see §3.2).

However, resource-level information is important and
cannot be completely dismissed. In particular, models
that only rely on component-level information perform
poorly as they cannot distinguish between the resource
utilization levels for various phases of a component load.
For example, an image load might involve fetching the
image from the server and possibly decompressing it lo-
cally. These different phases are treated equally under
WProf-M, resulting in poor accuracy for such compo-
nents. Figure 8 illustrates such an example for a long
image/gif component encountered as the sole compo-
nent of a segment during the loading of fico.com. As
shown, the power and resource usage vary consider-
ably during the loading of this segment; component-
only models cannot capture this information.



Web page Component | Resource RECON
only only

naver.jp 18.0% 6.3% 6.2%
xiami 17.8% 5.9% 5.4%
sohu 14.9% 8.5% 4.4%
live 14.7% 6.7% 4.2%
baidu 10.9% 1.9% 1.1%
mirror 6.9% 17.4% 6.3%
acfun.tv 9.6% 11.8% 2.5%
github 3.2% 8.5% 1.8%
paypal 2.9% 6.9% 1.3%
booking 5.4% 6.2% 1.8%

Table 1: Modeling seg_error for specific Web page in-
stantiations. The first five rows depict pages with high
component-only seg_error and the last five depict pages
with high resource-only seg_error. In all cases, RECON
(combined model) has the lowest seg_error.

Table 1 highlights the modeling seg_error for resource-
only and component-only approaches and compares them
with RECON for certain Web pages. In some cases
resource-only models perform well but component-only
models perform poorly, whereas in other cases we see
the opposite behavior. Regardless, in all these cases,
RECON performs well by leveraging information from
both sources. Note that the seg_error reported in Ta-
ble 1 is for specific instantiations of Web pages, and is
different from the mean per-Web page seg_errors shown
in Figure 5 that are obtained by averaging across several
instantiations of the same Web page.

6. APPLICATIONS: OPTIMIZATION

One of the key applications of RECON is to exam-
ine the energy effects of Web page enhancements. To
this end, we study four optimizations. Three of these,
Compression, Minification, and Inlining, are commonly
used best practices to improve Web performance [10].
In fact, Google’s Web optimization tool, PageSpeed [4],
uses all of the three optimizations. The fourth optimiza-
tion we consider is Ad-block; removing ads is a common
technique to reduce resource consumption.

RECON is able to predict the energy consumption of
a given optimization with an average prediction error of
5.45%. By leveraging this low prediction error, we use
RECON to enable the following applications:

e Analyze the effect of the optimization on Web page
components. For example, to compare the energy
effects of an optimization on HTML parsing vs. Java-
script evaluation vs. network loading.

e Examine not only how an optimization affects the
energy consumption of page load, but also study why
the energy consumption changes.

e Quickly evaluate a large number of optimization de-
sign choices with respect to tradeoffs in energy and

’ Optimization H APLT \ AEnergy \ Error ‘

Compression || -21.1% | -24.4% | 4.3%
Inlining +15.9% | +6.7% | 5.3%
Minification -5.5% -1.7% 7.9%
Ad-block -29.3% | -285% | 4.1%

Table 2: Modeling results for various optimizations.

performance.

Note that the above three applications cannot be en-
abled without RECON, even if one employs power me-
ters to measure the Web page power consumption.

6.1 Optimization methodology

To analyze the effects of an optimization on Web page
energy consumption, we first train the RECON model
on ten runs of the unoptimized version of that Web page,
and then predict the energy consumption of the opti-
mized Web page (without having trained on it). We an-
alyze optimizations for 10 randomly selected Web pages
from the original 80 described in §3.3.

As before, RECON predicts the power consumption
of a given instantiation of a Web page load. An op-
timized version of the Web page is loaded, and the
resource- and component-level information is collected.
RECON then uses its trained model to predict the power
consumption of the optimized Web page. We run the
Web pages with and without optimization for 10 runs
for each optimization.

