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Abstract
GPU spatial sharing among jobs is an effective approach to
increase resource utilization and reduce the monetary and
environmental costs of running deep learning workloads.
While hardware support for GPU spatial sharing already
exists, accurately predicting GPU interference between colo-
cated workloads remains a concern. This makes it challeng-
ing to improve GPU utilization by sharing the GPU between
workloads without severely impacting their performance. Ex-
isting approaches to identify and mitigate GPU interference
often require extensive profiling and/or hardware modifica-
tions, making them difficult to deploy in practice.

This paper presents KACE, a lightweight, prediction-based
approach to effectively colocate workloads on a given GPU.
KACE adequately predicts colocation interference via exclu-
sive kernel metrics using limited training data and minimal
training time, eliminating the need for extensive online pro-
filing of each new workload colocation. Experimental results
using various training and inference workloads show that
KACE outperforms existing rule-based and prediction-based
policies by 16% and 11%, on average, respectively, and is
within 10% of the performance achieved by an offline-optimal
oracle policy.
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1 Introduction
Applications of Deep Learning (DL) models, such as im-
age processing and speech recognition, have exponentially
grown in recent years [19], resulting in useful services and
products [12, 28]. Despite the many benefits of DL mod-
els [38], their heavy computational requirements have re-
sulted in a significant demand for expensive and power-
hungry GPUs [11]. This immense GPU demand underscores
the need to fully utilize available GPUs to amortize costs.
DL models and workloads vary significantly in their re-

source usage profiles. Some DL workloads, such as BERT-
based training [8], have high GPU compute requirements
but a small GPU memory footprint. Others, such as Whisper-
based inference [30], have a larger GPU memory footprint,
but a moderate GPU compute requirement. Further, train-
ing and inference workloads have distinct resource needs,
complicated by different model architectures. Even different
batch sizes of a given model can result in significantly differ-
ent resource requirements; for example, in our experiments,
a Whisper-based inference workload with batch size of 16
had a 33% higher GPU compute utilization compared to the
same workload with a batch size of 2. Consequently, a DL
workload may not fully utilize the fixed resources on a given
GPU model, resulting in underutilization of expensive GPUs.

While the variability in GPU resource requirements of DL
workloads creates an underutilization problem, it also lends
itself to a possible solution—spatially sharing GPU resources
among diverse DL workloads to increase GPU utilization. Hard-
ware support already exists for GPU spatial sharing (see Sec-
tion 2). Nonetheless, there are several challenges that make
it difficult to spatially share the GPU between DL workloads:
• Performance interference. Sharing a GPU between just
two DLworkloads can result in unpredictable performance
degradation for one or both colocated workloads [18, 35].
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For example, when we colocated a BERT [8] training work-
load with an ALBERT [17] training workload, they expe-
rienced a throughput drop, relative to an exclusive run,
of 40% and 37%, respectively. When the same BERT work-
load was colocated with a ViT [10] inference workload,
the corresponding throughput drops were 19% and 3%,
respectively. The much lower drop in throughput in the
latter case was because the colocated Vit workload was
an inference workload, and so did not require high GPU
compute resources (e.g., for backpropagation). While the
colocated ALBERT workload in the former case has much
fewer parameters, and thus a lower memory requirement,
it is a Transformer-based model, requiring significant GPU
compute resources for training.

• Colocation candidates. For a target DL workload that is
to be executed on a GPU, there could be several candidate
DL workloads for colocation (e.g., those in the ready queue
of a GPU cluster service [41]). While coarse-grained re-
source usage patterns of individual colocation candidates
can be readily obtained using an exclusive run, this in-
formation may not be enough to accurately predict the
performance degradation under colocation.

• Profiling overhead. A natural approach to determine
which workloads to colocate is to predict their perfor-
mance under colocation. Machine Learning (ML) tech-
niques are a promising solution for such predictions. How-
ever, ML techniques typically require a large training set
to make accurate predictions. For the workload colocation
problem, generating multiple training samples by repeat-
edly running colocated workloads will require significant
time and effort. Further, the time required to train complex
ML models can also impose significant overheads.

