Experimental Study on different Congestion Control Schemes generated

Using REMY
Kishan Varma Kedar Sankar Behera Kumari Shalini
111323214 110937490 110451857
Abstract from those of manually designed congestion-

This paper, we show detailed analysis on
different scenarios to answer whether an
automated system generated protocol [us-
ing Remy] with some prior assumptions,
trained and tested on a subset network
behavior can be extend to real networks.
Will it be able to surpass the performance
of conventional manually-created proto-
cols on complex and unpredictable real-
time network scenarios? We have also
examine and formalize the following con-
cerns through detailed experimental anal-
ysis. For example, following concerns
as stated by (J. Wroclawski, |) 1. Are we
performing better by narrowing down the
range of operating conditions or is it the
ML that chooses best conditions among
the desired range of conditions space. 2.
Whether Remy suffers from “works today
but not tomorrow syndrome”. If narrow-
ing down the conditions help then in future
when a rare event occurs, will it provide
equally good performance?

Code Availability: Our code is avail-
able at https://github.com/matrix-
revolution/Experimental-Study-on-
different-Congestion-Control-Schemes-
generated-Using-REMY

1 Introduction

The classical congestion-control methods embed-
ded in TCP perform poorly with the new tech-
nologies. TCP is not flexible to adapt its conges-
tion control techniques to these new technologies
(Winstein Keith,Balakrishnan Hari, 2013). Re-
myCC is a computer program which can generate
protocols based on prior assumptions of the net-
work characteristics. Thses computer-generated
protocols has claimed to surpass the performance

control protocols such as those in TCP-NewReno,
TCP-Reno, TCP-Tahoe, TCP-Cubic etc.

Our assumption is that RemyCC may not give
an optimal performance on a real-time network
with complex network characteristics. The goal of
this paper is to compare the performance of var-
ious manual congestion control algorithms with
that of computer generated on the real time net-
work traffic. Hence, in this paper, we examine
couple of different scenarios to test our hypothe-
sis and compare the results. We also tried to rea-
son the cases where the behaviour of Remy differs
than expected.

2 Related Work

Since, most of our experiments are influenced
from Remy, we have summarized the work given
in (Winstein Keith,Balakrishnan Hari, 2013) in
this section.

What is Remy? Remy is a computer pro-
gram that figures out how computers can best
cooperate to share a network.It creates end-to-
end congestion-control algorithms that plug into
the Transmission Control Protocol (TCP). These
computer-generated algorithms can achieve higher
performance and greater fairness than the most
sophisticated human-designed schemes (T'CP ex-
Machina, 2014).

Why Remy? To understand how Remy
works, it’s crucial to understand why Remy came
in existence in first place. Internet is growing
at a rapid rate. New link technologies and sub-
networks are emerging and evolved. In the past
few years, there has been many new observa-
tions where networks characteristics have changed
a lot. There have been increase in wireless net-
works with variable bottleneck rates. Datacenter
networks emerged with high rates and short de-
lays. It experienced the condition of bufferbloat

i.e paths with excessive buffering. Even the cellu-
lar network experienced variable changes. For ex-
ample, self-inflicted packet delays, links with non-
congestive stochastic loss, and networks with large
bandwidth-delay products.

How Remy works? Remy was designed to
solve the problem of creating a new congestion-
control protocol as the internet advances. It was
designed to reduce the human-effort and letting
the machine learn and create the schemes to ac-
commodate the network behavior automatically.
Congestion-control protocols works on end-points
i.e sender-receiver’s computer and not inside the
network. The performance of such algorithm is
governed by the fair allocation of available re-
sources of the network between different users.
Hence, Remy defines the objective function that
maximizes the score to gain high throughput and
low queuing delay. It is trained on a set of as-
sumptions or prior knowledge of the network that
a protocol designer need to specify beforehand.

How Remy is designed? The Remy Model
contains defining three crucial parts :-

e Prior Assumptions to the network -

— Decide the design range of the model

— Different model with different amount
of uncertainity.

— For example, a protocol designed for
Datacenter network will be different
than that of protocol designed for cellu-
lar network.

