An Intent-Based Automation Framework for Securing Dynamic Consumer IoT Infrastructures

Vasudevan Nagendra
Stony Brook University
vnagendra@cs.stonybrook.edu

Arani Bhattacharya
KTH Royal Institute of Technology
aranib@kth.se

Vinod Yegneswaran
SRI International
vinod@csl.sri.com

Amir Rahmati
Stony Brook University
amir@cs.stonybrook.edu

Samir R Das
Stony Brook University
samir@cs.stonybrook.edu

1 INTRODUCTION

The adoption of the Internet of Things (IoT) has led to an explosion in the number of devices integrated into consumer IoT infrastructures (e.g., "smart homes", "smart campus", and "smart cities") [1, 2]. The heterogeneity of these infrastructures poses two major challenges in developing and enforcing policies across them:

1. **Coherent Policy Expression**: Today, IoT device vendors support web and mobile-based apps, wide range of IoT automation frameworks, and specification languages [3–7] that allow users and administrators to program their IoT infrastructures. However, directly capturing the high-level automation (or policy) intent of IoT administrators, using these vendor-specific IoT apps, is a challenging task, which requires administrators of the IoT infrastructure to manually decompose their high-level intents into device-specific rules prior to installation onto IoT infrastructures.

2. **Conflict-free Enforcement**: Consumer IoT infrastructures are programmed by multiple administrators having complex roles and varying levels of skill, which may include novice smart-home users (e.g., parents, kids), smart-campus or smart-city administrators (e.g., HVAC admins, fire-safety admins). Configuring conflict-free automation in such multi-administrative environments is a tedious process. Recent studies independently underscore the need for new access control and policy frameworks to address the security goals of IoT ecosystems [8–10]. These solutions are designed to identify violations in IoT ecosystems with homogeneous programming specifications. However, they do not apply to contemporary consumer IoT deployments that commonly involve devices using diverse vendor-specific APIs and heterogeneous programming specifications. Furthermore, existing tools either rely on model checking for static analysis of IoT automation programs to detect the conflicts [9], or require IoT automation code to be instrumented for detecting run-time violations [10]. Existing tools and techniques also leave a wide spectrum of automation bugs and conflicts undetected. For example, gap in automation due to lack of expertise among administrators, rogue policies on infrastructures that the user does not control, violations that might arise due to loops among automation rules, and other potential run-time violations are some of the key issues left unaddressed by the existing automation frameworks (§5).

In this paper, we introduce "VISCR", a new intent-based IoT policy automation framework that allows administrators of an IoT

ABSTRACT

Consumer IoT networks are characterized by heterogeneous devices with diverse functionality and programming interfaces. This lack of homogeneity makes the integration and secure management of IoT infrastructures a daunting task for users and administrators. In this paper, we introduce VISCR, a Vendor-Independent policy Specification and Conflict Resolution engine that enables intent-based conflict-free policy specification and enforcement in IoT environments. VISCR converts the topology of the IoT infrastructure into a tree-based abstraction and translates existing policies from heterogeneous vendor-specific programming languages, such as Groovy-based SmartThings, OpenHAB, IFTTT-based templates, and MUD-based profiles, into a vendor-independent graph-based specification. These are then used to automatically detect rogue policies, policy conflicts, and automation bugs. We evaluated VISCR using a dataset of 907 IoT apps, programmed using heterogeneous automation specifications, in a simulated smart-building IoT infrastructure. In our experiments, among 907 IoT apps, VISCR exposed 342 of IoT apps as exhibiting one or more violations, while also running 14.2x faster than the state-of-the-art tool (Soteria). VISCR detected 100% of violations reported by Soteria while also detecting new types of violations in 266 additional apps.

CCS CONCEPTS

- Security and privacy → Access control; Usability in security and privacy; Security requirements.

KEYWORDS

Intent-based policy and automation framework, Consumer IoT security, Conflict detection and resolution.

ACM Reference Format:

This paper is published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan

© 2020 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC-BY 4.0 License.

https://doi.org/10.1145/3366423.3380234

1Intent-based policy frameworks provides administrators with the ability to directly capture their intention by decoupling "what" policies are to be enforced from "how" to implement and enforce them.
Table 1: Policy conflict examples in consumer IoT infrastructures.

<table>
<thead>
<tr>
<th>Ecosystem</th>
<th>Goal</th>
<th>Policy Intents of the IoT Administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Campus</td>
<td>Safety, Privacy</td>
</tr>
<tr>
<td>P2</td>
<td>Campus</td>
<td>Security</td>
</tr>
<tr>
<td>P3</td>
<td>Home</td>
<td>Safety</td>
</tr>
<tr>
<td>P4</td>
<td>Home</td>
<td>Safety</td>
</tr>
</tbody>
</table>

In summary, our paper makes the following key contributions:

- We design VISCR, a vendor-independent graph-based policy specification mechanism that translates automation rules and policies specified using heterogeneous programming specification languages into vendor-independent graph-based policies. (§4).
- We implement efficient graph composition techniques to detect bugs and conflicts that arise among the policies and resolve them using PRECEDENCE operation for conflict-free enforcement (§5).
- We evaluate VISCR using 907 IoT apps (i.e., both vetted and unvetted) in a simulated smart building infrastructure with real world automation use cases reported by IoT users and administrators and compare with existing techniques (§6).

2 CHALLENGES AND RESEARCH GOALS

A wide variety of automation frameworks and specification languages are supported by IoT device vendors for automating IoT infrastructures [3–7]. Such heterogeneity makes programming the IoT infrastructure a challenging task. In addition, the presence of multiple administrators\(^3\) in IoT infrastructures with different roles and responsibilities further complicates the situation. Hence, the heterogeneity, and lack of a unified policy specification in multi-administrative IoT infrastructures forces administrators to independently develop automation policies and manually detect conflicts and violations.

2.1 Intuitive Policy Specification

IoT infrastructures are typically managed by multiple administrators, each of them responsible for the management of a specific group of devices. For effectively capturing policy intents from multiple administrators, a policy framework should support following capabilities: (i) Ability to logically group devices in accordance with the policy requirements of each of the administrator. For example, the IoT administrators handling cameras of BLDG1 and BLDG2 of the campus network should have abstractions that logically group the devices belonging to those locations; (ii) Provide isolation among administrators while exposing only the necessary abstractions required for policy specification avoiding rogue policies from being specified. For example, a fire-safety administrator should not be exposed to other IoT infrastructure details (e.g., cameras, HVACs etc.) unless cross-device policy specification is required.

