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Abstract

Resource under-utilization is common in cloud data centers. Prior

works have proposed improving utilization by running provider

workloads in the background, colocated with tenant workloads.

However, an important challenge that has still not been addressed

is considering the tenant workloads as a black-box. We present

Scavenger, a batch workload manager that opportunistically runs

containerized batch jobs next to black-box tenant VMs to improve

utilization. Scavenger is designed to work without requiring any

offline profiling or prior information about the tenant workload.

To meet the tenant VMs’ resource demand at all times, Scavenger

dynamically regulates the resource usage of batch jobs, including

processor usage, memory capacity, and network bandwidth. We

experimentally evaluate Scavenger on two different testbeds using

latency-sensitive tenant workloads colocated with Spark jobs in

the background and show that Scavenger significantly increases

resource usage without compromising the resource demands of

tenant VMs.
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1 Introduction

Cloud computing allows tenants to rent economical and virtually

unlimited resources, such as Virtual Machines (VMs), to deploy

their applications. The cloud, public or private, is often hosted by a

provider (e.g., Amazon [2] or Google [18]) on multiple servers in a

data center.
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Servers in cloud data centers often experience low resource

utilization [10, 63]. A study focused on Amazon EC2 observed that

cloud server usage is often below 10% [30]. A more recent study

from Microsoft reported that cloud VMs hosted on Azure have low

utilization; the study found that 60% of the VMs have an average

CPU usage of less than 20% [6] (see Section 2).

To increase server utilization, prior works have proposed run-

ning provider’s batch workloads, such as Hadoop or Spark jobs,

next to tenant VMs opportunistically to leverage idle resources [19,

32, 68]. While effective, the key challenge with this approach is

interference – the performance degradation of the colocated tenant

VMs due to resource contention with batch workloads at the un-

derlying host server. This interference can be caused by contention

for several resources simultaneously [24]. Worse, this interference

is dynamic due to resource demand variations in tenant and batch

workloads [16, 67].

In an ideal cloud environment, provider (or background) work-

loads should run next to tenant (or foreground) workloads or VMs

in such a way that their resource utilization complements that of

the tenant VMs. The exact trade-off between performance isolation

of tenant workloads and increase in resource utilization depends on

the cloud environment and the provider, and should be tunable. In

public clouds, performance isolation is key. In private clouds, such

as clouds that operate within an organization, a balance is sought

between performance isolation for specific high-priority workloads

and modest increase in resource utilization. For best-effort clouds,

such as community clouds [36], more aggressive resource manage-

ment can be employed to improve utilization.

While there has been prior work on background workload man-

agement (see Section 8), there are specific shortcomings that are

yet to be addressed satisfactorily. This is further evidenced by the

recent study of production server usage at Alibaba (see Section 2)

that found the average CPU and memory utilization to be at most

50% and 60%, respectively, despite (i) colocation of online and batch

jobs, and (ii) oversubscription of resources [33].

(1) Need for an application-agnostic, black-box approach. Existing

solutions often either (i) rely on historical usage patterns to

predict the resource demand of foreground VMs [6, 67], or

(ii) benchmark tenant VM performance to carefully colocate

background workloads [9, 10], or (iii) regulate the resource

usage of background workloads to avoid SLO violations for the

foreground VMs [3, 22, 32]. Such solutions are ineffective and,

at times, infeasible in cloud environments since tenants do not

expect their VMs to be instrumented [41], and are not required

to share their performance SLOs with the provider [15]. Even if

foreground VMs can be profiled for a short time, there is often

significant variation in tenant workloads that cannot be fully

captured by a finite profiling run [24].
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(2) Need for a dynamic and tunable solution. Another class of solu-

tions focuses on careful VM placement to avoid interference in

the first place [59]. However, dynamic changes in tenant loads

can lead to interference after placement. Further, techniques like

VM migration are not agile enough to be frequently employed

on tenant VMs to mitigate the dynamic interference [11, 39].

We thus require solutions that are dynamic and can adapt to

resource usage variations of the tenant workloads. Further, as

discussed above, the solutions should be tunable depending on

the performance isolation needs of the environment.

(3) Need to address multi-resource interference. While some recent

works have proposed dynamic solutions, they often focus on a

single resource, such as CPU [22, 62, 68]. Given that, for realistic

workloads, several resources may simultaneously be under con-

tention, such resource-specific solutions are inadequate [24].

We present Scavenger, a provider-centric resource manager that

dynamically regulates the resource usage of background jobs to

complement the resource demand of black-box foreground work-

loads. We consider a cloud environment with tenant VMs as the fore-

ground workload and Spark jobs (within the YARN framework [58])

in the background running on containers. We choose containers

as the execution environment for batch jobs for agility in case we

need to quickly regulate the background resource usage. Note that

Scavenger is a batch workload manager and thus complements

schedulers such as Borg [59].

Scavenger does not make any assumptions about the foreground

workload and does not require any prior information about them.

We do not profile their resource usage offline and do not instrument

them. Instead, we treat the foreground workload as a black box and

react to their resource demand in an online manner. This makes

Scavenger application-agnostic in practice and easy to deploy.

The core idea of Scavenger’s resource regulation algorithm is

to use the mean and standard deviation of the foreground work-

loads’ resource usage, over a window of observations, to obtain a

statistically significant estimate of the opportunity for background

usage. This approach is easy to implement, is analytically sound,

and helps to immediately react to abrupt changes in the foreground

workload’s resource demand, including phase changes.

Scavenger regulates processor resources (including CPU and

last-level cache (LLC)), memory capacity, and network bandwidth.

Scavenger leverages cgroups for processor resource regulation and

uses the Instructions-Per-Cycle (IPC) counter to track the impact

on foreground VMs in a black-box manner. For memory capacity

and network bandwidth regulation, we monitor the resource usage

of foreground workloads and reactively scale (up or down) the

resource consumption of batch job containers. In the worst case, if

the foreground demand increases abruptly, we terminate the tasks

running within the background containers to immediately release

resources. We implement Scavenger as a daemon running on the

server with less than 1% overhead.

Our experimental results on two different testbeds using la-

tency sensitive foreground workloads from CloudSuite [14] and

TailBench [25], colocated with Spark batch jobs, show that Scav-

enger can satisfactorily balance the trade-off between foreground

performance isolation and increasing the server resource usage.

Without Scavenger, foreground performance degradation is often

Time (days) →
0 5 10 15 20 25

C
P

U
 u

til
iz

at
io

n 
(%

) 
→

0

20

40

(a) Average usage timeline.

x = Peak CPU utilization
0 50 100C

um
ul

at
iv

e 
pr

ob
, F

(x
)

0

0.5

1
Avg of Peak
95%ile of Peak
Max of Peak

(b) CDF of peak usage.