In light of the above challenges, we pose our problem state-
ment as follows: “Given a DL workload that is to be executed,
how to choose a colocated DL workload to improve GPU uti-
lization while minimizing the performance degradation of the
colocated workloads?”

There has been some recent work on predicting colocated
performance under GPU spatial sharing (see Section 6). How-
ever, such works typically focus on DL training jobs with
checkpointing to save states [21, 39], and are thus not appli-
cable to inference workloads, which are latency sensitive, or
training workloads that may have performance constraints.
Further, the profiling overhead can be high when predicting
colocated performance. For example, multiple colocations
have to be profiled online (at runtime) for each target work-
load to be executed [18]. There are also approaches that only
rely on offline profiling, but require changes to the GPU
driver or scheduler for support [35]. We thus notice a gap
in literature on solutions that achieve efficient GPU spatial
sharing without hardware/firmware changes and without sig-
nificant profiling overhead.

In this work, we present KACE, a lightweight, application-
level solution that leverages offline profiling to predict colo-
cation performance under spatial sharing. KACE leverages
these predictions at runtime to determine the best candidate
workload to colocate with a given target workload. While
KACE can generally be applied to any GPU workload, we
focus on DL workloads in this work. Unlike recent works
that only focus on long-running training jobs (where the
profiling overhead is not important) [43], KACE applies to
both inference and training workloads.
Using the right features, we find that a small training set

(∼20% of the entire dataset) and a simple linear regression
model, with trivial training time, provide adequate predic-
tion accuracy for KACE to effectively colocate potentially
unseen workloads at runtime. KACE eliminates the need for
extensive online profiling, as done in recent works [18], and
instead relies on one-time, offline runs of individual work-
loads to extract meaningful metrics. We find that GPU kernel
metrics provide valuable information for colocation, enabling
KACE to outperform system-metric–based approaches.
We implement KACE in Python and evaluate its perfor-

mance by comparing it with various baselines using 7 diverse
DL workloads with different batch sizes. Our experimental
results, using PyTorch for DL runs on an NVIDIA V100 GPU
with MPS support, show that KACE achieves over 90% of the
colocated performance that an offline-optimal oracle policy
achieves using only ∼20% training data. Compared to recent
approaches, KACE provides 11% higher performance, on av-
erage, and as high as 88% for certain workloads. Compared
to rule-based approaches, KACE provides 14% higher perfor-
mance, on average, and as high as 52% for certain workloads.
Even in the case of unseen workloads that have not been en-
countered in training, KACE continues to outperform other
approaches, achieving 11%–16% higher performance. The code
for KACE is publicly available to promote further research
and facilitate reproducibility [1].

2 Background on GPU Sharing Mechanisms
GPU time-sharing is a resourcemanagement strategywhere
multiple jobs share a GPU over time (in distinct time slots),
involving context switching between jobs. Various schedul-
ing strategies, such as round-robin [24], can be employed to
schedule jobs over time. However, minimizing the context
switch overhead between jobs continues to be a practical
challenge (see Section 6). Further, not all DL jobs can fully
utilize the GPU resources [44], suggesting the need for GPU
spatial sharing for improved GPU utilization.

GPU spatial sharing allowsmultiple jobs to execute concur-
rently on a GPU by partitioning GPU resources via various
supported hardware and software mechanisms.
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NVIDIA Multi-Instance GPU (MIG) partitions the GPU into
independent resource instances of various sizes. MIG ensures
isolation of compute and memory resources but cannot dy-
namically adjust instance sizes on the fly; reconfiguring a
MIG instance and checkpoint-restarting a DL job could take
minutes [18]. Further, the fixed resource sizes of MIG in-
stances may lead to GPU underutilization due to a lack of
flexibility. For example, the A100 GPU with 40GB GPU mem-
ory only supports MIG instances with memory sizes of 5GB,
10GB, 20GB, or 40GB [26]. Also, by design, MIG ensures
isolation between instances, preventing the exploitation of
unused GPU resources across instances. Finally, MIG is typ-
ically available only on a handful of high-end data center
GPUs [26].