Unlike the methodology in §3, for the optimization
experiments, we download and store the HTML and all
the associated objects on our own local Web server. We
do this because we need to apply the optimization on
the Web page without server support, and this is only
possible if the entire Web page is available locally. Be-
low we describe the four optimizations and our method-
ology in applying these optimizations.

1. Compression reduces the size of embedded Web ob-
jects by applying various compression algorithms on
the server side. This reduces the network time and
energy to download the objects at the client. How-
ever, the objects have to be decompressed, adding a
computational overhead. Typically, the decompres-
sion overhead is higher for larger objects, because of
the increased CPU cost in decompressing them [8].
To apply the compression optimization on a Web
page, we enable mod_deflate [8], a compression mod-
ule, on our local Web server.

2. Inlining embeds all the external Javascript and CSS
in the root HTML file. The inlined HTML file is big-
ger than the original HTML, resulting in increased
network latency and energy to download it. How-
ever, once downloaded, there is no need to fetch the
external Javascript and CSS, thus avoiding several
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Figure 9: Change in PLT and energy consumption un-
der various optimizations.

small downloads. Importantly, inlining reduces net-
work dependencies, since the browser need not wait
for external scripts to be downloaded to act on them.
To apply the inlining optimization, we parse the Java-
script and CSS embedded in the HTML file and add
them to the HTML. We only inline the first-level

scripts, and do not inline recursively embedded scripts.

3. Minification removes comments and spaces in the
HTML file to reduce the size of the file, potentially
reducing the network latency and energy. Minifica-
tion has no effect on computation.

To apply the minification optimization, we use Ya-
hoo’s YUI Compressor [13] that minifies scripts.

4. Ad-block removes all ads from the Web page. We
emulate actual ad-blockers by manually analyzing
unmodified HTML and removing all ad content.

Of course, several other optimizations have been de-
signed to improve Web performance [12,14]; we plan to
study these optimizations as part of future work.

6.2 Energy effects of an optimization

RECON is able to predict the energy consumption of
a given optimization with a low mean prediction error
of 5.45%, averaged across multiple runs of 10 different
Web pages.

An optimization may not affect PLT and energy sim-
ilarly, because these two metrics are measured over dif-
ferent parts of the page load process; PLT only depends
on components on the critical path, whereas energy de-
pends on all components. Using our optimization ex-
periments, we study the effect of each optimization on
PLT versus energy. Our findings are summarized in Ta-
ble 2. For instance, compression reduces PLT by 21.1%
and reduces energy consumption by 24.4%

Next we look at the effect of the optimization per-
page. Figure 9 shows the change in PLT and energy
consumption of the Web page loads across all our ex-
periments under all four optimizations. We divide the
figure into four quadrants, and show the y=x line for
reference. The quadrant view allows us to understand

evalhtml
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image/gif
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application/
octet-stream
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Figure 10: Change in predicted per-component energy
usage under compression for www.fico.com.

the joint effect of an optimization on both PLT and en-
ergy. Note that negative numbers indicate a decrease
in PLT or energy consumption after optimization.
Figure 9 shows that optimizing performance improves
both PLT and energy in only 70% of the instances;
these are depicted as the (purposely shrunk) dots in
the lower-left quadrant of the figure. Of the remaining
30% (shown as crosses), (i) 20% of the cases fall in the
upper-right quadrant where the optimization increases
both PLT and energy, (ii) roughly 5% lie in the upper-
left quadrant exhibiting a decrease in PLT but increase
in energy, and (iii) roughly 5% lie in the bottom-right
quadrant exhibiting an increase in PLT but decrease in
energy. Note that the impact of these counterintuitive
30% cases is not negligible. For example, inlining (red
crosses), minification (green crosses), and compression
(magenta crosses) can increase PLT and energy con-
sumption by about 200%, 90%, and 45%, respectively.
Further, inlining and minification have several instances
of increase in PLT and energy (upper-right quadrant).
We will study some of these instances in detail in §6.4.