Figure 1: VM-level CPU utilization for the Azure trace.

higher than 50%, and can be as high as 10–20×. With Scavenger,

the average performance degradation is less than 10%.

We find that, under the black box requirements, while CPU

regulation may not suffice by itself to address contention, when

combined with LLC, network, and memory regulation, Scavenger

significantly improves the utilization of multiple resources while

mitigating contention; using Spark jobs in the background, Scav-

enger consistently increases server memory and CPU usage by more

than 100%. We also conduct limit studies with resource-intensive

microbenchmarks running in the background to highlight the per-

formance isolation efficacy of Scavenger.

2 Background and Motivation

To motivate the need for Scavenger and identify its requirements,

we analyze cloud data center resource usage traces from Azure

(2016) and Alibaba (2018).

2.1 Azure VM-level resource usage traces

The Azure trace contains first-party VM CPU utilization data from

one region [6]. The trace spans over 30 days and reports (only) CPU

utilization (min, average, and max) of over 2 million VMs, every 5

mins, over their lifetime.

Figure 1(a) shows the timeline plot for average CPU utilization

for every 5-min interval, averaged over all VMs that exist during

that interval. We see that the average CPU utilization is quite low,

typically less than 20%. Figure 1(b) shows the CDF of peak CPU

utilization; the CDF is obtained by considering the average, 95%ile,

and max of per-interval peak usages reported for each VM over their

respective lifetime. We find that the median of the average, 95%ile,

and max of peak usage is about 40%, 70%, and 90%, respectively.

This shows that peak usage (over the lifetime) can be high when

considering individual VMs. This observation also suggests that

VMs (in the Azure trace) were likely provisioned for peak CPU

usage.

Summary: The VM usage pattern is variable enough to provide

opportunities for colocation. However, since VMs may require full

CPU capacity at some point, the colocated workloads need to be ag-

ile enough to relinquish resources. Also, since tenant load is hard to

predict, and some VMs do require full capacity at some point, over-

subscription of resources may not be feasible for all servers.

2.2 Alibaba colocated job usage traces

The Alibaba production cluster traces [1] contain server-level CPU

and memory usage sampled every 10s for about 4,000 servers over
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Figure 2: Analysis results for the Alibaba cluster trace.

8 days. The servers had colocated online (or foreground) container-

ized jobs and background non-containerized batch jobs to increase

resource usage; normalized usage of both jobs is also provided. How-

ever, performance/latency information for jobs is not provided.

The solid lines in Figure 2(a) show the CDF of average total

utilization (foreground+background) for CPU and memory across

all servers; the average is taken per server over the length of the

trace. We also plot the average usage for only the foreground online

jobs. We see that the average CPU usage is almost always less than

50%. If we consider only foreground, then average CPU usage is

almost always less than 20%. Thus, while colocation helps, there is

still room for improvement in CPU usage.

In terms of average memory usage, colocation helps significantly,

with the average server-level usage typically exceeding 70%. The

per-server peak memory usage numbers are also quite high, sug-

gesting that most servers do require their provisioned memory

capacity at some point during the 8 days of the trace duration.

However, we do find instances where there is significant tempo-

ral variation in memory usage, representing an opportunity for

improvement. To highlight the scope for improvement, we show

specific examples of normalized per-server memory usage snippets

in Figure 2(b). Server A has high memory usage in the first 4 hours,

peaking at about 70% usage; however, thereafter, its memory usage

is low, around 30%; we see a similar behavior for server D. Server E,

on the other hand, has memory usage in the 20–40% range, except

for the distinct peak of about 90% at the 9 hour mark; similarly for

servers B and C.

Summary: The above findings show that there is potential for improv-

ing resource utilization in data centers despite the current practices

of colocation and oversubscription. The memory usage results show

that it is critical for batch workload managers to be dynamic to fully

realize the potential of improving resource usage via colocation.

3 Novelty of Scavenger in the Context of Prior

Work

There has been much prior work that focuses on improving cloud

resource utilization by launching background jobs colocated with

foreground (or tenant) workloads. Given the complexity of the

problem, and the inherent trade-off between performance isolation

and resource usage, this continues to be an active research topic; we

are aware of at least 5 papers on this topic in 2018 [22, 31, 53, 57, 62]

and at least 1 in 2019 [3]. While we discuss related work in detail

in Section 8, we now highlight some of the prior works, classified

according to the premise of the approach, to put our work in context.

• The first category of prior work considers a cluster where fore-

ground workloads are also operated by the provider, e.g., Her-

acles [32], Borg [59], and Bistro [19], or where the foreground

workload’s performance can be monitored by the provider, e.g.,

PARTIES [3]. In such cases, the performance requirements of the

foreground workload are known a priori, which allows the solution

to accordingly regulate background usage.

• Another category of prior work assumes that foreground work-

loads’ resource usage can be predicted, e.g., ResourceCentral [6],

Zhang et al. [67], and TR-Spark [63], or can be accurately profiled,

e.g., Paragon [9] and Cuanta [20]. The profiled or predicted re-

source usage pattern of the foreground workload is then used to

tailor the resource consumption of the background workload(s).

• The third category focuses on regulating the usage of a single

resource, such as CPU (e.g., MIMP [68]), LLC (e.g., dCat [62]), or

network (e.g., QJUMP [21]).

We argue that there is considerable potential for research on improv-

ing the usage of multiple resources simultaneously by colocating

batch jobs with black-box tenant VMs; this defines the scope and

novelty of Scavenger. The black-box requirement is realistic in pub-

lic clouds as tenant VMs cannot (or should not) be instrumented,

and also because their workload may change dynamically over

time [24, 41]. Even if foreground VMs can be profiled for a short

time, there is often significant variation in tenant workloads that

cannot be fully captured by a finite profiling run [24]. The black-

box assumption is also beneficial in private clouds as it avoids

the overhead of profiling the workloads and tracking their perfor-

mance. In contrast to existing approaches (Section 8) that either

assume the tenant is a white box or require a one-time profiling

of the tenant (e.g., PerfIso [22]), Scavenger is truly black-box, or

application-agnostic, in nature.

4 Design of Scavenger

We consider a cloud data center with several physical machines

(PMs), or servers, that host tenant VMs, which are referred to as

foreground workloads or VMs or jobs; each PM may host sev-

eral tenant VMs. We regard these VMs as black-box workloads

with unpredictable resource consumption and unknown applica-

tion SLO requirements. The only information the provider has is

the resources requested by the tenant VMs and any metrics avail-

able at the host/hypervisor, such as resource usage and hardware

performance counters. While the design of Scavenger is generic, in

this paper we assume that the PMs run Linux.