NVIDIA Multi-Process Service (MPS) eliminates context
switches by merging colocated CUDA contexts. Specifi-
cally, MPS allocates one copy of GPU storage and sched-
ules resources for all CUDA processes, instead of holding
the context separately [6]. It also allows each process to
exclusively occupy Streaming Multiprocessors (SM) via the
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE variable. Due to its
flexibility, MPS has been shown to outperformMIG [32]. Fur-
ther, MPS is more readily available on several GPU models
than MIG. We use MPS in this work for GPU spatial shar-
ing. Note that the underutilization due to fixed-size MIG
instances can be addressed by employing MPS to run mul-
tiple DL workloads within a MIG instance; in fact, MPS is
supported on top of MIG [26]. As such, our solution for MPS
in this work can aid MIG deployments as well.

AMD compute-unit masking in AMD GPUs allows users to
specify a set of compute units on which kernels should exe-
cute [29]. This mechanism appears similar toMPS, as both en-
able concurrent kernel execution with memory interference.
Consequently, our MPS-based solution could be applicable
to AMD GPUs equipped with compute-unit masking.

3 KACE System Design and
Implementation

This section describes the system design of KACE. The key
components of KACE are: (1) Workload profiler, (2) Model
trainer, and (3) Colocation predictor; these are depicted in
Figure 1 along with the interactions between components.

3.1 Workload profiler (offline component)
The profiler collects GPU metrics for individual workloads
offline. These metrics are collected one-time only.
A common approach to evaluate GPU performance is to

gather overall system metrics, such as compute and memory
utilization, using, for example, nvidia_smi [25]. However,
we note that the compute and memory utilization metrics
only indicate whether the GPU is busy, rather than providing
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Figure 1: KACE system design showing our feature set.

actual utilization of processing units (Floating Point Process
Units, Tensor cores, etc.) [43]. Thus, these metrics only pro-
vide coarse-grained estimates of performance.

Kernel metrics provide detailed insights into individual
kernels, including metrics such as Stream Multiprocessor
(SM) throughput and achieved occupancy. These metrics
offer precise performance data at the kernel level, unlike
nvidia_smi metrics which provide broader system-level in-
formation. For example, SM throughput measures the maxi-
mum throughput across 22 processing pipelines, considering
operations in FP64, ALU, and FMA [27].
Despite the crucial information (actual resource utiliza-

tion) that kernel metrics provide for interference prediction,
profiling kernel metrics can take substantial time [35]. How-
ever, the profiling in KACE is done offline, and is thus not
on the critical path when selecting the colocation candidate
at runtime (see Section 3.3). We thus leverage both system
and kernel metrics for KACE. We also include individual
workload throughput (obtained via an exclusive run without
colocation) as a metric as it is a strong performance indicator
and can be collected with system metrics without additional
profiling. The selected metrics we employ in KACE are: SM
busy rate, memory busy rate, memory capacity, compute
(SM) throughput, memory throughput, DRAM throughput,
number of threads, number of registers, static shared mem-
ory, and throughput of single workload without colocation
(shown, abbreviated, in Figure 1).

To collect metrics, we perform two offline profile runs for
each workload (to prevent kernel profiling overhead from
impacting system metrics). System metrics require a short
run (taking, on average, ∼1 minute); we execute 100 steps
for each workload, excluding the first 10 steps to account for
the bootstrap effect of PyTorch’s lazy initialization. For the
kernel metric run, we only require one step of each workload.
After collecting kernel profiles, we sum up the kernel metrics
across kernels and weigh them by kernel duration.

3.2 Model trainer (offline component)
To train (and test) a model for predicting the performance
of colocated workloads, we run experiments where pairs of
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workloads are colocated. The system design and methodol-
ogy of KACE can be extended beyond two colocated work-
loads (see Section 5.2.5), including for non-DL workloads,
since the key hurdles we have to overcome to improve colo-
cation performance are not specific to workloads pairs or
DL workloads. To fully evaluate the impact of interference,
we focus on performance during the interval when both
workloads are executing; as such, when any one workload
completes execution, we terminate our profiling processes.