Currently, it is challenging to provide logical isolation across different policy administrators and the devices they administer, which motivates the need for fine-grained abstractions and logical grouping of IoT devices (Figure 3). Also, the lack of expertise in programming using heterogeneous automation specification languages makes the IoT infrastructures prone to errors [11–15].

2.2 Conflict Detection & Resolution

Policy intents of IoT administrators are implemented using discrete automation rules configured onto each device using the mobile or web-based user interfaces, and automation specification languages [3, 5, 6, 16]. The existing consumer IoT ecosystem lacks means to effectively detect the conflicts, bugs and violations that arise among the policies that are captured independently by each of the administrators using heterogeneous specification languages and reconcile them onto each of the IoT devices.

Recent studies have demonstrated that major vulnerabilities in the IoT infrastructure are commonly due to simple human errors and lack of expertise in policy configuration [11, 12, 17, 18]. As highlighted in Table 4, there are range of automation bugs, policy conflicts and violations (e.g., gap in automation, potential run-time conflicts, and code sanity bugs) that could go undetected with existing conflict detection techniques [9, 10, 19]. Let us consider following policy conflicts:

Policy Conflict 1: Consider for example two policies P3 and P4 (Table 1) with conflicting actions in opening main door. In case of a fire alarm after 10 P.M., (both policies P3 and P4 are activated) the current IoT automation keeps the door locked due to policy P3, preventing users from leaving and fire-safety officers from entering.

Policy Conflict 2: Similarly, policies P1 and P2 results in run-time violation. When video feed is shared with fire-safety staff, the feed only with authorized user’s approval (e.g., parents).

\(^3\)For example, the smart home automation rules are specified by the members of the family (e.g., parents, kids, guests), while smart campus and enterprise IoT infrastructures are managed by different types of IoT administrators such as HVAC, fire-safety, utilities & energy, and infrastructure (or building) administrators.
camera interrupting the feed from being shared, leading to safety violations. Proactively detecting and resolving the conflicts 1 & 2 discussed above in compile-time is a challenging task as these policies depend on asynchronous events (e.g., inactivity timer) and environmental conditions (i.e., time and motion sensing).

3 VISCR: SYSTEM OVERVIEW

We describe the components of VISCR’s policy specification and enforcement framework. As shown in Figure 1, VISCR performs sanity checks on IoT automation programs that are captured using heterogeneous specification languages [3, 5–7] and then translates them into vendor-independent graph-based specifications (1). VISCR maintains mapping between the IoT programs, associated device configurations, and graph-based policies as policy mappings, which are then used in policy enforcement phase i.e., for reconciling composed policy graph to device-specific rules (§5.2.3). For translation of vendor-specific automation rules to vendor-independent graph-based policies, we have built necessary lexing and parsing grammar (.g4), and mapping (.map) files specific to each of the automation specification language with ANTLR (§4.1).

To enhance the usability of our policy framework, VISCR also supports a drag-and-drop interface for graph-based policy specification (4) and input policy entities that follow tree-based infrastructure abstractions (§4.2.2). The tree-based abstractions that are required for each IoT administrator to specify policies (3) are automatically constructed using data sources present within the IoT infrastructure and cloud interfaces (§4.2.1).

The vendor-independent graph-based policies (i.e., outcome of modules 1 & 2) are inputs to the VICE module for detecting the conflicts, violations and bugs. VICE initially detects rogue policies (2) that are configured by policy administrators on any specific portion of the IoT infrastructure they are not authorized to specify automation rules (Section 4.2.2). In the next step, the policy composition engine uses graph-based composition algorithms and precedence mechanisms for automatically detecting the conflicts and resolving them respectively. Unresolved conflicts and bugs are reported to the administrators of IoT infrastructure for manual resolution (3).

The composed policy graphs are further analyzed for security bugs and violations (§5.2): (i) gap in the automation that could make infrastructure vulnerable, (ii) loops that exist among automation rules, (iii) access violations, and (iv) potential conflicts that could arise in run-time. Finally, the composed conflict-free policy graphs and policy mappings are used to reconcile the policies into device-specific rules for enforcing (3).

4 VENDOR-INDEPENDENT SPECIFICATION

Realizing coherent automation in existing IoT infrastructures that uses heterogeneous specification languages is a challenging task. It requires administrators to analyze each of the IoT Apps manually for detecting the conflicts and bugs for manually resolving them, which is a tedious process and could be prone to error. Hence, we propose a vendor-independent specification engine (VISCR) that serves following key purpose: (i) translates IoT automation programs and policies specified using Groovy, IFTTT, MUD, and OpenHAB-based programs into a vendor-independent graph-based specification, and (ii) performs sanity checks on IoT apps.

4.1 Vendor-Independent Model

As illustrated in Figure 1, Code sanity and Graph generator module of VISCR engine consumes vendor-specific IoT Apps (i.e., IFTTT-based Applets, Groovy-based SmartThings, OpenHAB programs) and translate them into vendor-independent trigger and action-based policies (as shown in Figure 5). Similarly, the MUD profiles translate into vendor-independent graph-based ACL policies (as shown in Figure 4). This approach allows each of the functional component of VISCR i.e., composition engine to operate seamlessly on vendor-independent (VI) model. As shown in Figure 2, VISCR generates the vendor-independent (VI) graph-based policies using following key functional modules:

- **ANTLR Parser Generator**: As a first step, we develop the lexer and parser grammar (.g4) files required to translate the vendor-specific IoT apps to an abstracted intermediate representation (i.e., Abstracted LISP Representation (ALR) and Abstracted Tree Representation (ATR) formats) with ANTLR module. ANTLR parser generator uses the Abstracted LISP representations (ALR) of the IoT Apps for performing the code sanity analysis. Note, both the ALR and the ATR representations of IoT apps are not exposed to end users, only the outcome of VI graph generator (3) will be exposed to users and composition engine.

- **VI Graph Generator**: In the next step, automation rules represented in the Abstracted LISP syntax representation are consumed by the VI generator module to translate it to vendor-independent graph-based policies (as shown in Figures 5 & 4). We built (map) file, which is used for maintain necessary mappings between different vendor-specific automation/policy attributes and vendor-independent graph attributes. These vendor-independent attributes (or labels) are used in the construction of final vendor-independent graph-based representation. The vendor-independent graph-based specifications outcome of VISCR (1) is captured using networkx python library for maintaining the policy graphs, required for composing the policy graphs to detect the conflicts (discussed in Section 5).

