CSE 534 Project Report
Understanding the Mirai Botnet

Divyansh Upreti Ujjwal Bhangale
112026646 112046437

December 8, 2018

Abstract

In October, 2016, the Mirai botnet attacked several high-profile targets with one of
the largest distributed denial-of-service (DDoS) attacks to date. Mirai malware tar-
geted mainly embedded system and Internet of Things (IoT) devices. The main goal of
our project is to implement Mirai Botnet and to understand what is a botnet? What
is a loT Botnet? How Mirai Botnet works? What was its purpose? What can we do
to prevent IoT Botnet from spreading and perform thorough analysis of the source code.

Keywords: Network Security, Botnet, Internet of Things, Mirai.

1 Introduction

On October 12, 2016, a massive distributed denial of service (DDoS) attack left much
of the internet inaccessible on the U.S. east coast. This attack was the work of Mirai
botnet. Mirai is malware that turns computer systems running Linux into remotely
controlled “bots”, that can be used as part of a botnet in large-scale network attacks
including distributed denial of service (DDoS) attacks. It primarily targets Internet of
Things devices such as remote cameras and smart home devices [1]. According to a
study, at its peak Mirai exploited over 600,000 vulnerable IoT devices. A brief timeline
of Mirai’s emergence is show in the figure below [2].

09/30/2016
Source code released

09/18/2016 02/23/2017
OVH attacks 10/21/2016 Deutsche Telekom
begin Dyn attacks attacker arrested
) | I |,
- I I I |I 1 I 1 v
Sept Oct Nov Dec Jan Feb
08/01/2016 09/21/2016 10/31/2016 01/18/2017
Mirai surfaces Krebs on Security Liberia Lonestar Mirai author
peak attack attacks begin identified

According to Cisco, the number of connected devices will increase to 50 billion by
2020. Where as, Intel thinks that number is low and that there will be over 200 billion

1

connected devices by that time. On September 30, 2017, the Mirai botnet code was
made public[4]. That means that anyone can use it to study how Mirai was successful
in performing such a large scale attack and thus prevent any future attacks on IoT
devices (most of which are still unprotected). This can be used to prevent many cyber
criminals to come up again with such an attack. Mirai’s C&C (command and control)
code is coded in Go, while its bots are coded in C.

2 The Mirai Botnet

Mirai is the Japanese word for “The Future”. The Mirai Botnet Attack used known
security weaknesses in tens of millions of Internet of Things (IoT) Devices to launch
massive Distributed Denial of Services Attacks against DYN, which is a major DNS
Service provider. This event prevented Internet users from accessing many popular
websites including AirBnB, Amazon, Github, HBO, Netflix, Paypal, Reddit, and Twit-
ter At its peak, Mirai temporarily crippled several high-profile services such as OVH,
Dyn, and Krebs on Security via massive distributed Denial of service attacks (DDoS).
OVH reported that these attacks exceeded 1Thps—the largest on public record[4].

What’s interesting about these record-breaking attacks is they were carried out
via small, innocuous Internet-of-Things (IoT) devices like surveillance cameras, smart
devices, home routers and many other internet connected devices. Mirai captured over
600,000 vulnerable IoT devices and made them bots.

How it works?. At its core, Mirai is a self-propagating worm. Mirai constantly
scans IoT devices on the internet that use hard-coded or factory default usernames and
passwords. Once these devices are infected, they contact the command-and-control
(C&C) servers and get the information about their next target. Once they have the
target information, they start sending traffic to the target. With enough of these devices
acting together, it’s sufficient to shut down most websites [3].

127.0.0.0/8 Loopback

0.0.0.0/8 Invalid address space
3.0.0.0/8 General Electric (GE)
15.0.0.0/7 Hewlett-Packard (HP)
56.0.0.0/8 US Postal Service
10.0.0.0/8 Internal network

192.168.0.0/16
172.16.0.0/14
100.64.0.0/10
169.254.0.0/16
198.18.0.0/15

Internal network
Internal network
TANA NAT reserved
IANA NAT reserved

IANA Special use

224.% % %+ - Multicast

6.0.0.0/7 - Department of Defense
11.0.0.0/8 - Department of Defense
21.0.0.0/8 - Department of Defense
22.0.0.0/8 - Department of Defense
26.0.0.0/8 - Department of Defense
28.0.0.0/7 - Department of Defense
30.0.0.0/8 - Department of Defense
33.0.0.0/8 - Department of Defense
55.0.0.0/8 - Department of Defense
214.0.0.0/7 - Department of Defense

Figure 2: Hard coded IP addresses

Interesting Facts: (1) There is a hard coded list of IP addresses that the Mirai
bots are instructed to avoid when scanning for machines. Some of these include the US
Post Office, GE, US Department of Defense, HP, and the Internet Assigned Numbers
Authority.