For the training data feature set, we combine the features
of colocated workloads; we sum up the raw metrics (e.g.,
number of threads) and average out the metrics that are re-
ported as percentages (e.g., busy rate). Finally, we normalize
all features before training. While the trainer can accommo-
date any prediction model, we evaluate four different ML
techniques in Section 5.2.
A key contribution of KACE is its ability to train with

a small sample size. We evaluate prediction performance
under different training set sizes, including the challenging
scenario where the target workload to be colocated is not
part of training, in Section 5.1; we find that KACE can predict
adequately using only 20%–30% of the data for training.

3.3 Colocation predictor (online component)
The predictor determines, at runtime, the workload to colo-
cate with a given target workload to maximize performance.
While any definition of performance can be employed, we
consider throughput sum to be our metric in this paper;
see Section 4 for details. Given a target workload to be exe-
cuted, the predictor iterates through all colocation candidate
workloads (e.g., from a ready queue [41]) and predicts the
throughput sum for each combination of target and candi-
date workloads. The candidate workload predicted to provide
the highest throughput sum is selected for colocation with
the target workload (see Figure 1).

3.4 Implementation
The KACE implementation is done at the application level,
without any OS or hardware modifications. We implement
the core logic of KACE in Python with around 2,500 lines of
code. For system metric profiling, we utilize nvidia_smi
pmon to capture the resource usage of processes [25].
For offline kernel profiling, we use NsightCompute [27];
NVIDIA_MPS is disabled in this stage. During online predic-
tion runs, we initiate the MPS daemon. Once the predictor
determines the ideal workload for colocation, it submits them
to the running MPS server for colocated execution.

4 Experimental Setup and Methodology
Evaluation setup. We conduct our evaluation on a server in
the Chameleon Cloud [16] equipped with 2 Intel Xeon Gold
6230 CPUs, 128GB RAM, and a 32GB NVIDIA V100 GPU. We
use PyTorch 1.13 and CUDA12.3 for our experiments.

Workload Batch SM busy MEM busy MEMCAP
BERT-train [8] 2,8,16 97.0% 45.2% 5.1GB
ViT-train [10] 2,8,16 97.2% 37% 17.6GB

ALBERT-train [17] 2,8,16 97.2% 45.1% 7.1GB
BERT-inf [8] 2,8,16 95.1% 38.6% 1.4GB
ViT-inf [10] 2,8,16 28.5% 5.4% 3.2GB

Whisper-inf [30] 2,8,16 44.2% 19.6% 11.7GB
Wav2Vec2-inf [2] 2,8,16 18.9% 6.6% 12.2GB

Table 1: Workloads employed in our primary evalua-
tion. Metrics reported in last three columns are aver-
ages across batch sizes.
Evaluation methodology. We consider a target workload that
is scheduled for execution and a list of candidate workloads
that can be colocated with the target workload. Our perfor-
mancemetric, for a givenworkload colocation, is the through-
put sum of the colocated workloads, 𝑋1 + 𝑋2, where 𝑋1 and
𝑋2 are the throughput of the target and candidate workloads,
respectively, when colocated. We focus on throughput sum
as it is commonly used in colocation evaluations [35]. When
reporting our results, we normalize the observed throughput
sum with the throughput sum achieved by Oracle, 𝑋Oracle,
which is an offline-optimal policy representing the best colo-
cated pair (described below).

Normalized throughput sum =
𝑋1 + 𝑋2

𝑋Oracle
(1)

Each colocation experiment is repeated 5 times. We report
the average value of the normalized throughput sum along
with error bars that represent the standard deviation.
Workloads. We employ 21 workloads, encompassing 7 train-
ing and inference models with 3 batch sizes each. The work-
loads have relatively high GPU utilization, with an average
SM busy rate of over 60%. Detailed workload information
is shown in Table 1. By considering all possible pairs of
workloads that can be accommodated in GPU memory, we
obtain 181 possible colocations. We also conduct a limited
evaluation (in Section 5.2.6) with an autoregressive work-
load, GPT2-xl (1.5B parameters) [31], to demonstrate KACE’s
applicability to modern DL workloads.
Comparison baselines. We compare KACE with several base-
lines, including impractical ones, to evaluate its performance.
• Oracle is an impractical, offline-optimal policy that runs
all possible colocation combinations for a given target
workload and selects the pair that achieves the highest
throughput sum.