4.2 Abstractions & Graph-based Specification

As discussed in Section 4.1, VISCR supports mechanism to translate the vendor-specific IoT Apps into vendor-independent graph-based specification. In addition, VISCR also supports simple drag and

4Currently MUD-profiles are limited to support ACL-based traffic filtering rules. It does not support dynamic trigger and action-based policies yet.
The global administrator simply uses (a) Nest device’s firmware version < 17.01 specific to location & type, (b) capability-specific abstraction for nest & belkin devices, (c) Vendor-specific authentication fails in last 30mins, and (d) temporal and security state abstractions of IoT infrastructure.

4.2.1 Tree-based Abstractions. The Infrastructure Abstraction Engine automatically builds necessary abstraction trees required for graph-based policy specification. The abstraction engine continuously churns data from local IoT infrastructure and cloud data sources using device and vendor-specific APIs for building the abstractions [20, 21]. The data extracted from IoT device’s data sources as text is transformed into data tables by the data-source-driver engines that we designed for each vendor’s data format.

Generation of such abstractions allow administrators to delegate the responsibility of policy specification to sub-administrators. For example, it is now possible for a global building/campus administrator to assign Floor1 and Floor2 responsibilities to different sub-administrators. Also, VISCR allows abstraction trees to be built on physical or logical grouping of device (e.g., Figure 3a & 3b). The global administrator simply uses abstraction mappings to delegate infrastructure to each of the administrator, illustrated below. Depending on the assigned abstraction mappings the abstraction engine generates the abstraction trees. For example, to derive the abstraction tree shown in Figure 3a (i.e., list of Nest devices of BLDG1 with firmware < 17.01 organized as per floor and type of devices), the abstraction-mapping required is:

```
abstraction-tree("Nest-Firmware(<17.01)") =
location(BLDG1).floors(*):
  vendor-type(Nest).device-category(*):devices(*)
```

As another example, the abstraction-mapping for capturing the list of devices and their capabilities with respect to their vendor and device-types (Figure 3b) is provided below:

```
abstraction-tree("Capabilities(*)") =
  vendor-type(*):vendor-type(*).device-category(*):
  devices(*):capabilities(*)
```

Representing Abstractions: We represent the complete IoT infrastructure as set of infrastructure-abstraction trees, specific to each of the administrators. The root node of the abstraction tree (i.e., abstraction tree name) uniquely represents each of the abstraction tree present in any IoT ecosystem. The leaf nodes represents set of individual devices. Each intermediate node represents different infrastructure abstractions such as device-types, device-vendors, location, temporal, application details. The infrastructure abstractions trees implicitly capture the boolean Union operator represented as sibling nodes in the abstraction tree. Similarly, the boolean AND operator corresponds to the relationship between the child and parent nodes of the abstraction tree. For representation, each level of abstraction is separated with "." operator, while the constraints to be imposed on to that level is represented with a ":" operator.

VISCR supports a diverse set of abstractions, which will allow IoT administrators to capture different types of policies based on their security status, locations, vendor-type and so on. These include abstractions specific to: (i) security-state, (ii) location, (iii) applications, and (iv) device- or vendor-specific abstractions.

4.2.2 Graph-based Specification. As discussed in Section 4.1, VISCR engine translates the vendor-specific IoT Apps into two different types of policies: (i) trigger- and action-based policies, and (ii) dynamic ACL-based policies. In addition to this capability, VISCR also supports intuitive graph-based specification framework that allows IoT administrators to directly express their policy intents through simple drag and drop-based user interface (UI), which uses policy attributes from tree-based abstractions.

Trigger- & Action-based Policies: Trigger & action-based policies allow the administrator to capture their policy intents for set of IoT devices that perform some predefined action in response to an event triggering. These types of policies can be specified as complex graph-based policies, where each of the node captures abstractions, device names, conditions or actions. Our trigger- and action-based policy graphs have the following format: source IoT device with associated states, set of conditions, dynamic states, associated set of events and respective action/s on target IoT devices (examples in Figure 5).

The source node represents the IoT device on which the event is received. Rest of the nodes represent conditions and state of the IoT infrastructure. The sequential and parallel operators >> and || are used to specify the sequence of IoT-commands that need to be executed. The +/− operators are used to add or remove the list of ACLs that are specific to the current state or condition.

ACL-based Policies: This type of policies either allows or restricts the communication between devices and internet according to the dynamic infrastructure states and conditions. Examples of graph-based access control policies are shown in Figure 4. For the trigger and action-based policy shown in Figure 5, we implicitly add ACLs to ALLOW traffic between devices (i.e., Belkin CO device and other devices on which the action is enforced. In reality, as the communication happens indirectly between the hub or cloud interface and the Belkin device, equivalent ACLs are added to the network.

The starting and end nodes represent the source and destination entities of policies. The edge between the source and target node captures following properties: (i) set of network functions through which the traffic should traverse, i.e., network function chain (NFC), (ii) conditions to be enforced on the traffic depending on the state, and (iii) actions to be taken on the traffic between the source and destination entities. With both the ACLs and trigger-action-based
policies, the states and conditions are represented as nodes along the path for simplified design in the drag-and-drop-based graph specification framework. Alternatively, these could be represented as simple edge properties. The → and –→ arrowed-lines represents the action (i.e., ALLOW/DENY) on the traffic.

4.2.3 Graph-based Policies Specification Syntax. An equivalent specification syntax (Figure 6) is required for capturing each of these graph-based policies in the backend. For example, in the ACL-based policy specification syntax, the permissions to communicate between source and target nodes is specified using action attributes => (i.e., ALLOW) and ! => (i.e., DENY) symbols. The sequence of network functions through which the traffic from a specific source node should traverse to reach the target node or the sequence of actions to be taken is specified using the sequential or parallel operators (e.g., FW (Firewall) => DFI (Deep packet inspection), FW || LB (Load balancer), Exhaust=ON => ExhaustSpeed=High). Note that the sequence and parallel operators are used for traversal of a set of middleboxes in the case of ACL-based policies. In case of trigger-action-based policies, it is used to represent the sequence of actions. Also, in the trigger-action-based policy specification syntax, actions are captured using the iot-commands-action keyword. The wide range of attributes, keywords and symbols used in the policy specification syntax is captured in Table 2.