6.3 Component analysis for optimizations

Another related application based on RECON is com-
ponent analysis of a Web page before and after op-
timization. Specifically, given sufficient training data
for unoptimized and optimized Web pages, we can con-
struct regression models for both versions and compare
the difference in energy consumption per component.

Figure 10 shows our results comparing the component-
level energy difference after and before compression for
the Web page fico.com. We see that, after compression,
the energy consumption of evalhtml and Javascript in-
creases, indicating that compression is not useful for
these components. On the other hand, the energy con-
sumption for text and CSS decreases, suggesting that
compression is useful for these components.

6.4 Analyzing why energy consumption changes

Beyond studying how energy consumption changes
due to an optimization, RECON’s component-level mod-
eling also allows us to explore why the energy consump-



(a) netfliz.com before inlining

(b) netfliz.com after inlining

Figure 11: Inlining: The figure shows the various com-
ponents of netfliz.com (a) before and (b) after inlining.

tion changes. To explore this further, we choose two
examples of Web page loads and optimizations: (i) An
inlined netfliz.com Web page which has a 12.72% de-
crease in PLT but a 22.2% increase in energy (red arrow
pointing towards it in Figure 9), and (ii) A compressed
mirror.co.uk Web page which has a 2.69% decrease in
PLT but a 4.76% increase in energy' (magenta arrow
pointing towards it in Figure 9).

Inlined netflix.com: Figure 11 shows the components
before and after inlining netfliz.com. After inlining, the
HTML parsing component (shown in dark blue) takes
about 2800ms compared to about 2500ms (in total) be-
fore inlining. This is because inlining increases the size
of the HTML by including all the external Javascript
and CSS, thereby increasing the parsing time. RE-

CON’s component-level prediction reveals that the HTML

components after inlining consume 9% more energy com-
pared to the original version; this contributes to the
overall increase in energy of the inlined netfliz.com.
However, inlining helps performance by avoiding the
loading of small objects. Figures 11(a) and (b) show
that indeed, the number of objects downloaded after
inlining is smaller compared to before the optimization
(e.g., no (green) CSS downloads). But these objects
are downloaded in parallel to the parsing, and there are
only a few of these objects; as a result, they do not con-
tribute significantly to the total energy consumption.

"While these numbers for mirror.co.uk are within the error
range of our modeling, it is interesting to analyze the effect
of compression on the individual page load components.
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Combining the increase in parsing energy due to inlin-
ing with the negligible decrease in energy consumption
as a result of not downloading small objects leads to a
net increase in the total energy after inlining.

Compressed mirror.co.uk: The unoptimized mir-
ror.co.uk contains over 70 Javascript objects that can
potentially be compressed. On analyzing the compo-
nents after compression, we find that the network la-
tency reduces by 13% (due to compression); this con-
tributes to the reduction in PLT for mirror.co.uk. How-
ever, our (predicted) energy for loading the compressed
objects increases by 8%. This is because the browser
now needs to decompress a large number of objects re-
sulting in higher computational effort and energy. This
effort contributes to the increase in energy consumption
for mirror.co.uk, despite the decrease in PLT.

6.5 Scalably evaluating optimization choices

Since RECON enables component-level analysis to
tease out the impact of an optimization, we can also use
RECON to choose the right optimization that provides
the best trade-off between decrease in PLT and possible
increase in energy. In particular, we can quickly evalu-
ate, without requiring a power monitor, various design
options for a given optimization.

Consider compression as a concrete example. There
are several control knobs for compression such as type
of object to compress, compression factor, compression
algorithm, etc. Each of these can have an impact on
the PLT and energy consumption of the optimized Web
page. We focus on five different compression type op-
tions: (i) default compression (compresses all supported
objects), (ii) only compress text, (iii) only compress
CSS, (iv) only compress Javascript, and (v) compress
CSS and Javascript. We analyze the energy consump-
tion of four different Web pages under these compres-
sion options using RECON.