(2) The code contains some strings in Russian. This leads some to speculate that it
was developed by either Russian hackers.

(3) The Mirai botnet code was released into the wild. Which Opens the Door for
Future Botnet Attacks. That means that anyone can use it to try their luck infecting
[oT devices.

(4) ‘Mirai’s Author Has an Avi of Anime Character Anna Nishikinomiya and Mirai
Means “Future” in Japanese.

(5) Upon infecting a device, Mirai looks for other malware on that device and wipes
it out, in order to claim the gadget as its own.

3 Source Code Analysis

Mirai C & C server script is coded in Go while bot scripts are coded in C. A command
and control server (C & C server) is a computer that issues commands to digital devices
that have been infected by malware, such as Mirai. Some of the files in the Mirai source
code directory are as follows:

CNC:

e admin.go - admin interface for issuing controls to execute against botnets.
e clientList.go - list of all bots allocated for given attack.

e attack.go - responsible for handling attack request initiated by CNC server.
e main.go — entry point into CNC server’s binary.

Bot:

e attackudp.c — implements attacks to be carried out by an IoT bot device.
e scanner.c — brute force scanning of IP addresses in search of other devices.
e killer.c - kills various processes running on the bot.

e main.c — entry point into bot’s execution.

Mirai was built for two core purposes. First, to locate and compromise IoT devices to
further grow the botnet. Second, to launch DDoS attacks based on instructions received
from a remote CC. To fulfill this Mirai performs wide ranging scans of IP addresses.
The purpose of these scans is to locate vulnerable IoT devices that could be remotely
accessed via easily guessable login credentials—usually factory default usernames and
passwords like admin/admin or root/root or root/1234. It uses brute force technique
for guessing the passwords. Another interesting thing about Mirai is that it seems to

possess some bypass capabilities, which allow it to circumvent security solutions. The
code snippet for this is shown below:

#define TABLE_ATK DOSARREST 45 // "server: dosarrest”
#define TABLE_ATK CLOUDFLARE_NGINX 46 // "server: cloudflare-nginx"

if (util_stristr(generic_memes, ret, table retrieve_val(TABLE_ATK CLOUDFLARE_NGINX, NULL
conn->protection_type = HTTP_PROT CLOUDFLARE;

if (util_stristr(generic_memes, ret, table retrieve val(TABLE_ATK DOSARREST, NULL)) != -
conn->protection_type = HTTP_PROT_DOSARREST;

figure 3. Code snippet

Also, another interesting revealed by the source code was a list of IPs Mirai Bots
should avoid while scanning. This list is shown in the figure 2. The malware holds
several killer scripts meant to eradicate other worms and Trojans, as well as prohibiting
remote connection attempts of the hijacked device.

For example, the following scripts close all processes that use SSH, Telnet and HT'TP
ports:

killer kill by port(htons(23)) // Kill telnet service
killer kill by port(htons(22)) // Kill SSH service
killer kill by port(htons(80)) // Kill HTTP service

Figure 4. Scripts that close all processes

The mirai search for other malware on the IoT device and destroys them. It eradicate
other botnet processes from memory. The following is the code snippet of the same.

#DEFINE TABLE_MEM_QBOT // REPORT %5:%S

#DEFINE TABLE_MEM QBOT2 // HTTPFLOOD

#DEFINE TABLE_MEM QBOT3 // LOLNOGTFO

#DEFINE TABLE_MEM_ UPX // \X58\X4D\X4E\X4E\X43\X50\X46\X22
#DEFINE TABLE_MEM ZOLLARD // ZOLLARD

Figure 5. memory Scrapping

searching for .anime process
table_unlock_val (TABLE_KILLER_ANIME) ;
// 1f path contains
if (util_stristr(realpath, rp len - 1, table retrieve val(TABLE_KILLER_
{

".anime" kill.

unlink(realpath);
kill(pid, 9):
}
table lock val(TABLE_KILLER ANIME);

Figure 6. Destroying ANIME malware

4

The purpose of this aggressive behavior is to help Mirai maximize the attack potential of
the botnet devices and also to remove similar removal attempts from the other malwares.
It’s worth noting that Mirai code contains some traces of the Russian-language. This
opens the door for speculation about the code’s origin, serving as a clue that Mirai was
developed by Russian hackers.