4.2.4 Rogue Policies. VISCR’s abstraction trees and graph-based specification allows the administrators to specify the policies explicitly using the abstraction trees exposed to each of the IoT users or administrators. This approach of isolating and assigning explicit infrastructure abstractions to each admin, allows VISCR to prevent admins from specifying policies on the infrastructure they do not own (i.e., called rogue policies). However, policies that are directly specified using policy abstraction syntax (§4.2.3) (i.e., bypassing the web-based user interface) may introduce violations. For detecting rogue policies in syntax-based policy specification, the policy composition engine extracts the source and target nodes from the specified policy specification syntax and verifies if both the nodes belong to the policy abstraction trees owned by that administrator. If the policy attributes used in the policy specification are part of the abstraction trees assigned to that admin, then the policies are allowed to perform actual policy composition to further detect other conflicts and violations (discussed in Section 5.2). Policy violations detected in this step are reported as rogue policies.

5 DECONFLICTION & SECURITY ANALYSIS

In this section, we discuss about graph-composition techniques and security analysis used by VISCR for detecting variety of conflicts, bugs and violations that arise among the automation rules.

5.1 Graph-based Composition

The policy composition in VISCR seeks to provide the following capabilities: (i) composition of policies for proactively detecting conflicts in compile time rather than detecting at run time, (ii) automatic resolution of conflicts using precedence mechanism, and (iii) incremental composition that allows trigger-action policies to adapt to the environment at runtime. However, allowing run-time policy composition imposes stringent latency constraints. Hence, policy composition time has to be minimized.

Table 2: List of keywords, attributes, operators and symbols used in VISCR policy specification syntax.

<table>
<thead>
<tr>
<th>Type</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy specification</td>
<td>location, device, type</td>
<td>Keywords for capturing policy attributes and the properties of the IoT infrastructure.</td>
</tr>
<tr>
<td></td>
<td>device-vendor, par-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ent, traffic-type,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source-node, target-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>node, source-state,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>target-state, etc.</td>
<td></td>
</tr>
<tr>
<td>Sequence & Precedence</td>
<td>=> (serial or precedence),</td>
<td>Operators to specify the sequence of operations to be carried out in policy.</td>
</tr>
<tr>
<td>Operators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditional Operators</td>
<td>!=, =, <, ></td>
<td>Operators used to specify dynamic conditions in the policy.</td>
</tr>
<tr>
<td>Composition Operators</td>
<td>policy-add (+), policy-</td>
<td>Operators to add and remove policies from the existing list of policies.</td>
</tr>
<tr>
<td>Attributes / Keywords</td>
<td>remove (-)</td>
<td></td>
</tr>
<tr>
<td>Action attributes /</td>
<td>iot-commands-action, =></td>
<td>Attributes or keywords used to specify the actions to be taken in the policy.</td>
</tr>
<tr>
<td>Keywords</td>
<td>(ALLOW), ! => (DENY)</td>
<td></td>
</tr>
</tbody>
</table>

(a) Equivalent syntax for dynamic trigger-action IoT policies.

SpecACL1: AIComs(NestCams).parent(BLDG1) -> Floor1; device-vendor(Nest).device-type(Cameras).traffic-type(web) => DFI => WF => network(INTERNET)

SpecACL2: AIComs(NestCams).parent(BLGD1) -> Floor1; device-vendor(Nest).device-type(Cameras).traffic-type() => AIComs(NestCams).parent(BLGD1) -> Floor1; device-vendor(Beikin).device-type(Cameras)

SpecACL3: AIComs(*).parent(none) device-vendor(*).device-type(Cameras).temporal-state(>7AM).security-state(compromised) => DFI => WF => network(INTERNET)

(b) Equivalent policy specification syntax of ACL-based policies (ACL1 – ACL3) illustrating different properties.

Figure 6: Examples of ACL-based & trigger and action-based IoT policy specification syntax.

VISCR’s policy composition procedure involves following key steps. First, the normalization step brings all the policies specified by various administrators, using different abstraction trees, to a common abstraction level for identification of contradictory and duplicate policies. The second step, finds contradictions among normalized policies by running composition engine and resolves the conflicts using precedence rules. Unresolved conflicts are flagged to the administrator.

5.1.1 Proactive & Incremental Composition. The goal of policy composition mechanism is to produce conflict-free composed policy
This approach increases complexity along two dimensions: (i) normalizing all the source and destination entities of each policy abstraction tree for effectively normalizing all the source and destination entities of each policy abstraction tree. (ii) the composition times, and (iii) the number of rules required to enforce the policies. Therefore, VISC’s normalization mechanism identifies the common abstraction level to which all the polices specified by administrators need to reduced for conflict detection. If policies are specified using abstraction nodes at different levels of an abstraction tree, composing policies without normalization is an infeasible task. For example, consider two policies specified using the abstractions BLDG1 and NestCams (heterogeneous abstractions) or using BLDG1 and NestCams (heterogeneous abstractions). Here, we do not know if the Floor1 node and Nest node have any relation (i.e., subset, superset, or overlapping hosts or devices) for composing them together into a single policy graph. We resolve this issue by (a) automatically deriving relations across non-leaf nodes of different abstraction trees and maintain these relations as mappings i.e., capturing the details of set of devices or hosts that belongs to each of these nodes of abstraction trees, and (b) choosing an optimum level to which the nodes used in the policy specification need to be normalized.

Normalization: A naive normalization approach is to bring all the policies to the bottom most level, i.e. leaf node level which captures the device-specific details for performing composition. This approach increases complexity along two dimensions: (i) It brings down all policies to the bottom most level even though very small number of policies might need it, exponentially increasing the composition times, and (ii) normalizing all the source and destination policy nodes to bottom most level (i.e., to the level of leaf nodes) also increases the enforcement complexity, due to increase in the number of rules required to enforce the policies. Therefore, VISC uses an intermediate optimum level i.e., Enforcement Level (ELevel) for each policy abstraction tree for effectively normalizing the policies. The enforcement level (ELevel) is chosen in such a way it would allow the policy enforcement engine to directly compile/translate these composed policies to enforceable rules.

Mathematically, we represent the choice of enforcement level as follows. Let \(K_i \) be the abstraction level using which a policy \(P_i (i = 1, \ldots, N) \) is specified. Then, policy \(P_i \) can be normalized to abstraction level \(A_j \geq K_i \). Thus, we aim to normalize to a level \(A \) such that \(A \geq A_i \forall i = 1, \ldots, N \). However, the number of nodes increases with an increase in \(A \). Thus, our objective is to choose the minimum value of \(A \) that satisfies above set of constraints, i.e.,

\[
\text{Minimize } A \text{ subject to: } A \geq A_i \forall i = 1, \ldots, N. \tag{1}
\]

Algorithm 1 describes the graph-composition algorithm, which accepts: (i) a list of graph-based policies that are normalized, and (ii) an empty graph as input, which is used for storing the composed policy graph. Each of the input policy is iteratively checked with the composed graph for identifying an identical or conflicting policy. Each policy’s source node, is compared with the source nodes of the composed policy graph for checking the overlaps. Next, the target node of the input policy is compared with the target nodes of the composed policy graph. Finally, the conditions and action attributes present along the edge of the input policy are compared for overlaps with the edge attributes of the composed policy graph.