To improve resource usage, providers can launch batch jobs colo-

cated with the foreground VMs; we refer to such provider-owned

batch jobs as background workloads or jobs. These could be com-

plex data analytics workloads, such as Hadoop [54] or Spark [64]

jobs, or simple computational jobs. Given their agility, we consider

background jobs to be running on containers. Background jobs are

controlled by the provider, and are not black box.

To address the resource contention between foreground VMs

and the background containers, Scavenger monitors the resource
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Figure 3: Illustration of Scavenger’s generic algorithm.

demand and performance counters of foreground VMs, and dynam-

ically regulates the resource usage of the background jobs to satisfy

the demands of the foreground. In the worst case, tasks within a

container can be killed to immediately release resources for fore-

ground VMs. We rely on the fault tolerance model of the batch job

framework to prevent the entire batch job from being terminated if

a subset of its tasks are killed. Commonly employed batch job frame-

works, such as Spark [64] or Hadoop [54], already provide this fault

tolerance feature by default; the failed task can be relaunched on a

different container to continue job progress. The monitoring and

resource regulation is managed via Scavenger daemons that run on

each cloud PM, thus making Scavenger distributed in nature. In this

paper, we consider contention for processor (including CPU and

last-level cache (LLC)), memory capacity, and network bandwidth

resources.

4.1 High-level overview of Scavenger’s

resource regulation algorithm

While the exact resource regulation algorithm is different for dif-

ferent resources, as we explain in the following subsections, the

core idea is similar. At runtime, Scavenger periodically monitors

specific metrics from the foreground VM, such as network usage or

number of instructions executed, to estimate the range of resource

requirements for the foreground VM(s). In our implementation, we

use a monitoring interval of one second to balance responsiveness

and low overhead, similar to prior work [20, 59, 62].

Initially, when the foreground VM starts executing, we do not

allocate any resources to the background and instead monitor the

foreground metrics forw seconds, wherew is the tunable window-

size parameter. Based on the observed metrics, say {x1, x2, . . . , xw },

Scavenger computes the sample mean, μ = (
∑
w

i=1 xi )/w , and the

sample standard deviation, σ =
√
(
∑
w

i=1(xi − μ)2)/(w − 1). Since

these empirical measures are known to be consistent estimators

of the true underlying distribution [61], we obtain a statistically

significant estimate of the foreground VM’s resource demand as

[μ − c · σ , μ + c · σ ], where c is a tunable parameter, referred to

as std-factor. The probability that the resource demand lies in the

(μ ± c · σ ) range is higher when considering the sum of metrics of

multiple foreground VMs [23], as suggested by the Central Limit

Theorem.

Based on the obtained (μ ± c · σ ) range, the generic Scavenger

algorithm proceeds as follows:

(1) If the metric observed in the next interval is within the (μ±c ·σ )

range, we consider the foreground VM’s resource demands as

being satisfied.

(2) If there is a significant deviation of the observed metric beyond

this range, we consider this a phase change in the foreground

workload and/or a violation, and react accordingly (as detailed

in the following subsections).

(3) The difference between total resource capacity and (μ + c · σ )

can then be used by the background jobs; see details in the fol-

lowing subsections. Note that we reserve the c · σ capacity for

the foreground as “headroom”. If the foreground uses this head-

room, Scavenger can infer the increased resource demand of

the foreground and regulate the background usage accordingly.

Figure 3 illustrates an example scenario for our generic algorithm.

The Scavenger algorithm is intentionally designed with tunable

parameters, such as std-factor andwindow-size, to control the extent

of colocation. This is helpful when applying Scavenger to specific

environments; for example, Scavenger can be more aggressive in

private clouds that tolerate some performance degradation.

4.2 Mitigating memory capacity contention

We closely follow the generic algorithm from Section 4.1 for regu-

lating the memory allocation of the background jobs and use the

per-second memory usage of the foreground VM as the monitored

metric. Based on the initial window-size seconds of observation,

we compute the sample mean and sample standard deviation and

reserve (μ + c · σ ) for the foreground VMs; the remaining memory

is allocated to the background containers.

Any time the foreground memory usage, say m, goes above

the (μ + c · σ ) upper limit, we treat it as a violation. When this

happens, Scavenger immediately pauses or kills (depending on the

implementation) a subset of tasks within the background containers

to release the required memory. Additionally, Scavenger resets μ

to be the current foreground memory value, m (that caused the

violation), instead of using the moving-average μ computed over

the lastw (window-size) seconds. This is done for two reasons: (i) to

quickly update (increase) the foreground reserved memory to (m +

c · σ ), and (ii) to essentially remodel the foreground memory usage

behavior by resetting the μ estimation. Note that the σ computation

(the sample standard deviation over the last w seconds) remains

unchanged.

On the other hand, if the foreground memory usage goes below

(μ − c · σ ) for w consecutive seconds, we treat it as a phase change

for the foreground workload. When this happens, we recompute

the new μ and σ over the lastw seconds. Note that μ and/or σ are

only reset when there is a violation or a phase change. Also note

that when the memory usage is in the (μ ± c · σ ) range, there is no

change in the foreground or background memory allocation.

At all times, the difference between total memory and foreground

reserved memory (μ + c · σ ) is allocated to background jobs. We

discuss the black box sensitivity analysis for the tunable parameters

c andw in Section 6.1.

4.3 Mitigating network contention

The network bandwidth regulation algorithm is similar to the

memory regulation discussed above. We monitor the foreground

traffic through the virsh interface every second. To regulate the

background network traffic, we use Linux’s traffic control mecha-

nism [52]. In particular, we use the token bucket filter to enforce
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Figure 4: Impact of background LLC workload on CloudSuite performance (left y-axis) and its IPC (right y-axis).

bandwidth limits on the background jobs’ egress traffic; we do not

impose any limits on the foreground workload traffic.

4.4 Mitigating processor cache contention

There are several processor resources that must be regulated, in-

cluding cache and CPU cores. We first discuss the more challenging

problem of regulating cache contention here, and then discuss CPU

core contention.

Regulating the last-level cache (LLC) usage is complicated by

the fact that we cannot easily regulate the cache access or capacity

of the applications on a server. Newer processors, such as the Intel

Xeon E5 v4 family, allow for fine-grained LLC capacity management

via Cache Allocation Technology (CAT) [40]. In order to target

generic processors, we do not assume access to CAT. We discuss

how Scavenger can be integrated with CAT in Section 7.

Need for a metric to track cache contention. The difficulty in

addressing cache interference is that there is no effective way to

estimate the cache pressure created by a workload, as opposed to

the easily available memory capacity and network bandwidth usage

metrics. Prior work suggests that using the number of cache refer-

ences or cache miss rate (CMR, monitored via performance coun-

ters) can help predict the cache requirements of a workload [62].