4 Setup

We installed Virtual Box and mounted an image of windows 7 on it. We downloaded
the publicly available source code of Mirai. To run this source code we took two servers
from DigitalOcean website running CentOS 7.5x. On one server we run the C & C
server scripts and we use the other server for scanning the IP addresses. After running
the CnC scripts, a payload is generated. Payload is nothing but the collection of linux
commands by which it takes control over vulnerable IoT devices. Then we copy this
payload and paste it in the scanner file. The other server scans the ip addresses and
tries to find vulnerable devices. This vulnerable devices are then reported to CnC
server which takes control over the devices by infecting them with the payload and
makes them bots. The bots then can be instructed to DOS any server. To test this,
we infected some of our own devices and performed a DOS attack on another server
purchased from DigitalOcean. To test if the server was brought down, we used ping
commands and saw that the response started to get delayed from the server. Thus, we
successfully performed a DOS attack on the server.

(« i)
* ((< o) \

3
\;»5/

Figure.7. Attack Module

Commands Used for Scanning the IP addresses:

ands Session Options Remote Help

B | B Queue - Transterettings Default - il

S fenMirai |G New Session

CEE e iSRS root CEF e B W & & FndFies |2
=loes [Download ~ | [Edit + 3¢ /5 [Properties | £ New ~ (=N

:.Em]iﬂ

lerelalEl Al
Figure.9. Screenshot of Implementation (1)

~ [Transfer Settings Default - i

CEE e B &8 Q B Findfiles | T
- |[2F Edit ~ & A (g Properties | £ New ~ [=hiki]

0Bof212KE in0 of 1 hidden 8.42KB of 344 KB in1 of 11 10 hidden

@ s 1641

ER N AFIEIFIEYE Y
Figure.10. Screenshot of Implementation (2)

5 Attacks

What are DDoS attacks ? A distributed denial-of-service (DDoS) attack is a ma-
licious attempt to disrupt normal traffic of a targeted server, service or network by
overwhelming the target or its surrounding infrastructure with a flood of Internet traf-
fic. DDoS attacks achieve effectiveness by utilizing multiple compromised computer
systems as sources of attack traffic. Exploited machines can include computers and
other networked resources such as IoT devices. From a high level, a DDoS attack is
like a traffic jam clogging up with highway, preventing regular traffic from arriving at
its desired destination(Cloudfare).

Figure.11. DDoS attack

Types of DDoS attacks:

e HTTP Floods

e DNS Query Floods
e SSL Abuse

e TCP SYN Floods
e TCP ACK Floods
e TCP NULL Floods
e Stream Flood

e UDP Flood

e UDP Reflection

e Smurf Attack

o ICMP PING Floods
e GRE IP Floods

e GRE ETH Floods

Future of Botnets
Attackers are going to get better and More complicated botnets will appear in
future. It will be hard to distinguish malicious packages from regular traffic.

6 What we achieved ?

Implementing Mirai botnet from its source code was a great learning curve for us.
Mirai provides evidence that how easy it is to compromise [oT devices by just brute
forcing commonly used username and password combinations. We learnt how to build a
botnet and in the process came to know about all the ways that malware can infect our
systems. This knowledge can help us in finding loopholes in any IoT device’s defense
in future.

7 Limitations and Challenges for Researchers

Security researchers are still not sure of an effective way to make IoT devices secure.
There is no way a good antivirus software can be installed in IoT devices because of
the lack of storage and processing speeds of these devices.

8 Future Work

We plan to study and implement other famous botnets like Hajime, WireX and Satori
to deepen our knowledge of these botnets and find ways to strengthen network security
after gaining insights from the working of these botnets.

We performed a DOS attack on our server and successfully brought it down. We
did not infect devices on a large scale in this process. This can be done after acquiring
suitable permissions to see more catastrophic damage on a server.

9 Conclusion

Mirai points to the vulnerabilities of security in IoT devices. System administrators
must monitor logs regularly, use network packet sniffer, isolate the malicious subnet
and scan individual machines. They must never keep easily guessable passwords which
was the main reason why IoT devices got infected by Mirai.

10 References
1. Wikipedia. https://en.wikipedia.org/wiki/Mirai_(malware).
2. Mirai Source Code. https://github.com/jgamblin/Mirai-Source-Code

3. David Adrian, Brian Krebs, Vern Paxson,and the Censys Team: Understanding
the Mirai Botnet. In 26th USENIX Security Symposium, 2010.

4. Expect More IoT Botnet Attacks. https://www.csoonline.com/article/3144200/security /expect
more-iot-botnet-attacks-mirai-source-code-now-freely-available.html

5. Inside Mirai the infamous IoT Botnet. https://elie.net/blog/security/inside-mirai-
the-infamous-iot-botnet-a-retrospective-analysis

	Introduction
	The Mirai Botnet
	Source Code Analysis
	Setup
	Attacks
	What we achieved ?
	Limitations and Challenges for Researchers
	Future Work
	Conclusion
	References