The algorithm attempts to resolve conflicts by checking whether a precedence rules exists for any of the policies. Duplicate policies are tracked separately and discarded from composition graph. If it finds a conflicting policy that cannot be resolved with precedence, the policy is dropped from the graph (Lines 11-13) and notified to administrator. If it finds that the source node and the destination node both exist and no conflicts are possible, the policy is then added to the graph (Lines 14-16). Otherwise, it creates new nodes and then adds the policies as edges to the graph (Lines 17-23).

To analyze the algorithmic time complexity, we need to evaluate the cost of iterating over the complete list of policies \(L \), and adding them to the composed Graph \(G \). With the addition of each policy to the composed policy graph \(G \), the composition engine checks for the existence of conflicts. The major time complexity of the algorithm lies with the iteration of the policies \(O(L) \) over the list of all source nodes \(L_s \) in the composed graph \(G \), and then comparing the policy’s source node \(s(p) \) to composed graph’s source nodes \(S(G) \). \(L_e \) is the list of edges for which the edge-properties overlap with the policy’s edge among the overlapping source nodes. Also, \(L_t \) is the list of target nodes of the edges of \(s(p) \) that actually overlaps with the target node of the policy \(P_t \). Therefore, the overall worst-case complexity is: \(O(L \times L_s \times L_e \times L_t) \).

For reducing the composition complexity we employ hashing mechanism and caching technique: (i) the \(m \) host entries of \(s(p) \) are hashed as key-value pairs and the host entries of \(S(G) \) are looked

Algorithm 1 Graph-based Policy Composition

1. \(L \leftarrow \) list of normalized policies to be added
2. \(s(p) \leftarrow \) source node of policy \(p \)
3. \(t(p) \leftarrow \) destination node of policy \(p \)
4. \(a(p) \leftarrow \) action of policy \(p \)
5. \(b(s, t) \leftarrow \) action of edge \((s, t) \)
6. \(G \leftarrow \) Composed graph
7. for all Policy \(p \in L \) do
 8. if \(s(p) \in G \& t(p) \in G \) then
 9. if \((b(s, t) \in G \& a(p)) \Rightarrow b(s, t) \) then
 10. Discard \(p \)
 11. else if \(b(s, t) \in G \& a(p) \neq b(s, t) \) then
 12. Apply \(b(s, t) \) or \(a(p) \) based on precedence
 13. else if \(b(s, t) \notin G \) then
 14. Create \(b(s, t) \) from \(p \)
 15. Add \(b(s, t) \) to \(G \)
 16. Add \(a(p) \) to \(G \)
 17. else
 18. if \(s(p) \notin G \) then
 19. Create \(s(p) \)
 20. if \(t(p) \notin G \) then
 21. Create \(t(p) \)
 22. Create \(b(s, t) \) from \(p \)
 23. Add \(b(s, t) \) to \(G \)
 24. return \(G \)
up in the hash for the existence of the n hosts, reducing baseline complexity will be reduced to: $O(L + L_s + (m + n))$. (ii) caching the comparison calculation outcome as key-value pairs $(s(p), S(G))$ in hash table reduces the overall baseline complexity to $O(L + L_s)$.

5.1.2 Precedence. Precedence rules are used to resolve conflicts among competing policies specified at different levels. Administrator-level precedence evaluation is based on the scope of authority of the policy author. For example, a campus-level administrator in a smart campus may be granted precedence over a building administrator; Action-level precedence allows for explicit prioritization in action invocation. For example, for IoT traffic’s ACL-based policies, Drop > Allow > Quarantine > Redirect can be used as the precedence hierarchy. Similarly, in the case of trigger-action-based policies, when the smoke detector is in fire-alarm state, the action turn OFF heating is given higher precedence than turn ON heating. Custom precedence enables policy attributes (e.g., user, device-type, device-state) to be associated with precedence.

5.1.3 Incremental Updates. The dynamic characteristics of the consumer IoT infrastructure demand that the policy framework be agile in enforcing new set of rules to IoT devices. Since complete policy composition consumes time, up to a few minutes, efficient re-composition techniques are required for rapid policy response. Hence, we use incremental policy composition to ensure an expedient response to dynamic conflicts that arise in the network. The composition engine recomposes only the updated set of policies with the whole set of composed policies. Updating a policy from the composition graph involves first deleting the policy from the graph, and then inserting a modified version. Deleting a policy requires one to remove the edges that belong to the policy from graph. However, the composition procedure might have removed portions of other policies that had a higher precedence during conflict resolution. Hence, these lost portions must be returned.

Incremental policy composition reduces the time to react to dynamic state changes and enforce new rules under the following scenarios: (i) Scenario 1: New policies are added or removed from the IoT infrastructure; (ii) Scenario 2: IoT infrastructure changes (e.g., device location updates, new devices added or existing devices removed); and (iii) Scenario 3: IoT device-state changes (e.g., normal to compromised). Also, for run-time composition VISCR enumerates all the possibilities to pre-calculate the possible outcomes. Hence, for run-time enforcement VISCR simply identifies the outcome specific to the event and simply executes it, which can be carried out in sub-second latency, much faster than incremental composition.

5.2 Security Analysis & Policy Enforcement

In this section, we describe about: (i) how we use the composed policy graphs to perform security analysis for detecting the bugs and violations, and (ii) conflict-free policy enforcement by reconciling policies to device-specific rules.

5.2.1 Gap Analysis. Gap in the automation could leave the IoT infrastructure in a state that is either unstable or unpredictable in its behavior. Such dangling state could make IoT infrastructures vulnerable to attacks. For example the policies S_5, S_7 and S_8 shows the gap in the automation with respect to its temporal and temperature conditions (Table 4). It is evident from these policies that during 8PM –9PM (conflict) 9PM – 8AM (Gap) the thermostat’s temperature settings could not be effectively predicted. As listed in Table 4, similar automation gap could be visible in other types of policies specific to its spatial, security states and other environmental conditions. Therefore, identifying the gap in automation is key step towards detecting the potential bugs that might arise in the IoT infrastructure during run-time.