• Xu et al. [42] developed a method to predict workload inter-
ference among co-located VMs using GPU andCPU system
metrics to train a Random Forest model. Their approach in-
volves classifying GPU kernels as long or short to estimate
context switch costs, and can be applied to non-virtualized
environments as well. We implement their policy by col-
lecting the metrics mentioned in their work and training
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Figure 2: Prediction performance of KACE with differ-
ent ML techniques as a function of training data size.

a Random Forest model to predict the throughput sum of
each colocation pair.

• Random reports the mean of throughput sums of all possi-
ble colocations. For example, a given target workload could
potentially be colocated with any of the 21 workloads we
experiment with. Random obtains the throughput sum for
all 21 colocations (except those that do not fit in memory)
and reports the mean.

• MEMCAP, SM%, and MEM% are rule-based selection poli-
cies for choosing the workload to colocate with the target
workload. Specifically, MEMCAP selects, for colocation
with the target workload, the workload that has the small-
est GPU memory footprint metric. SM% and MEM% select,
for colocation, theworkload that has the highest Streaming
Multiprocessor (SM) utilization or the lowest GPU mem-
ory bandwidth utilization, respectively. All three metrics
can be easily obtained using nvidia-smi [25].

• Best rule based picks the best-performing rule from among
MEMCAP, SM%, and MEM%, for each colocation scenario.
This can be considered an offline policy as it requires run-
ning all rule-based policies and selecting the best.

5 Evaluation Results
This section presents our key experimental results. We start
by discussing our performance prediction results under dif-
ferent ML models and training set sizes. Then we present
our workload colocation results, highlighting the throughput
sum gain afforded by KACE compared to various baselines.

5.1 Colocation performance prediction
We evaluate the accuracy of KACE for predicting through-
put sum of colocated pairs of workloads using four model

candidates: Random Forest (RF ), a 3-layer 128×64×32 Deep
Neural Network (NN ), H2O Automatic Machine Learning
(AutoML) [13], and Linear Regression (LR). For RF, we per-
form a grid search, testing 100 configurations out of a search
space of 4,320 to find the optimal hyperparameters. For NN,
we apply early stopping to prevent overfitting. AutoML is
an automated ML framework that selects optimal models
from Distributed RF, Gradient Boosting, DL, and ensemble
models within a given time constraint. We allocate 1 minute
for AutoML to find the optimal model. We report prediction
results on the test set for different training data set sizes.
The top two graphs in Figure 2 show the R2 and RMSE

values, respectively, for different ML techniques as a function
of the training data set size (reported as a % of the total data
set size). We see that the different ML techniques evaluated
result in slightly different R2 and RMSE values, with AutoML
performing the best among them and Random Forst (RF) per-
forming theworst. The superior performance of AutoML is to
be expected as it sweeps through various ML techniques and
employs the best one for each scenario. We find that AutoML
typically picks DNN model as the best technique. The poor
performance of RF is likely due to the strong correlations in
the feature set, leading to a lack of diversity in decision trees
and resulting in inconsistency [37]. Additionally, given the
relatively small training set that is common in experimen-
tal works like ours (due to the time and effort required to
generate samples), RF may result in overfitting [3].
The bottom graph of Figure 2 shows, on a log scale, the

time it takes for each ML technique to be trained. Note that
the training time does not change much with the training
data set size as the number of training data samples is small
(the total data set size is less than 200 samples). Of course, the
effort required to generate more training data scales with the
number of training samples. KACE_LR has the least training
time, by far, among the techniques evaluated; this is to be
expected as LR is a relatively simple technique. KACE_RF
has the highest training time as we also perform a grid search
here to look for the best hyperparameters, and RF is amore in-
volved learning technique. KACE_AutoML also has to search
through various models, and so requires time.
For the colocated workload prediction problem, a simple

ML technique like LR performs adequately, even outper-
forming more complex techniques like RF (in terms of R2

and RMSE values), for several reasons. First, features like
SM throughput may have a strong linear relationship with
the throughput sum, making LR an ideal fit. Second, LR can
extrapolate predictions beyond the range of training data
based on regression modeling. Third, models such as LR, that
have high explainability, can benefit from valuable features,
such as kernel metrics, that influence the response variable
(throughput sum, in our case).
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Figure 3: Normalized throughput sum achieved by
KACE under different ML techniques.