We find that this is not always the case.

We experimented with the SPEC CPU benchmark suite colocated

with dCopy [7] (LLC microbenchmark) and found benchmarks, such

as gcc and zeusmp, that have high cache references and CMR, but

are not significantly impacted by dCopy. We also found examples,

such as sphinx3 and tonto, where the CMR and cache reference rate

is low, but the impact of dCopy is significant. This is because even a

few cache references can lead to eviction of part of the working set

of the foreground VM, resulting in significant latency impact. On

the other hand, due to pipelining of instructions, some workloads

can better tolerate cache interference.

Making the case for Instructions-Per-Cycle as a proxy met-

ric. The Instructions-Per-Cycle (IPC) metric has often been used

in computer architecture studies as a proxy for performance [13,

38, 44, 46, 65]. Some recent works have also used IPC and related

metrics as a proxy for cloud workload performance [35, 66]. For

Scavenger, the intuition behind using IPC as a proxy is that if IPC

drops, we can consider this as an indication of processor cache

contention, and thus an indication of cache pressure.

To make the case for using IPC as a proxy for foreground VM

performance, we examine how IPC reacts to a drop in performance

due to cache contention. We use a 4-core server and launch a 1-

core foreground VM running one of five latency-critical CloudSuite

workloads (see Section 5.3) and run the dCopy LLC microbench-

mark [7] on a container using the other three cores; see Section 5.2

for details about our experimental setup. Note that there is no shar-

ing of cores. To control the induced cache load, we add a sleep timer

to the dCopy microbenchmark.

Figure 4 shows our experimental results for degradation in fore-

ground IPC (right axis) and performance (left axis) when compared

to the baseline (no background jobs), as a function of the back-

ground CPU usage. For each workload, we use the performance

metric reported by the benchmark. We show the average and stan-

dard deviation bars in each case based on 10 runs of each experiment.

As the background load increases (on the 3 cores allocated to it), we

see that IPC and performance clearly degrade in a correlated man-

ner for all workloads, except Media streaming. For Media streaming,

the reported performance metric (transfer time) does not change

much, despite a noticeable degradation in IPC. This is likely because

Media streaming is network intensive, and does not use much CPU.

Since a proxy is a must for the black box scenario, in the absence

of a perfect proxy, we argue that, based on the above results, IPC is

a viable (albeit far-from-perfect) alternative cache pressure proxy.

Processor cache regulation. The above results also show that

simply partitioning the CPU cores, as in PerfIso [22], is not enough

to avoid contention due to shared caches. However, the above re-

sults do suggest that we can mitigate the impact of background

cache pressure on foreground performance (IPC) by limiting the

amount of time the background runs on the processor. We thus

cap the load induced by background containers by regulating their

CPU quota (maximum CPU cycles given to a process under the

Completely Fair Scheduler).

Our algorithm for regulating the CPU quota is based off of our

generic algorithm framework in Section 4.1, with some subtle dif-

ferences. To preserve the black box nature of Scavenger, we use IPC

as the monitoring metric, measured every second (configurable),

and compute the (μ ± c · σ ) range based on IPC measurements.

Note that for the memory and network regulation algorithms, the

upper limit of the range, μ + c · σ , was used as an estimate of the

amount of resources to be reserved for foreground. However, when

using IPC as the metric, the upper limit does not directly corre-

spond to the required CPU quota, thus providing no estimate of

how much quota can be allocated to the background. Instead, when

the foreground IPC is in the (μ ± c · σ ) range, we consider this as

an indication that the foreground has negligible cache contention

and thus increase the background container’s CPU quota by some

fixed amount, quota-increase.
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If the IPC drops below μ − cσ , we decrease the background

container quota by a fixed factor, quota-decrease, to reduce the

cache contention. Finally, if IPC is beyond μ ± 2 · cσ , we consider

it as a phase change for the foreground and immediately drop the

CPU quota of the background to a minimum value. We then wait for

window-size seconds to reestablish the μ and σ for the foreground

workload in its new phase. We discuss sensitivity analysis for the

tunable parameters of the algorithm in Section 6.1.

Note that there is a potential weakness to employing IPC as a

proxy for cache pressure. When the processor is not under con-

tention, then IPC may not be a good proxy for cache pressure as it

may degrade due to other resource contentions, such as network

bandwidth. While Scavenger will detect and mitigate the other

contentions in a timely manner, it will respond to the potentially

degraded IPC metric by (unnecessarily) lowering the background

container’s CPU quota. As a result, the background job progress

will be negatively impacted; however, the foreground workload

performance will not be impacted.

4.5 Mitigating CPU core contention

As noted in prior work, sharing of CPU cores between foreground

and background jobs can result in unpredictable contention [26, 27].

We tried setting the cpu.shares value under Linux’s cgroups to

prioritize foreground VMs over background containers, but this did

not provide sufficient isolation (see Section 7). Instead, we consider

the cores of the foreground VMs to be pinned and use cpuset to

allocate only those cores to the background containers that are

not being used by the foreground. This prevents any contention,

including for per-core caches, that arises by sharing of cores.

5 Evaluation Methodology

This section describes the evaluation methodology we employ for

the performance evaluation results presented in Section 6. We start

by detailing our Scavenger prototype implementation, followed by

our experimental setup and the workloads we employ for evaluating

Scavenger.

5.1 Scavenger prototype implementation

Our prototype implementation for the Scavenger daemon is largely

written in C++. The main Scavenger background daemon com-

bines the resource regulation algorithms from Sections 4.2 – 4.5

into a single process. Given its design, the core Scavenger algo-

rithm is easy to implement, requiring about 750 lines of code. For

CPU management, our Scavenger daemon interacts with the Linux

cgroups subsystem; we use a simple shell script to achieve this

result. The daemon constantly monitors the respective resources

(via virsh [29]) and IPC (via hardware performance counters) of

the foreground VMs. Based on the algorithms, the daemon changes

the resource allocation of the background containers dynamically

using resource-specific mechanisms: TC [52] for network, cpuset

for core allocation, CPU quota for processor, and YARN APIs for

memory. Our Scavenger daemon implementation results in about

1% cpu overhead, on average. Note that Scavenger does not require

changes to the kernel or to YARN.

Deployed architecture: Figure 5 illustrates our Scavenger deploy-

ment on a cluster of cloud physical machines (PMs), which are

assumed to be under the control of the provider. The orange boxes

Figure 5: Illustration of our Scavenger deployment.

on each PM in Figure 5 represent foreground tenant VMs whose

workload is considered to be an unknown (black-box). The blue

boxes represent background job containers; these could be running

worker processes of distributed data processing frameworks such

as Hadoop and Spark (see Section 5.4). The worker processes read

from/write to the data sources via the network. Each PM runs our

Scavenger daemon (red box) that interacts with the foreground

VMs and background containers. We next explain the specific ex-

perimental setups we employ for evaluating Scavenger.