The VICE module traverses through the final composed policy graph to identify the missing states or conditions for which the policies are not captured (as shown in Figure 7). This is achieved by enumerating and verifying if the policies exist for all the possible temporal, spatial and security conditions (e.g., states captured as part of abstraction tree’s leaf nodes such as shown in Figure 3d), which helps in identifying potentially missing policies i.e., gap in automation. For example, the possible security states of IoT infrastructure could be Normal, compromised, monitoring and quarantine (Figure 3d). By identifying the missing states and their associated policies using the abstractions tree as reference, we can effectively detect the gap in automation.

The completeness of the gap analysis depends on the abstraction engine’s ability to extract all the possible states, conditions and infrastructure details captured as part of the abstraction tree. For example, the temporal, spatial and security abstractions that are auto-generated by the abstraction engine could be verified by user for its correctness, allowing the administrator to add the missing states as leaf nodes to the abstraction trees.

5.2.2 Loops in Automation & Potential Conflicts. In general detecting chains and loops within the automation rules is essential to detect the potential conflicts and violations that might arise during run-time, which are rather challenging to be detected at policy compile time. From the composed policy graph, we detect the loops as follows: (i) We check for existence of paths with in a composed policy graph that has more than one trigger and action pair (i.e., chaining among policies). (ii) Check if any of the actions along the path triggers back any of the events with in the chain. (iii) Check if any of the actions along the path triggers any of the events with in the chain resulting in taking different action, which results in ambiguity and continuous toggling of states and actions. Loops and chaining among the policies (e.g., policies S_3, S_4, S_5 and S_6 in Table 4) with continuously toggling actions are marked as conflicts, while the identified policy chains are marked for potential violations. These policies when realized together will result in either unintended behavior, continuous toggling of actions or might result in unsafe state i.e., leaves door locked or opened at unanticipated time resulting safety violations or sets unintended temperature conditions in home.

Consider for example policies S_4, S_6 and S_8, which results in run-time violations. These policies does not have any thing in common except the actions taken by them i.e., S_6 closes windows in case of specific outdoor temperature, while S_8 opens the windows in case of raining and humidity. Therefore, identifying the run-time conflicts is a challenging task with such policies. As a straw-man solution one could mark all the policies that has conflicting actions and lack of specific temporal attributes among these policies as potential violation. Such approach will result in generating vast
false positive. Exposing large number of false positives to novices of smart home users could prevent them from using the automation framework, rendering these tools useless.

Therefore, it is essential to proactively identify potential violations and the policies suitably fine-tuned to avoid run-time violations. To identify potential run-time violations, V1SCR checks for mutually exclusiveness among the policies. For detecting potential run-time violations, we build relation among all the events, states and environmental conditions that are part of the IoT infrastructure and cluster the events. By clustering the events, states and conditions, we will be able to effectively detect if parameters among any two policies are mutually exclusive or not. To achieve this, we encode our policies [22] (i.e., captured as policy tuple: \langle source-node, source-state, edge states/conditions, target-node, target-state, actions \rangle) and use k-means clustering with elbow method [23] for effectively clustering different types of triggering conditions and associated states. If the policy states and conditions are not mutually exclusive (i.e., on the basis of cluster distance) and pose conflicting actions are considered to generate potential violations during run-time.

5.2.3 Policy Reconciliation. As discussed in 4.1, the policy mappings (i.e., mapping between the IoT app and the respective graph-based policy) maintained by the V1SCR engine helps in effectively enforcing the policies after the conflicts are detected and resolved. The conflict-free composed policy graph along with these mappings are provided as input to the policy reconciliation engine (Figure 1). We develop APIs that effectively leverage this association and reconcile composed policy graph to device-specific IoT apps for enforcement. The policies that are directly provided are graph-based policy input to the V1SCR are reconciled to device-specific rules and distributed on to network of IoT devices on the basis of: (i) vendor-type, (ii) device location, (iii) source devices that are generating the triggering events, and (iv) destination nodes on which the actions need to be enforced. Upon choosing the right set of devices on which the rules are required to be placed, the reconciliation engine translates it device-specific rules for configuring or programming the specific device.

6 PROTOTYPE & EVALUATION

We developed the complete prototype implementation of V1SCR in Python and integrated it with our V1SCR policy specification dashboard. We implemented following components in V1SCR:

<table>
<thead>
<tr>
<th>Policies</th>
<th>Smart Building Policy Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>Any time fire is detected, turn on sprinklers and cameras, and open all locks (doors and windows)</td>
</tr>
<tr>
<td>S_2</td>
<td>From 10PM to 3AM keep the outer doors and windows locked</td>
</tr>
<tr>
<td>S_3</td>
<td>From 8AM to 9PM set the thermostat to 65°F</td>
</tr>
<tr>
<td>S_4</td>
<td>If building temperature rises above 95°F, turn OFF heating/cooling in that room to prevent energy wastage</td>
</tr>
<tr>
<td>S_5</td>
<td>When outside temperature is between 60-75°F open the windows and turn OFF cooling</td>
</tr>
<tr>
<td>S_6</td>
<td>Turn bedroom if Camera OFF (or no access) after 10PM (kid)</td>
</tr>
<tr>
<td>S_7</td>
<td>If building temperature rises above 95°F, lock all windows and reset the thermostat to 65°F</td>
</tr>
<tr>
<td>S_8</td>
<td>In case of rain and humidity <40% and >50% close the windows</td>
</tr>
<tr>
<td>S_9</td>
<td>Keep Camera ON in all rooms and access to it at any time (parent)</td>
</tr>
</tbody>
</table>

Table 3: Example list of smart building policies (S_1-S_{10}).

The abstraction engine of V1SCR is integrated with vendor-specific cloud data sources for extracting dynamic states and configurations of IoT devices. We developed data-source drivers for IoT devices which performs to key functions: (i) translates the states, configurations, and logs of IoT devices into data tables, and (ii) generates datalog rules required for automatically generating tree-based infrastructure abstractions based on the abstraction mappings supplied by administrators [24]. The data-push option provided by each of the vendor’s cloud data-sources allows V1SCR to capture the logs and events specific to dynamic updates in the IoT network.

The graph-based policies specified using the abstraction tree nodes are translated first into equivalent vendor-independent specification syntax and ultimately into a graph dictionary. We used the networkx Python library [25] for capturing and building policy graphs. For visualizing graph-based policies and the composed policy graph, we built the V1SCR policy specification dashboard integrated with networkx [25] and GraphViz library [26].

The composition engine captures the policies in networkx-based graphs, runs normalization and composition algorithms to detect the conflicts and resolves them using precedence rules that are maintained as key value pairs. These conflict-free policies are further analyzed for other bugs and violations. Finally, the composed conflict-free policies are translated to enforceable rules i.e., IoT apps and device-specific configurations. The V1SCR’s policy composition outcome is interfaced with the V1SCR specification dashboard for fine-tuning the policies before enforcement.