Figure 12 shows the predicted results, averaged across
all experiments, of various compression options across
all Web pages. The values here are relative to the un-
compressed Web page. We see that different options
provide different tradeoffs between PLT decrease and
energy decrease. The cyan line represents y=x and is
provided for reference.

Text compression lies on this y=x line, indicating that
it has equal impact on PLT and energy. Further, the
graph suggests that compressing text is valuable; this is
in agreement with our observation for fico.com in §6.3.
Except for Javascript compression, all other options lie
above the y=x line. This indicates that these compres-
sion options decrease energy more than PLT. Interest-
ingly, the decrease in energy and PLT when compressing
Javascript alone is quite low, even lower than that for
Javascript+CSS compression. This indicates that com-
pressing Javascript (alone) is not very useful; in fact,
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Figure 12: Trade-off between energy decrease % and
PLT decrease % for various compression options.

we find that Javascript compression can sometimes in-
crease PLT and energy consumption. This observation
is again in agreement with our analysis in §6.3.

A similar analysis can be conducted for a given Web
page to choose the best page-specific compression op-
tion. For example, our analysis for alexa.com suggests
that, surprisingly, CSS-only compression is better, in
terms of energy and PLT, than the default compres-
sion option that tries to compress all supported objects.
These simple examples illustrate how we can use our
modeling approach to quickly evaluate the impact of
several optimization parameters. One can choose the
right optimization in terms of both PLT and energy by
using RECON to analyze several design options. The
high accuracy of RECON makes it feasible to use this
approach in practice; our modeling error for energy con-
sumption across all compression options and all Web
pages is only 4.3%.

7. RELATED WORK

Given the importance of smartphone energy consump-
tion, there has been considerable interest in modeling
device power. Below, we categorize the related work in
terms of the techniques used for modeling.
Utilization-based power models: One of the most
common modeling techniques for smartphone power is
utilization-based models. These models leverage the
correlation between resource utilization and the energy
consumption. The typical modeling approach in to first
establish a power model for individual hardware com-
ponents on the phone including the CPU, GPU, Screen,
and the Network. Data for the model training is typi-
cally collected using an external power monitor. Power-
Tutor [36] uses the Monsoon power monitor [9] to mea-
sure the energy consumption under various CPU fre-
quencies, WiFi data transfer rates, and screen bright-
ness settings. PowerTutor predicts the power consump-
tion on phones based on the battery discharge patterns
and the utilization-based models.

In many cases, utilization does not directly correlate
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with power consumption; for example, in cellular net-
works, the power consumption continues even after all
data transfer finishes, because of tail effects [16]. To
address this, researchers use advanced models, such as
finite state machines (FSM), to represent the power con-
sumption of resources that do not correlate well with
utilization alone [29]. PowerTutor itself uses an FSM
to build a model for cellular/WiFi power consumption.
Chen et al. [19] use a hybrid model which uses a utiliza-
tion-based model for CPU and GPU, an FSM-based
power model for wireless interfaces, and the average
power usage of activities such as WiFi beacon, cellu-
lar paging, and SOC suspension. Rather than using a
commodity external power monitor to model the power
consumption of resources, Carroll et al. [18] use special
hardware to measure the power consumption. In most
of the above works, the resource monitoring frequency
is on the order of once per second [19,27], which is in-
sufficient for modeling Web pages (see §5.4).