5.2 Experimental setup

We use two different sets of servers for our experiments.

Lab testbed: Each server has 1 socket with 4 cores (Intel Xeon E3

v3, 3.4GHz), sharing an 8MB L3 cache; and 16 GB memory. Servers

are connected via 1Gb/s links.

Cloud testbed: In this CloudLab testbed [4] (Clemson site), each

server has 2 sockets with 10 cores each (Xeon E5 v2, 2.2GHz), and

a 25MB L3 cache per socket; and 250 GB memory. Servers are

connected via 10 Gb/s links.

We use KVM (on top of Ubuntu 16.04) to deploy VMs on these

PMs; the size of the VM is dictated by the foreground workload.

For background jobs, we use Docker (v18.03) to launch containers.

5.3 Foreground workloads

We employ the following latency-critical workloads, representative

of realistic online services, as the foreground application to evaluate

the efficacy of Scavenger:

CloudSuite [14]. We use the latest version, CloudSuite 3.0 [43],

which provides eight workloads, of which five can be categorized

as latency-sensitive workloads.

(1) Web serving is a PHP-MySQL-Memcached based multi-request

class social networking benchmark application. 95%ile response

time is used as the performance metric.

(2) Web search deploys Apache Solar search engine to respond to

simulated clients’ web search requests. 90%ile response time is

used as performance metric.

(3) Data serving uses Yahoo Cloud Serving Benchmark (YCSB) [5]

to generate loads for a Cassandra data store. Throughput is used

as the performance metric.

(4) Data caching employs a Memcached caching server and Twitter

dataset to simulate the behavior of Twitter. 95%ile response

time is used as performance metric.

(5) Media streaming uses Nginx as a streaming server for hosted

videos and httperf as the client that requests videos. Average

transfer time across all requests is used as the performance

metric.
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(a) Maximum number of violations (lower
is better).

(b) Background memory afforded (higher
is better).

Figure 6: Sensitivity analysis for std-factor and window-size param-

eters of the memory regulation algorithm.

TailBench [25]. TailBench is a recent benchmark suite specifically

designed for analyzing latency-critical applications. There are eight

workloads in the suite, all of which use 95%ile response time as

the reported performance metric (further details can be found in

the TailBench paper [25]): (i) xapian, an online search benchmark

using the Wikipedia dataset as search index; (ii) moses, a statis-

tical machine translation application using the opensubtitles.org

English-Spanish corpus; (iii) silo, an in-memory database applica-

tion driven using TPC-C [56]; (iv) specjbb, an industry-standard

Java middleware benchmark [50]; (v) masstree, a key-value store

application driven using YCSB [5]; (vi) shore, an on-disk database

driven using TPC-C [56]; (vii) sphinx, a speech recognition system

driven using the AN4 audio dataset [49]; and (viii) img-dnn, a hand-

writing recognition application driven using the MNIST images

database [12].

All of the above workloads employ their own custom load gener-

ators, resulting in dynamic load variations (in the range of 10–60%

CPU load in our experiments).

5.4 Background workloads

We employ microbenchmarks and Spark jobs as our background

workloads; microbenchmarks are used as adversaries to stress test

the performance of Scavenger.

Microbenchmarks. We employ the following for our adversary

studies: (i) dCopy [7] copies vectors repeatedly to stress the cache;

(ii) stress-ng [51] is a cpu stress benchmark; and (iii) iperf [55] is

a network bandwidth measurement tool that we employ to stress

the network.

Spark jobs. Spark [64] is a scalable and resilient distributed data

processing framework that is popularly employed for iterative ma-

chine learning jobs. Spark jobs rely on distributed storage platforms

to store their job data. In our deployment of Spark (v2.3), we use

the distributed HDFS [47] as the storage core. We also employ

Yarn [58] (v3.1), a resource management framework that manages

the cluster resources and schedules user applications, to manage

background jobs. For the Spark workload, we employ analytics

jobs from BigDataBench [17] and Spark-Bench [48], such as FFT,

KMeans, Sorting, etc.

6 Evaluation Results

We now present our evaluation results for Scavenger. We start with

sensitivity analysis results to configure Scavenger, and then present

our main evaluation results on both testbeds using Spark jobs in the

background. Finally, we discuss our adversarial (limit) study using

microbenchmarks in the background to evaluate the performance

isolation of Scavenger under stress. Where possible, we evaluate

the impact of the foreground and background workload’s resource

demand on Scavenger’s ability to improve utilization.

6.1 Sensitivity analysis

We use sensitivity analysis to determine the parameter values to

be used for the resource regulation algorithms from Section 4.2 –

4.4; note that the CPU cores regulation algorithm from Section 4.5

has no tunable parameters. Our analysis must be black-box and

should not involve workloads that will serve as foreground in the

evaluation.

Memory regulation algorithm sensitivity analysis. To deter-

mine the right values for the window-size and std-factor parameters

of our memory regulation algorithm from Section 4.2, we require a

black-box approach that does not involve the foreground workload.

We resort to simulations for sensitivity analysis and use the recent

Alibaba traces [1] containing foreground memory usage, sampled

every 10s, for about 4,000 servers for 8 days.

Figure 6 shows the impact of different window-size and std-factor

parameter settings on the maximum number of violations (across all

traces) and the average background memory afforded. In general, a

lower std-factor (c) favors available background memory but results

in high violations (i.e., not being able to meet the memory demand of

foreground). This is because lower the c value, lower is the amount

of memory reserved for foreground (μ + c · σ ), see Section 4.2.

Likewise, a lower window-size results in higher violations as there

is insufficient data for accurately (re)estimating μ and σ . While

the parameter values can be set by the provider per their needs,

we choose values that maximize the afforded background memory

while resulting in fewer than 30 violations: std-factor = 2 and

window-size = 60s. We use these values for memory regulation in

subsequent evaluations.

Network regulation algorithm sensitivity analysis. We use a

similar black-box approach to choose the parameters for network

regulation. Since the Alibaba traces do not have enough information

to obtain network utilization values, we use network traffic traces

from WITS [60] for our sensitivity analysis. Our analysis suggests

that std-factor = 2 and window-size = 30s work well.

Processor cache regulation algorithmsensitivity analysis. Em-

ploying the same trace-driven approach as above for cache regula-

tion algorithm is infeasible as we require information on how the

foreground IPC will degrade under different algorithm parameters.