— The very basic model will specify fol-
lowing kind of parameter :-

+* Lower and upper limits of bottle-
neck link speeds

*x Non-queuing delays

* Different queue-sizes

* Various degree of multiplexing.

e Traffic Model - Defines how much load is
given to the end-points. For example traffic
load as seen in following cases :-

— Web traffic

— Video conferencing
— Batch processing

e Objective Functions - define objective func-
tion that can minimize the loss by maximiz-
ing high throughput and low delay score.

How Remy performed? As a result, Remy
not only outperformed various manually designed
algorithms like TCP Cubic, Compound and Vegas.
It also performed well as compared to algorithms
that require extensive in-network characteristics
like TCP XCP and Cubic-over-sfqCoDel (stochas-
tic fair queueing with CoDel for active queue man-
agement). Remy might equally perform well in
Datacenter network as well as Cellular Network.

Prior
assumptions

REMY REMY CC

Traffic Model

Objective
Function

Figure 1: Remy Model

3 Hypothesis

In this section, we are trying to examine following
set of hypothesis to understand the importance of
various network characteristics and its impact.

e Remy narrows down the network parameter’s
range.

— Does the network trained for a specific
scenario will outperform the network
with more broader range?

— We replicated this scenario by training
our model with wider range of network
parameter like increasing the link speed
range, number of multiplexing, wider
range of queueing delays etc.

e Remy is trained on a specific set of rules
which limits to 150. It uses similar concept
as Machine Learning classifier, for exam-
ple, support vector machine for classification
task. The only difference is the way objec-
tive function is defined which uses through-
put and delay to measure the performance at
each iteration.

— Does the Machine Learning learn the
correct weights for each network param-
eters given a specific scenario training
examples?

— Or is it overfitting? That is if model is
tested on an unexpected scenario might
lead to performance loss.

4 Experiments And Results

Most of our work in this project includes working
with NS-2. Here is the brief description about NS-
2 followed by the experimentation setup.

4.1 Brief description about NS-2

NS-2 is a event simulator that helps in simulating
different types of protocols like TCP, routing, vari-
ous multicast protocols etc. The simulations could
be similar to wired or wireless network. It has
been used widely by many for various networks
related research. It isn’t a fully polished product
yet but keep on improving will more usage.

4.2 Setup

Remy works by testing a wide array of possible
configurations to arrive at the best possible results.
For the experimentation setup, we have followed
the following steps :-

e The Remy Code was cloned from https:
//github.com/tcpexmachina/remy
repository

e Followed steps from http://web.mit.
edu/remy/|to reproduce the results.

We used the following default configuration to
replicate the Remy Figure:

e We are using the dumbbell network with fol-
lowing configurations :-

— Link-speed = 15Mbps
— Min RTT - 150 millisecond

e Initially, we ran the whole iteration using 10
parallel threads, it took around 5 days to ob-
tain the output.

For the rest of the experimentation setup, we
needed to change the configurations for each sce-
nario. To fasten the process, we made following
changes in the code:-

e We needed larger number of simulations to
generate the figure.

e By default, there are 10 different simulations
runs per data point. We decreased it to 2 sim-
ulations per data points

e By default, there are 1000 link speeds spaced
between 1 and 1000 Mbps. We divided it into
subranges. The following were the ranges:-
1- 50 Mbps, 50 - 150 Mbps, etc

e By default, there are 5 protocols (the 10x,
100x, 1000x, RemyCCs + cubic + cu-
bic/sfqcodel), we also included other proto-
cols like NewReno and Compound as well.

e By default, There are 30 RTTs ranging from
5 to 150 ms. We using only single RTT value.
Currently, we tested on RTT = 150 Mbps

o By default, there were 20 duty cycles ranging
from 5 to 100. We decreased it to 10.

Hence, initially there were total
10 % 1000 % 5 4 10 * (20 + 30) % 5 = 52500

simulations.
We reduced it to

2%50% 7410 (14+10) %7 = 700+ 770 = 1470
simulations

4.3 Experiment 1: Using Default
Configuration

@mbccrn 1 T T N

16 - —
ﬁ_})&umycc-l
14 - A

12 -

18 T

isfqCoDel

ORe -
tHLmyCC 10
1

08 -

Throughput (Mbps)

06 |-

04 |- -

02 |- =

0 1 g Megas | I 1

1 2 4 8 16

Queueing delay (ms)

The above figure is generated using Default Re-
myCC Configurations.