Power models using battery dynamics and sys-
tem monitoring: The utilization-based approaches
require external power monitors (or custom hardware)
and exhaustive training. Instead, other research works
[20, 34, 35] propose to build energy models without an
external power monitor. Dong et al. [20] leverage the
smart battery interface on phones to get accurate bat-
tery consumption, and use this to build power models.
V-edge [34] models smartphone power by leveraging the
instant battery voltage dynamics. Voltage levels change
as the battery drains, and V-edge learns this correla-
tion. Appscope [35] models power consumption by mon-
itoring the changes at the kernel. AppScope monitors
fine-grained utilization at the Android Binder level and
at the system call level. Pathak et al. [27] perform fine-
grained system call tracing to model power consump-
tion. They combine the system call tracing with FSM
power models to handle non-utilization-based power be-
haviors, such as the tail power [16].

Building power models for in-the-wild studies:
Shye et al. [31] employ the utilization-based modeling
approach to study the power behavior in the wild. This
2009 study finds that CPU and screen are the two biggest
power consumers. Recently, Chen et al. [19] perform
a more sophisticated utilization-based power modeling.
The paper describes a large-scale user study that exam-
ines the power consumption patterns of 1520 devices.
Power consumption of mobile browsers: There
have been relatively few studies on power consump-
tion of specific applications, such as the mobile browser.
While Qian et al. [30] study the resource and power con-
sumption of mobile browsers, they focus on the power
consumed by the networking component of the browsers
alone. Our results (§5.1) show that browsers perform
both networking and computing activities, and both
consume considerable power. We thus study the power



consumption of mobile browsers as a whole.

The works described above, with the exception of
Qian et al. [30], are macro-level studies: they study
the power consumption of the entire smartphone or
long-running apps. Instead, the goal of RECON is to
study the power consumption at the micro-level for a
specific application, namely mobile browsers. Lever-
aging utilization models [19, 36] for such small time
scales incurs high resource overhead, and consequently
results in poor modeling accuracy. System call or ker-
nel tracing techniques [20, 34, 35] are operating system
specific, and not application specific. Instead, RECON
combines application-specific component analysis with
coarse-grained resource modeling.

Note that there are other works, such as Zhu et al. [38,
39], that aim to improve browser power consumption,
but do not focus on modeling.

8. USAGE SCENARIOS

Our work addresses the needs of content providers,
browser vendors, and in some cases even Web designers,
who wish to quickly and accurately evaluate the energy
consumption of Web pages, either as-is or under differ-
ent enhancements. Today, the energy consumption of a
Web page load needs to be measured using power mon-
itors, and the measurements have to be performed over
several runs to account for variance. With RECON, one
could quickly and efficiently estimate the energy con-
sumption of Web page load instances without requiring
a power monitor. Importantly, RECON’s component-
level analysis enables several applications that cannot
be enabled using power monitor measurements alone.
RECON can be used to study which components most
adversely affect the energy consumption. RECON also
provides insights into how and why a given optimization
affects the energy consumption a certain way.

In the future, we envision RECON also helping end-
users and others assess the energy impact in-the-wild.
However, this in-the-wild usage scenario requires decou-
pling the model training (in the lab, with power meters)
with component- and resource-monitoring (on the end-
user side), thus necessitating models that work across
all devices under all possible network conditions. Prior
work [27,36] has shown that it is difficult to build such
device- and network-independent energy models. We
hope to address this challenge as part of future work to
extend the benefits of RECON.

9. CONCLUSION

Accurate power modeling of the page load process is
challenging because Web pages are complex and short-
lived. We present RECON, a modeling approach that
combines low-level page load information with coarse-
grained resource monitoring. We show that RECON
can predict the energy consumption of 80 Web page

12

loads with a mean error of less than 7% error. We em-

ploy RECON to accurately predict the impact of four

different Web page optimizations. RECON’s component-
level information provides visibility into how and why

an optimization affects energy consumption. RECON
can also be used to quickly analyze various optimization

choices in terms of both energy and performance.
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Figure 7: Normalized per-component power predictions
based on our modeling.
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Figure 8: The figure depicts the variations in power
consumption (top) and resource usage (bottom) for a
segment of fico.com where only one long component
(image/gif) was present.