Instead, we conduct actual experiments using the CloudSuite work-

loads in foreground and dCopy in background; we do not use Media

streaming workload as it will later be employed as foreground for

evaluating network contention. To preserve the black-box nature

of Scavenger, we will not use the CloudSuite workloads employed

here when evaluating cache regulation in the subsequent evaluation
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(a) Web serving (b) Web search (c) Data serving (d) Data caching

Figure 7: Degradation of foreground IPC (lower is better) colocated

with dCopy under processor regulation.

(a) Web serving (b) Web search (c) Data serving (d) Data caching

Figure 8: Background CPU usage afforded (higher is better) under the

processor regulation algorithm.

subsections; instead, we will use TailBench, which is not employed

for sensitivity analysis.

There are four parameters for cache regulation algorithm (see

Section 4.4): quota-increase, quota-decrease, std-factor, and window-

size. For quota parameters, we use the AIMD (additional increase

multiplicative decrease) approach, inspired by TCP congestion con-

trol [42], for exploring the parameter range. We vary quota-increase

from 1% to 30% of a CPU core, and vary quota-decrease by vari-

ous multiplicative factors. For each pair of quota parameters, we

vary std-factor from 0.5 to 2, and window-size from 5s to 30s. We

use the Lab testbed and employ the CloudSuite workloads in the

foreground on a 1-vCPU VM and run dCopy on a container in the

background on the remaining 3 cores. While we perform several

experiments across all parameter ranges, we briefly highlight our

results below.

We find that quota-increase of 10% CPU core and quota-decrease

of 2 (halving the quota) works well. For this pair of parameter

settings, our sensitivity analysis for std-factor (also referred to as

c) and window-size is shown in Figure 7 and 8, which evaluate

the foreground IPC degradation (lower is better) and background

CPU usage afforded for dCopy (higher is better), respectively; we

report the average numbers based on 3 runs. We see that some

workloads, such as Data caching and Web search, are less sensitive

to parameter variations, whereas others, such as Web serving and

Data serving, are highly sensitive. Recall, from Section 4.4, that we

increase background quota when the foreground IPC is in the (μ ±

c ·σ ) range; thus, a larger value of c affords larger background usage,

but at the expense of foreground IPC degradation (due to increased

colocation). For window-size, the impact is less pronounced and not

monotonic. While tunable per provider’s needs, we set std-factor

= 1 and window-size = 15s to limit the IPC degradation, which is

our black-box proxy for performance degradation.
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(b) KMeans in the background.

Figure 9: Performance degradation of individual TailBench work-

loads in Lab testbed colocated with Spark.

6.2 Evaluation with Spark jobs as the

background batch workload

We now present our evaluation results with Spark jobs running

in the background and the Scavenger algorithms tuned per the

above sensitivity analysis results. Each experiment is typically run

multiple times, with each run lasting for 360s, including a 60s warm-

up period. We compare Scavenger with the case of no background

and the black-box baseline case of cpu core isolation via cpuset. We

do not compare with white-box approaches such as Dirigent [69]

or Bistro [19] since they require SLO and latency monitoring of the

foreground workload.

TailBench workloads as foreground. We start with the case of

TailBench workloads in the foreground. We perform experiments on

both testbeds. For the Lab testbed, we run a TailBench workload on

a 1-vCPU VM and use the remaining 3 cores (via cpuset) to launch

Spark containers; this 1:3 core allocation represents the case of

heavy background usage. Figure 9 shows the average performance

degradation compared to the case of no background, for baseline

(no Scavenger but with cpuset) and Scavenger, based on 10 runs

for each workload. We show results for four workloads that exhibit

sensitivity to colocation; the performance of the other TailBench

workloads was not much impacted by background Spark jobs.

For all cases, we see that, compared to the baseline, Scavenger

significantly reduces the performance degradation of TailBench

due to background Spark jobs, often to less than 10%. The average

foreground degradation under baseline is 283% and 572%, respec-

tively, when colocated with SparkPi and KMeans. If we omit the

highly sensitive moses workload, the average degradation is still

61% and 39%. By contrast, the average degradation under Scavenger

is 12% and 8%, respectively, when using SparkPi and KMeans in

the background. Compared to baseline, Scavenger reduces the per-

formance degradation by 78% and 85%, respectively, when using

SparkPi and KMeans in the background. Note that the baseline here

represents the case of only regulating CPU cores; clearly, such an

approach does not suffice to mitigate cache contention.

In terms of utilization, Scavenger increases average CPU usage

across all workloads, compared to no background, by about 170%

and 198%, respectively, when using SparkPi and KMeans in the

background. Likewise, the memory usage increases by 142% and

230%, respectively. The highest gains in CPU usage, of about 350%,

are for specjbb (in the foreground) while the lowest gains, about 37%,

are for the highly sensitive moses. We further analyze the impact of

the workload’s resource pressure on Scavenger’s ability to improve

utilization in Section 6.3.
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(b) KMeans in the background.

Figure 10:Performance degradation ofmultiple TailBenchworkloads

in Cloud testbed colocated with Spark.

Multiple foreground VMs. We now use the Cloud testbed and

run two foreground TailBench workloads simultaneously on 2-

vCPU and 8-vCPU VMs, one on each socket, illustrating the case

of multiple foreground VMs hosted on the same physical machine.

The remaining 8 cores of socket 0 and 2 cores of socket 1 are used

to host Spark job containers. Of the 8 TailBench workloads, we pick

4 random unique pairs and report our results for these settings,

averaged over 5 runs.

Figure 10 shows the latency degradation results over no back-

ground for baseline and Scavenger. For each set of 4 bars, the first

2 bars refer to the 2-vCPU TailBench VM on socket 0 and the last 2

bars refer to the 8-vCPU TailBench VM on socket 1; the TailBench

workloads are denoted in the x-axis labels (abbreviated in some

cases). Clearly, the foreground latency degradation under baseline

can be quite high, often exceeding 50%. The average degradation

when colocated with KMeans is 56%, and that when colocated with

SparkPi is greater than 100% (due to the very high degradation

for moses). By contrast, the degradation under Scavenger is al-

most always less than 15%, with average degradation of 4.8% when

colocated with SparkPi and 5.6% when colocated with KMeans.

Compared to baseline, Scavenger reduces the foreground latency

degradation by 61.7% and 67.2%, respectively, when the foreground

is colocated with SparkPi and KMeans.

In general, the degradation is much higher for the first TailBench

workload that is hosted on 2 vCPUs and is colocated with an 8-core

Spark job; this is because of the increased resource demand created

by the larger-sized background job. We confirmed this by reversing

the configurations of the TailBench workload pairs in Figure 10;

Scavenger continued to significantly outperform baseline, with

the improvement over baseline ranging from 20.1% to 97.5%. Note

that the results for TailBench degradation are largely consistent

with those from Figure 9; moses continues to be most sensitive to

contention.