5.2 Workload colocation results
We now present our workload colocation results for KACE.
5.2.1 KACE under different ML techniques. Figure 3 shows
the normalized throughput sum achieved by KACE, averaged
over all 21 target workloads in the test set, using different
ML techniques. We see that the throughput sum achieved
gradually increases with the training set size as the model
learning improves with more training data. Interestingly, the
achieved throughput sum values are quite similar across ML
techniques; this is in agreement with the somewhat similar
R2 and RMSE values obtained by the different ML techniques
in Figure 2. Given the low training effort for LR and its ability
to obtain competitive throughput results under colocation, we
choose LR as the prediction model for KACE.
5.2.2 KACE vs. other baseline policies. We now compare
KACE with other baseline policies to evaluate the colocation
performance. In real-world scenarios, significant training
data may not be available or might require substantial time
and effort to generate. As such, we consider a small training
data set size of ∼20% of the entire dataset (corresponding
to about 40 training samples). Results did not qualitatively
change with larger training data set sizes.

Figure 4 shows the normalized throughput sum achieved
by KACE (using LR) and other baseline policies, averaged
over all 21 test set workloads. The normalization for each test
case is with respect to Oracle; as such, Oracle shows a value
of 1. Starting with Random, we see that it only achieves 54%
of the throughput sum achieved by the offline-optimal Oracle.
This is not surprising as Random effectively colocates a given
target workload with a random workload, which can result
in significant GPU contention and performance degradation
for the colocated workloads.
The rule-based policies, MEMCAP, SM%, and MEM%, re-

sult in a wide range of results, with SM% performing even
worse than Random, and MEMCAP and MEM% achieving
70%–80% of the performance gains afforded by Oracle. Recall
that MEMCAP selects the workload for colocation that has
the smallest GPU memory footprint. However, this metric

Figure 4: Normalized throughput sum of different colo-
cation policies when using a small training data set.

provides limited information and cannot capture, for exam-
ple, the model architecture details. SM% selects the workload
for colocation that has the highest SM utilization; while this
should maximize GPU utilization under colocation, it can
lead to high resource contention. MEM% selects the colo-
cation workload that has the smallest memory busy rate,
favoring workloads with fewer data transfers and smaller
input data. As such, this policy routinely overlooks coloca-
tion candidates such as speech recognition inference that
perform frequent data transfers.
The Best rule-based policy selects the best of the three

rules (MEMCAP, SM%, and MEM%) for each test set target
workload, and as such has a higher throughput sum than
the individual rule-based policies. While the Best rule-based
policy is impractical, it serves as a good baseline policy. For
example, we note that Best rule-based improves upon MEM-
CAP by achieving a roughly 7% higher average throughout
sum of 83.7%. This suggests that MEMCAP likely outper-
forms the other rule-based policies (SM% and MEM%) in
individual test cases; on further inspection, we find that
MEMCAP is the best single rule-based policy in 13 out of
the 21 test scenarios.

Xu et al. [42] achieves 81% of the throughput sum achieved
by Oracle. This is slightly higher than that achieved by MEM-
CAP, but lower than that achieved by the (impractical) Best
rule-based policy. Given that the feature set of Xu et al. is
more extensive than the singular feature employed by MEM-
CAP, the above results suggest that the additional features in
Xu et al. do not provide significant benefits. This highlights
the importance of selecting useful features when predicting
colocated performance under GPU sharing.

KACE outperforms all other comparison baselines, achiev-
ing close to 91% of the throughput sum achieved by Or-
acle. Compared to the next-best practical policy (since Best
rule-based requires offline runs), Xu et al., KACE achieves
an 11% higher average throughput sum (relatively speak-
ing). The superior performance of KACE can be attributed to
the kernel information that it employs as part of its feature set,
which allows it to better estimate GPU resource contention.
We note that Xu et al. also employ some kernel metrics, such
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Figure 5: Normalized throughput sum of KACE, Xu et al., and MEMCAP (best rule-based policy) for all test cases.