6.1 Evaluation

Testbed. We used simulated smart building IoT infrastructure with 907 IoT apps or automation policies framed with 30 different types of consumer IoT devices from 8 different vendors framed for multiple floors of the building. For brevity few policies (Table 3) and simulated smart building view of single floor shown in the Figure 8. The V1SCR module is run on a Dell R710 server with 48GB RAM, 12 cores (2.6GHz) with Ubuntu 4.4.0-97-generic kernel.

Datasets. We use IoT market apps (i.e., both vetted and unvetted), extracted from vendor marketplaces, and publicly available data sources for the smart-home and smart-campus use cases [27–31], also consolidated in our V1SCR repository [32]. We have built following three datasets for our experiments:

DS-1: We simulate a smart building IoT infrastructure (Figure 8) with multiple floors and automate it with 907 IoT apps. We use 907 Groovy-based IoT apps (i.e., homogeneous specifications) for evaluating static analysis-based technique (such as Soteria [9]) and compare with V1SCR. The same set of automation rules programmed with Groovy, OpenHAB, IFTTT, and MUD profiles (i.e., heterogeneous specifications) are used for evaluating V1SCR.
<table>
<thead>
<tr>
<th>Policy Conflict</th>
<th>Conflict Description</th>
<th>Conflict Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1, S_2</td>
<td>When fire is detected between 10PM and 7AM by smoke alarm (S_1), all doors and windows are unlocked (open). With S_2, both exterior door and all windows must be locked during this time. This can result in exterior doors and windows toggling from locked or unlocked resulting in unintended behavior.</td>
<td>Static, Loops</td>
</tr>
<tr>
<td>S_2, S_3</td>
<td>If temperature raises above 90°F, it will enforce that all windows must be locked and thermostat be set to 65°F (S_2). Conflicts with temperature raised due to fire event (S_3).</td>
<td>Static</td>
</tr>
<tr>
<td>S_4, S_5</td>
<td>Between 7PM and 9PM the outer door and windows are locked, thus trigger for both S_4 and S_5 are valid as a result system will toggle between turning off thermostat and setting it to 65°F. Similarly, S_4 can further intervene due to time overlap and can result in chain and again forming a loop.</td>
<td>Chain, Loop, Gap</td>
</tr>
<tr>
<td>S_7, S_6</td>
<td>When temperature outside is 60 – 75°F, S_7 opens the windows, which can possibly trigger S_6 given exterior doors are unlocked too. This policy chaining might result in unintended temperature conditions inside home.</td>
<td>Chain</td>
</tr>
<tr>
<td>S_7, S_8</td>
<td>Rogue behaviour as S_7 is set by parent and S_8 is set by kid in accessing kid’s room Camera after 10PM.</td>
<td>Rogue</td>
</tr>
<tr>
<td>S_9, S_0</td>
<td>Gap as condition is not specified for temperature less than 95°F (i.e., between 74°F to 95°F).</td>
<td>Gap, Static</td>
</tr>
<tr>
<td>S_9, S_0</td>
<td>When it in both raining and temperature between 60 – 75°F, conflicting actions arise i.e., unpredictable if windows should be opened or closed.</td>
<td>Potential Violation</td>
</tr>
</tbody>
</table>

Table 4: Illustrating few types of the conflicts, bugs and violations detected by VISCR for the policies described in Table 3.

DS-2: We use smart-home, smart-campus and smart-city abstractions dataset [28, 30, 33–35] for evaluating the performance of our tree-based abstraction engine in constructing the abstraction trees.

DS-3: We have built tool to generate ≈20K synthetic policies emulating the dataset DS-1, using the policy abstraction trees generated from DS-2. We use random sampling technique to select the source nodes, destination nodes and edge properties (e.g., dynamic environmental states, conditions, and traffic type) from the policy-abstraction trees.

6.1.1 Policy Abstraction

We evaluate the performance of policy abstraction engine with smart city data of up to 100K devices using DS-2. We built up to 400 policy abstraction trees with four levels of abstractions using the dataset. For generating abstraction trees, the abstraction engine need to join hundreds of data tables performing thousands of table join operations. It took <1.2sec to generate up to 400 abstraction trees with 100K leaf nodes in parallel (Figure 9a). The latency performance of abstraction engine stays mostly linear considering the data join operations it performs to generate the abstraction trees. Since extracting data from the network data sources takes random times considering the network latency, we discard network latency parameter in the calculation of abstract tree generation.

6.1.2 Security Analysis

We evaluate the performance of our conflict detection and resolution engine with DS-1 (i.e., 907 IoT market apps) simulated to program the smart building IoT infrastructure (Figure 8) and compare it with Soteria’s violation detection mechanism. Applying model checking, we were able to find 6.6% of the static violations across policies on DS-1, which includes both property and state violations. As shown in Table 5, VISCR on the other hand was able to find ~37.7% of violations within same IoT apps in DS-1. Importantly, VISCR detected 100% of the violations captured by the static analysis technique such as Soteria. Among the 37.7% of IoT apps VISCR reported 10.2% of IoT apps that has more than one violations. Importantly, different class of violations reported by VISCR is illustrated with examples in Table 4.

6.1.3 Policy Composition

The composition cost depends on following two factors: (i) the number of attributes or states used in the IoT apps, and (ii) the number of IoT apps. In this experiment, we perform composition with increasing number of IoT apps (i.e., in subset of 100 apps in each iteration) and capture its composition latency. We keep number of attributes constant at ~30 in this experiment (i.e., the IoT apps or automation use-cases are chosen only specific to these attributes). For example, temperature is considered as an attribute, while the subcategories (e.g., high, low, different levels) of the attribute are still considered as part of the same temperature attribute. We observed that VISCR took ~80.7 seconds to compose 907 apps, while using model checking (i.e., such as technique used in Soteria) took approximately 14.2× more to run, which took ~1147 seconds to detect the conflicts (Figure 9b).

In the next experiment, we evaluate performance of conflict detection engine with increasing number of attributes and constant number of IoT apps (i.e., 907). With increase in number of attributes, the composition (i.e., conflict detection) cost of both the approaches increased. VISCR took 231 seconds to compose 907 IoT apps and 100 different attributes, while Soteria took ~3140 seconds, which is ~13× more time required to detect conflict (Figure 9c).