In terms of utilization, Scavenger increases average CPU usage

across all cases, compared to no background, by 43% and 34%, re-

spectively, when using SparkPi and KMeans in the background.

The memory usage increases more significantly, by 201% and 321%,

respectively.
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Figure 11: Performance degradation of Media streaming (in Lab

testbed) when colocated with Spark jobs.

Media streaming as foreground. For evaluating the network reg-

ulation of Scavenger, we consider the Media streaming workload

from CloudSuite. All other foreground workloads we consider have

low network bandwidth usage. For background, we consider the

Sorting and FFT Spark workloads from BigDataBench since they

have high network usage. We use the Lab testbed with foreground

running on a 2-vCPU VM and background container running on the

remaining 2 cores of the same socket. When there is no background,

Media streaming consumes network bandwidth in a dynamic man-

ner, with an average usage of about 268Mbps (out of the 1Gbps

available capacity); in isolation, the average transfer time (perfor-

mance metric) for foreground is 530ms.

Figure 11 shows our results, averaged over 3 runs, for differ-

ent background jobs under network regulation. We show results

for baseline (no regulation), Heracles network regulation, static

background limits (via TC [52]), and Scavenger network regula-

tion; for Heracles, we implement the regulation algorithm from the

paper [32], running at the same frequency (1s−1) as Scavenger.

We see that the performance degradation for Media streaming

under no regulation exceeds 15%. Heracles only reduces this degra-

dation to about 12%; this is because Heracles assumes a stable

network usage and thus reserves only a small buffer bandwidth.

However, Media streaming has dynamic network usage, which is

not well handled by Heracles. The static limits approach works

moderately well, but requires (white box) trial-and-error to find the

right limits. By contrast, the dynamic Scavenger algorithm reduces

the degradation to 4.3% in case of Sorting as background and to

5.3% in case of FFT; this represents a more than 3× improvement

over baseline.

In terms of background network usage, baseline and Heracles

afford about 320Mbps and 290Mbps, respectively, for Spark. Under

the static approaches, Spark uses almost the entire set limit (80Mbps

and 160Mbps). Under Scavenger, we afford about 180Mbps (and

32–43% additional CPU usage) for Spark. Given its dynamic nature,

Scavenger outperforms static approaches while affording higher

background usage.

6.3 Limit study with stress microbenchmarks

The impact of colocation on foreground performance depends on

the resource demand created by background jobs. We now conduct

a limit study to evaluate the performance isolation of Scavenger

by colocating stress-test microbenchmarks in the background that

serve as adversarial or “worst-case” workloads as they consume all

available resources and create substantial contention. The objective

here is to assess whether Scavenger can sufficiently regulate the

background workload, even completely throttling the background,

if needed, to minimize the performance impact on the foreground.
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(a) Lab testbed: 1-vCPU foreground VM, 3-core background container.
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(b) Cloud testbed: 4-vCPU foreground VM, 6-core background container.

Figure 12: Performance degradation of foreground TailBench, colocated with dCopy, under processor regulation.

Processor regulationwith dCopy as background. For this limit

study, we only employ the processor cache regulation algorithm to

focus on cache contention.

Figure 12(a) shows the results of our Lab testbed experiments

with TailBench in the foreground on a 1-vCPU VM and dCopy

container in the background on the remaining 3 cores; the last-level

cache is shared and under contention. We report average values and

show standard deviation bars based on 10 runs. The performance

(95%ile latency) is normalized to that of the foreground when run

in isolation (no background). Note that the y-axis is capped to allow

for a meaningful comparison.

Clearly, the baseline (no Scavenger but with cpuset) results in

very high latency for almost all workloads; the numbers are es-

pecially high for moses, sphinx, and img-dnn. The high latencies

under baseline highlight the severe performance impact of our

background adversary workload on the foreground. The median

increase in latency for baseline compared to no background is 193%.

This reaffirms the fact that simply isolating CPU cores will not

suffice to mitigate contention. By contrast, the latency is much

lower with Scavenger; the median increase in latency compared to

no background is about 11%. For img-dnn, Scavenger significantly

improves upon the baseline, but the latency increase is about 60%

compared to no background. This is likely because the IPC for

cache-intensive img-dnn is not as sensitive to cache contention as

its performance, thus the black-box Scavenger is not fully aware

of the degradation. Nonetheless, given that this is a limit study,

the performance degradation numbers are encouraging; without

Scavenger, the baseline numbers are 158% higher, on average.

In terms of utilization, when colocated with the cache-intensive

dCopy, Scavenger increases average CPU usage across all work-

loads, compared to no background, by about 127%. We find that the

CPU usage improvement is lower when the foreground workload

is more sensitive to LLC contention (e.g., moses), highlighting the

difficulty in maintaining acceptable latencies and affording higher

background resource utilization for such workloads. We also re-

peated the above set of experiments by replacing dCopy with the

CPU-intensive stress-ng microbenchmark [51] in the background.

We observed negligible degradation for the foreground workloads,

but a more impressive CPU usage improvement of 285%. In sum-

mary, for the Lab testbed, Scavenger improves the CPU utilization

on average by 127%, 184%, and 285%, when the background work-

load is dCopy (very cache intensive), Spark jobs (moderately cache

intensive), and stress-ng (mildly cache intensive), respectively. This

suggests that Scavenger’s ability to improve utilization is inversely

proportional to the background workload’s resource (cache, in this

case) pressure.

→

Figure 13: Scavenger’s latency reduction over baseline for different

foreground (fg) and background (bg) sizes.

Figure 12(b) shows the results of our Cloud testbed experiments

with TailBench in the foreground on a 4-vCPU VM and dCopy in

the background on 6 cores. As before, the y-axis is capped to ease

the comparison of results. At a high-level, the results are consistent

with those for our Lab testbed, illustrating the versatility of Scav-

enger. However, under baseline, we see very high degradation for

silo and masstree (both of which are memory intensive). We believe

there are two reasons for this high degradation: (i) the load gen-

erators employed in TailBench are open-loop [45], so the backlog

created at the foreground due to resource contention continues to

grow indefinitely; and (ii) the “no background” latencies are quite

small for these workloads (less than a millisecond) and so the rela-

tive latency for baseline is amplified. Omitting these two workloads,

compared to no background, the median increase in latency is about

3674% for baseline, but only about 21% for Scavenger, representing

almost 99% improvement over baseline. However, these latency im-

provements come at the expense of negligible background resource

usage (only about 3–5%), highlighting the fact that Scavenger can

successfully and aggressively regulate background workload to

mitigate its impact on foreground performance.