as long/short kernel information, but these features aim to
capture GPU context switches among VMs, which is different
from our objective of maximizing throughput.
5.2.3 Results for individual workloads. To better understand
the performance of KACE on individual test workloads, we
plot the normalized throughput sum achieved by KACE, Xu
et al., and MEMCAP for all 21 test set workload colocations
in Figure 5; error bars represent the standard deviation over
the 5 runs for each colocation. The ‘_bx’ notation in the work-
load name refers to the batch size of x and the ‘-train’/‘-inf’
refers to the workload type. We do not show other policies
as they are either impractical or perform worse, and to aid
comparisons. Of the 21 colocations, we find that KACE is
the best policy in 13 cases. In these 13 cases, KACE outper-
forms Xu et al. and MEMCAP by 20% and 24%, respectively, on
average, and by as much as 88% and 52%, respectively. Of the
remaining 8 cases, Xu et al. is the best policy in 6 of them,
and outperforms KACE by 7%, on average, and by as much as
14%. In 2 cases, MEMCAP is the best policy, and outperforms
KACE by 6%, on average, and by as much as 7%.

We see that policy performance varies with different work-
loads. For example, both Xu et al. and MEMCAP underper-
form in the case of ViT inference, especially for batch size
2 (‘ViT_b2-inf’). On further inspection, we find that Xu et
al. consistently selects ViT_b2-inf as the colocation candi-
date due to its low SM and MEM usage, underestimating
the throughput benefits of larger batch sizes, and thus fails
to choose the optimal ViT_inf-b16 colocation candidate. In
contrast, KACE additionally considers individual workload
throughput, thereby often selecting the optimal colocation
candidate. On the other hand, MEMCAP frequently chooses
BERT_b2-inf as the colocation candidate due to its mini-
mal memory footprint, but its high compute needs (92% SM
busy rate) lead to significant interference when paired with
ViT_b2-inf, which has moderate compute needs (29% SM
busy rate). KACE accounts for thread and register usage,

incorporating GPU compute information, and thus outper-
forms MEMCAP. A similar behavior is also observed when
colocating with the Whisper inference workload.
5.2.4 Results for unseen workloads. We now consider the
challenging case where the target workload to be executed is
not part of the training set (under any batch size); this could
arise in practice either because a new workload is encoun-
tered at runtime or because the training set size is limited.
We evaluated all 7 distinct workloads with the highest batch
size, ensuring that the target workload, for any batch size, is
not included in training. We find that KACE continues to per-
form well, achieving ∼92% of the throughput sum achieved
by Oracle. Compared to Xu et al. and rule-based policies,
KACE achieves 11% and 16% higher average throughput sum,
respectively. The above results show that KACE performs
well even for unseen workloads.
5.2.5 Results for multiple unseen workloads. We now
demonstrate KACE’s ability to handle multiple (more than
2) colocated workloads; we consider the unseen workload
case. Specifically, we evaluate two colocation configurations:
(1) a target, unseen workload to be colocated with two other
candidate workloads; and (2) a target, unseen workload to be
colocated with three other candidate workloads. Our experi-
mental results (not included here) show that KACE continues
to perform well, achieving 96% and 91% of the throughput
sum compared to Oracle when colocating with two and three
workloads, respectively. While KACE can be extended be-
yond four colocated workloads, as the size of deep learning
models continues to increase, we do not expect that nu-
merous workloads will be needed to saturate a GPU while
maintaining performance efficiency [4].
5.2.6 Results for an unseen autoregressive workload. We
now consider colocation with an autoregressive workload,
given that such modern models can be different from tradi-
tional vision and NLP models. Specifically, we experiment
with the GPT2-xl model [31] with output token lengths of 10,
20, and 214 (the average token length in LMSYS-CHAT-1M
dataset [22]). To maintain low profiling overhead, we profile
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kernel metrics during the prefill stage and the decoding stage
of the first token (representative of compute-light sequential
token generation stages); the MEMCAP system metric cap-
tures the memory footprint of the entire decode stage as the
MEMCAP value increases with output token length. We use
the same training dataset as in Table 1 (that is, without in-
cluding GPT2-xl) and test with GPT2-xl as the target, unseen
workload to be colocated with another workload. We find
that KACE achieves 92.3% of the throughput sum compared
to Oracle and is ∼10% better than the next-best policy (Best
rule-based). Xu et al. performs poorly in this case (57.8% of
Oracle) as it does not consider the total memory footprint,
an important feature for autoregressive models given their
large output token length. The above results suggest that
KACE can be extended to modern GPU workloads as well.