Following are the vital factors that contribute to improved performance (i.e., reduced conflict detection time with our graph-based composition) compared to Soteria: (i) The complex SAT formulation resulting in enumeration of all possible states required to detect the static violations. (ii) Our approach optimizes the composition cost by parallelizing the translation procedure (i.e., translation of IoT apps to vendor-independent graph-based specification); (iii)

<table>
<thead>
<tr>
<th>Security Analysis</th>
<th>% IoT App Violations</th>
<th>% False Positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute time conflicts</td>
<td>6.6</td>
<td>0</td>
</tr>
<tr>
<td>Potential run-time violations</td>
<td>7.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Gap analysis</td>
<td>10.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Rogue Policies</td>
<td>3.8</td>
<td>0</td>
</tr>
<tr>
<td>Access violations</td>
<td>1.6</td>
<td>0</td>
</tr>
<tr>
<td>App sanity checker (SC)</td>
<td>4.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Loops & chains</td>
<td>3.2</td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td>37.7</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Table 5: Bugs and violations detected on smart building IoT infrastructure dataset DS-1.

In addition, VISCR identifies following major types of conflicts and violations: (i) gap in automation due to the inability of users to completely realize the use-case scenario resulted in 10.4% of total IoT apps being violated with 1.3% false positives; (ii) code-sanity and programming errors in temporal and spatial policies as well as policies involving specific values (e.g., temperature, humidity, time, space) resulted in 4.2% of violations with 0.7% false positives, where the undefined references are upto 1.1% and unused structures are upto 2.1% of policies; (iii) policies that results in access violations due prolonged access to resources beyond the specified period of time counted upto 1.6% of IoT apps; (iv) rogue policies that are implemented by administrators who are not authorized to specify policies on portion of IoT infrastructures that they should not be enforcing rules (with 3.8% of total IoT apps violated); (v) potential run-time violations that are detected from the policies, which includes 7.9% of total violations; and (vi) finally, detected 3.2% of loops among the automation rules that resulted in the unintended and unsafe environmental conditions. Overall, VISCR was able to detect the above discussed violations and bugs with less than 3.8% of false positives or low intensity bugs such as Unused variables or structures and potential violations.
With graph-based composition, we incrementally verify the source nodes and if the overlap exists then further into edge and target properties. This results in avoiding unnecessary comparison operation resulting in improved composition cost with our approach. and (iv) Finally, the graph-based composition mechanism generates the composed graph islands (i.e., policy graphs that are completely independent), when once a policy is detected as conflicting with one of the policy graph island, the policy is marked as conflicting avoiding comparison with other nodes with in the same composed graph and other graph islands. In addition, to provide fair comparison, we ran VISCR with 907 groovy-based apps, our composition engine took <92.1 seconds to compose these apps.

As VISCR also support incremental composition (i.e., to support dynamic changing IoT infrastructure), we evaluate the performance of the incremental composition as follows. We compose 907 IoT apps and generate the composed policy graph. We then randomly choose 100 IoT apps each time and change their attributes and allow it to incrementally recompose. From our experiments, it is evident that for recomposing 10 IoT app programs took <2.1 seconds, while recomposing 100 apps took ~16.3 seconds. In normal working conditions of any IoT infrastructure, it is expected to have fewer than 10 IoT app change at any instance of time.

Finally, we evaluate the performance of VISCR with large scale synthetic dataset (DS–3) to emulate the smart city IoT infrastructures with ~20K graph-based policies. We composed 20K graph-based policies by choosing the source and target nodes of the policies at different levels of abstraction trees i.e., choosing nodes at depth level 1 – level 4 of abstraction tree. We run this experiment for multiple iterations to capture the average composition engine latency. For depth level = 1, the composition cost is much higher than when policy abstracts are chosen at level 4 as the nodes are chosen more towards leaf node level results in much lesser normalization cost. Therefore, 90% of the time our tool took <760 seconds to compose 20K policies specified at level 1. Similarly for composing the policies specified at level 4 VISCR took <300 seconds.

With graph-based composition, we incrementally verify the source nodes and if the overlap exists then further into edge and target properties. This results in avoiding unnecessary comparison operation resulting in improved composition cost with our approach. and (iv) Finally, the graph-based composition mechanism generates the composed graph islands (i.e., policy graphs that are completely independent), when once a policy is detected as conflicting with one of the policy graph island, the policy is marked as conflicting avoiding comparison with other nodes with in the same composed graph and other graph islands. In addition, to provide fair comparison, we ran VISCR with 907 groovy-based apps, our composition engine took <92.1 seconds to compose these apps.

As VISCR also support incremental composition (i.e., to support dynamic changing IoT infrastructure), we evaluate the performance of the incremental composition as follows. We compose 907 IoT apps and generate the composed policy graph. We then randomly choose 100 IoT apps each time and change their attributes and allow it to incrementally recompose. From our experiments, it is evident that for recomposing 10 IoT app programs took <2.1 seconds, while recomposing 100 apps took ~16.3 seconds. In normal working conditions of any IoT infrastructure, it is expected to have fewer than 10 IoT app change at any instance of time.

Finally, we evaluate the performance of VISCR with large scale synthetic dataset (DS–3) to emulate the smart city IoT infrastructures with ~20K graph-based policies. We composed 20K graph-based policies by choosing the source and target nodes of the policies at different levels of abstraction trees i.e., choosing nodes at depth level 1 – level 4 of abstraction tree. We run this experiment for multiple iterations to capture the average composition engine latency. For depth level = 1, the composition cost is much higher than when policy abstracts are chosen at level 4 as the nodes are chosen more towards leaf node level results in much lesser normalization cost. Therefore, 90% of the time our tool took <760 seconds to compose 20K policies specified at level 1. Similarly for composing the policies specified at level 4 VISCR took <300 seconds.

8 CONCLUSION

Emerging consumer IoT infrastructures are characterized by a growing number of heterogeneous devices. VISCR provides a unified policy engine that allows for conflict-free policy specification and enforcement in such environments. VISCR achieves this by unifying policy abstractions, automatically extracting IoT infrastructure topology and converting diverse policy languages such as Groovy-based SmartThings, OpenHAB, IFTTT-based templates, and MUD-based profiles into a vendor-independent graph-based specification. These abstractions enable VISCR to detect rogue policies, bugs, and conflicts. They also allow for easier specification and efficient composition of dynamic policy intents, from users and administrators.

In a dataset of 907 IoT market apps with a mix of Groovy, OpenHAB, IFTTT, and MUD-based policies, VISCR detected conflicts in 342 apps, provided resolution mechanisms in under 81 seconds, and adapted to new policies with sub-second latency.