4.4 Experiment 2: Changing number of
sources to 16

18 = T T T
\\\kr.*_HumyCLTU‘.i\‘
16 — .
C 4Remyce-
D

14

. o
jfjcp ./ +cm)/mz;|qcmu|
@W R

4Cut _
(——7)
+E- und |
. wReno

12

Remdcc-10
1 -

08 -

Throughput (Mbps)

06 -

04 .

02 |~ —

0 L egas | 1 1
1 2 4 8 16

Queueing delay (ms)

https://github.com/tcpexmachina/remy
https://github.com/tcpexmachina/remy
http://web.mit.edu/remy/
http://web.mit.edu/remy/

The above figure is generated by changing the
number sources to 16

4.5 Experiment 3: Changing number of
sources, link-speed, off-process

Throughput (Mbps)

08

0.6

0.2

T ——
< +R9myéb0>l

(Tﬁe?ﬁy%(:-l

i éﬁﬁnyccrln

stqCoDel

4 8 16

Queueing delay (ms)

The above figure is generated by changing follow-
ing network parameters:-

e Num of srcs = 16

e Link Speed from 15 Mbps to 10 Mbps

e Off process from 0.2 to 0.1.

4.6 Experiment 4: Changing number of
sources to 4

Throughput (Mbps)

180 =

16

14

1.2

0.8

0.6

0.4

0.2

Remyct-0.1
i
Jrﬁemycc-l

{RemyCC-10

igfsfqC

Queueing delay (ms)

4.7 Experiment 5: Changing number of
sources to 4 and link-speed to 100 Mbps

Throughput (Mbps)

4.8

Throughput (Mbps)

4.9

Throughput (Mbps)

18

16

14

12

08

06

04

0z

T
- @emycc 0.1

Queueing delay (ms)

Experiment 6: Changing number of
sources to 8 and link-speed to 32 Mbps

18

16

14

12

08

06

04

02

T
//
- = +)4CP
<+HE!T CC-1 '\/
Cubic/dfqCoDel
- ound-|
@cmyCC-lD =
1 + | |
1 2 4 16

T
- @mycou d:

e

| qrRemycc10

oDel

Queueing delay (ms)

16

Experiment 7: Changing number of
sources to 2 and link-speed to 500 Mbps

18

16

14

—

N

o
il

12 =

0.8

0.6

04

0.2

6@'5%(:-10

T == T
\ +F?cmyCC—D.\L>
e -

JMegas | |

sfqCoDel

5]

4 8

Queueing delay (ms)

16

4.10 Experiment 8: Changing number of
sources to 2 and link-speed to 1000

Mbps
14 [~ I !] |/+ﬁ‘?emyhc-0 1
12 - emyCC-1 -
@ A
/ +Cupic/sigCoDel
emyCC-10
5)
. S A &
= ’Y /
éx M*‘{ +Cfibic
= 08 - I -
= W Py
[=3 ~,
C d

/iy
sg 06 [~ ‘ IL vRe |
= (

04 - —

02 - -

0 | ee———fVedac— | | |

1 2 4 8 16 32

Queueing delay (ms)

4.11 Experiment 9: Changing number of
sources to 2 and link-speed to 1000
Mbps and max quque size = 10000

[
«n
T

¢€HBIE%_

Throughput (Mbps)

+
-g
A
f‘.‘ |

g

05 - —

Queueing delay (ms)

S Evaluation and Analysis

The assumptions provided to Remy at design
time, the machine-generated algorithms dramati-
cally outperform existing methods, including TCP
Cubic, Compound TCP, and TCP Vegas. As per
the experiments conducted by us given in the
above graphs ,the general inferences are as follows

e Remy outperforms other protocols

e By changing parameters such as the num-
ber of sources we get different graphs with
greater number of sources having a greater
delay variance

e For example, like n = 4 has more convergence
thann =28

e The graph also shows a trend that as the band-
width product increases the delay variance of
the version of Remy with § = 1

e Here as the bandwidth is varied to 100Mbps
and 32Mbps for n = 8 and n = 4 respectively
the delay variance increases

6 Discussion

6.1 Observation on different link speed

We ran out model on various link speeds while
maintaining the other variables values to default.
We used link speeds in range 1 - 1000 Mbps using
number of senders = 2. We found that the perfor-
mance of the model remain consistent upto link
speeds 100 Mbps after that there was huge vari-
ance in queueing delay from 500 Mbps to 1000
Mbps as seen in Experiment 7 and 8. Although
this was the case, Remy still outperformed oth-
ers with high throughput on whole range of link
speed.