6 Related Work
Performance prediction under colocation. Colocation perfor-
mance predictions can be made using either online profiling
in the presence of interference or offline profiling based on
monitored metrics. While online profiling offers high accu-
racy, it cannot proactively schedule workloads for colocation,
which is the focus of our work.

Xu et al. [42] predict interference between colocated DL
jobs that are run on VMs on the same GPU. The authors
also focus on predicting the VM context switch costs, and
so select features for training that reflect these costs. As
discussed in Section 5.2, KACE outperforms Xu et al. due
to its more appropriate feature set. MISO [18] predicts the
optimal MIG partitions by evaluating colocation speedup
with MPS, requiring multiple online profiles for each coloca-
tion to determine the best configuration. Horus [43] uses DL
computation graphs during offline profiling to predict GPU
utilization when colocating DL training workloads. How-
ever, its objective of maximizing GPU utilization need not
translate to maximizing throughput sum, as acknowledged
by the authors of Horus. Further, as shown using the SM%
approach in Figure 4, maximizing SM utilization can lead to
poor throughput gains due to high interference. Finally, both
Horus and MISO are primarily suited for training workloads
due to checkpoints and offline runs, which are impractical
for inference jobs with performance requirements.
We note that there are works that focus on performance

prediction under colocation [7, 15, 23, 36], but for non-GPU
workloads. As such, these works cannot predict the colo-
cated performance of GPU-based DL workloads as they are
oblivious to GPU features.
GPU scheduling for DL workloads. Prior GPU scheduling
works involving temporal sharing aim to minimize the cost
of state swapping between DL jobs. Gandiva [40] introduces
a checkpoint-restart mechanism to transfer training states

between the GPU and host memory. Salus [44] optimizes
GPU state management to reduce context switches. There
are also other works that focus on inference serving with
temporal sharing [33, 34]. KACE does not focus on temporal
sharing of the GPU, and instead considers spatial sharing.

For spatial sharing of the GPU, Wavelet [39] and Zico [21]
colocate forward and backward passes of training tasks to
reduce peak memory usage. IADeep [4] predicts training-
specific metrics when colocating and exploits long-running
training jobs to stop/restart them for optimization. However,
these solutions are specific to training workloads. GSLICE [9]
and gpulet [5] focus on performance isolation for colocated
GPU workloads with the objective being predictable perfor-
mance, which is different from KACE’s objective of maxi-
mizing throughput. SHEPHERD [45] and AlpaServe [20] im-
prove GPU efficiency for model serving, but do not primarily
focus on interference-aware GPU colocation. Orion [35] re-
duces GPU interference via kernel-level scheduling through
the colocation of memory- and compute-intensive kernels.
However, Orion requires offline kernel labeling and specific
CUDA support for effective scheduling. In contrast, KACE
focuses on workload-level solutions, tackling GPU interfer-
ence from the application perspective. Further, Orion aims
to minimize interference among a given colocated workload
set whereas KACE aims to find workloads to colocate to
maximize throughput. As such, KACE and Orion are some-
what complementary. Similarly, KACE can be considered
complementary to (the AMD-specific) REEF [14].

7 Conclusion
This paper presents KACE, a framework for efficient GPU
spatial sharing that accurately and quickly predicts interfer-
ence among colocated DL workloads. Our key contributions
include: (i) selecting a set of kernel and system metrics that
provide valuable information to predict colocated perfor-
mance; (ii) using limited and one-time offline and exclusive
profiling of individual workloads, eliminating the need for
costly online profiling; (iii) identifying a simple ML model
that provides adequate colocation performance prediction
accuracy with minimal training time and a small training
dataset; and (iv) experimentally evaluating KACE over mul-
tiple training and inference workloads and against various
baselines. Evaluation results show that KACE achieves over
90% of the throughput sum achieved by Oracle using only a
fraction of the training data.
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