6.2 Observation while changing the degree of
multiplexing/number of senders

We ran our model on a set of users to deter-
mine whether the network performance is im-
pacted when the network topology remains same
but the number of users/senders changes. The
model was tested using different set of users vary-
ing from 1 to 16. We found that as the number
of senders increased there was decrease in perfor-
mance of Remy, though Remy still outperformed
other model on varying number of senders. The
graphs plotted above using different number of
senders while keep the other network parameters
constant shows that as the number of senders in-
crease the delay variance in Remy as increases.
This shows that the model trained on low degree of
multiplexing behaves aggressively when tested for
higher degree of multiplexing. This may lead to
high queuing delay when we have enough buffer to
hold the packets or low throughput when doesn’t
have enough buffer space and packets are dropped
leading to retransmission.

7 Conclusion

In this project, we did a detailed analysis on how
the Remy performs given different network con-
ditions. We showed that changing link speed had
somewhat modest effect on Remy but as we in-
creased the bandwidth-delay product i.e increas-

ing the queue size as well as the link-speed, the be-
havior of Remy as well as other protocol changed
drastically. This is when, other protocols out-
performed Remy. We achieved this performance
when link-speed was 1000 Mbps and queue-size
was 10,000 packets. We also addressed few other
issues which supports why Remy might not give
stable performance when trained on small set of
network parameters but tested on rare conditions.
For this, we trained Remy using imperfect con-
figurations. Then generated various scenarios to
evaluate Remy’s performance. For example, in-
creased the number of bottlenecks, increased the
range of link-speed, increased the degree of multi-
plexing etc.

8 Acknowledgement

We would like to thank to our Prof Aruna Balasub-
ramanian for her feedbacks throughout the com-
pletion of this project. We would also like to thank
Prof Keith Winstein, the author of paper Remy
without whose help we won’t be able to complete
our experiment in such a short span of time. We
are equally grateful to Anirudh, whose support on
understanding nuance of Remy helped us in suc-
cessful completion of our project.

9 References

[Winstein Keith,Balakrishnan Hari2013] [1] TCP ex
Machina:Computer-Generated Congestion Con-
trolKeith Winstein and Hari Balakrishnan Computer
Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge
http://web.mit.edu/remy/TCPexMachina.pdf

[TCP exMachina2014] [2] TCP ex Machina:
Computer-Generated Congestion Control by
Keith Winstein and Hari Balakrishnan MIT Com-
puter Science and Artificial Intelligence Laboratory
(SIGCOMM 2013) http://web.mit.edu/remy/

[Anirudh Sivaraman, Keith Winstein, 2014] [3] An
Experimental Study of the Learnability of Con-
gestion Control : Anirudh Sivaraman, Keith
Winstein, Pratiksha Thaker, and Hari Balakr-
ishnan MIT Computer Science and Artificial
Intelligence Laboratory (SIGCOMM 2014)
http://web.mit.edu/keithw/www/Learnability-
SIGCOMM2014.pdf

[J. Wroclawski] [4] TCP ex Machina. J. Wro-
clawski http://www.postel.org/pipermail/end2end-
interest/2013-July/008914.html, 2013.

[5] NS-2 network
http://www.isi.edu/nsnam/ns/

simulator

	Introduction
	Related Work
	Hypothesis
	Experiments And Results
	Brief description about NS-2
	Setup
	Experiment 1: Using Default Configuration
	Experiment 2: Changing number of sources to 16
	Experiment 3: Changing number of sources, link-speed, off-process
	Experiment 4: Changing number of sources to 4
	Experiment 5: Changing number of sources to 4 and link-speed to 100 Mbps
	Experiment 6: Changing number of sources to 8 and link-speed to 32 Mbps
	Experiment 7: Changing number of sources to 2 and link-speed to 500 Mbps
	Experiment 8: Changing number of sources to 2 and link-speed to 1000 Mbps
	Experiment 9: Changing number of sources to 2 and link-speed to 1000 Mbps and max quque size = 10000

	Evaluation and Analysis
	Discussion
	Observation on different link speed
	Observation while changing the degree of multiplexing/number of senders

	Conclusion
	Acknowledgement
	References