To evaluate the efficacy of Scavenger for different foreground

and background load, we repeat the above Cloud testbed experi-

ments with different configurations of the TailBench VM and dCopy

container sizes. Figure 13 shows the percentage tail latency reduc-

tion afforded by Scavenger over baseline for 2-vCPU, 4-vCPU, and

8-vCPU foreground TailBench VMs, colocated respectively with

8-core, 6-core, and 2-core dCopy containers. In general, Scavenger’s

benefits are more pronounced when the background load is higher,

since there is greater need for performance isolation in this case.

Nonetheless, in almost all cases, the improvement over baseline

is significant. For moses, silo, sphinx, and img-dnn, the latency re-

duction over baseline is very high under all configurations; this is

because the baseline resulted in severe performance degradation

for these workloads (see Figure 12(b)).

Network bandwidth regulationwith iperf as background. For

this limit study, we only employ the network bandwidth regulation

algorithm. We use the Lab testbed with Media streaming foreground
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running on a 2-vCPU VM and a 2-core background container run-

ning iperf. We report average results based on 3 runs. When using

the default std-factor setting of 2, Media streaming’s transfer-time

increases by about 4.8% as a result of 2 violations (meaning the

foreground required more bandwidth than reserved for it by Scav-

enger). In terms of background bandwidth usage, of the remaining

nearly 700Mbps (Media streaming uses 268Mbps on average), iperf

consumes 115Mbps under Scavenger’s network regulation.

Figure 14 shows the results for std-factor settings of 0.5, 1, 1.5,

and 2, to illustrate the trade-off between foreground performance

and background resource usage afforded by the tunable parameters

of Scavenger. If we are willing to allow more violations, iperf can

use 421Mbps, representing a combined network usage of 68%, as

opposed to just 27% when there is no background.

7 Discussion

Core sharing. One of the design decisions in Scavenger is to pre-

vent core sharing between foreground and background workloads

to provide performance isolation. As noted in Section 4.5, Linux’s

cgroups provides cpu.shares setting to prioritize different processes.

To evaluate the performance impact of using cpu.shares to share

CPU cores between foreground and background workloads, we con-

sider a testbed with multiple servers each of which has 2 sockets

with 4 cores (Intel Xeon L5520, 2.27GHz) and 8MB L3 cache each,

32 GB memory, and 1Gb/s network links. We launch one 4-vCPU

background container and one 2-vCPU foreground VM on each

processor socket. Thus, the foreground VMs share their assigned

physical cores with the containers. We set the cpu.shares value

for the containers as 2 (minimum allowed value) and that for fore-

ground VMs as 262,144 (maximum allowed value), thus completely

prioritizing the foreground over the background.

Figure 15 shows the latency degradation results over no back-

ground for baseline (no Scavenger) and Scavenger, both with core

sharing, averaged over 4 runs. We illustrate the results for four

different scenarios using TailBench workloads for foreground and

Spark in the background: (i) masstree and img-dnn as the two fore-

ground workloads, and SparkPi as the background (on both con-

tainers), (ii) silo and spec-jbb as the two foreground workloads,

and SparkPi as the background; scenarios (iii) and (iv) are same as

above, expect that we run the more cache-intensive KMeans as the

background. We see that, with core sharing, Scavenger does not

provide good performance isolation for the foreground, resulting

in as much as 900% degradation compared to the latency under

no background. By contrast, when we disable core sharing, the

latency degradation is much lower, as shown in Figure 10. In terms

of background resource usage, we find that there is less than 10%

CPU usage increase. These results suggest that core sharing se-

verely impacts foreground performance, thus validating our design

decision to disable core sharing when employing Scavenger.

Tunable parameters. Our experimental results show that Scav-

enger affords different trade-offs between performance isolation

and resource usage improvement depending on the sensitivity of

the foreground and background workloads to resource contention.

The exact trade-offs can be tuned via the algorithm parameters,

such as std-factor, that were intentionally included in the design of

Scavenger.
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Figure 14: Trade-off between foreground violations and background

bandwidth for different std-factor settings. The default std-factor

setting of 2 is shown in red.
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Figure 15:Performance degradation ofmultiple TailBenchworkloads

colocated with Spark, when employing core sharing.

Tolerance for performance degradation. Our results also show

that there are some workloads, such as img-dnn, that are very sen-

sitive to contention. In such cases, if no foreground performance

degradation can be tolerated, provider workloads should not be

run in the background or a more accurate black-box proxy for fore-

ground performance should be sought. As discussed in Section 4.4,

finding such black-box proxy metrics is challenging.

Extension to Cache Allocation Technology (CAT). While we

did not have access to CAT-equipped servers in our testbed, we

believe that the processor regulation algorithm of Scavenger can

benefit such servers as well. Instead of regulating LLC contention

using CPU quota, we can directly employ CAT to dynamically resize

the cache allocation between foreground and background, via our

IPC-based regulation algorithm.

8 Related Work

Improving resource utilization in private clusters: The prob-

lem of resource underutilization has been around since before

shared public clouds. Heracles [32] combines software and hard-

ware isolation mechanisms to run batch jobs next to latency sensi-

tive jobs. Heracles considers dedicated clusters where the provider

is aware of the foreground application and its SLOs, and can bench-

mark the performance of foreground jobs with different levels of

colocation. Since Heracles requires knowledge of foreground SLOs,

it is not applicable in cloud environments where (black box) ten-

ant SLOs are application-specific and not known to the provider.

However, the Heracles’ network sub-controller by itself does not

require SLO information and was thus employed for comparison in

Figure 11.

PARTIES [3] is a recently proposed resource controller that miti-

gates SLO violations between colocated latency-sensitive applica-

tions using software and hardware mechanisms. PARTIES requires

knowledge of the applications’ SLO and current performance in-

formation, making it suitable for cloud environments where such

information is available to the provider; by contrast, Scavenger does

not require such information, making it more broadly applicable.

Borg [59] is Google’s cluster manager that runs Google’s jobs

on their clusters. All job tasks are run in cgroup-based contain-

ers and are assigned priorities based on their functionality. Since
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all tasks are known to Borg, it is aware of their resource require-

ments and priorities. Scavenger has a similar goal of performance

isolation as Borg, but we consider foreground jobs as black-box

tenant VMs. Further, all tenant VMs have to be treated as having

the same (high) priority in our case. Bistro [19] is a job scheduler

that runs data-intensive batch jobs next to online tenant workloads

in Facebook’s production systems. To avoid disrupting foreground

jobs, Bistro manually constrains the resource capacity allocated to

batch jobs based on the known characteristics of the foreground

jobs. However, in cloud environments, the foreground job work-

load (and its characteristics) may change unpredictably, limiting

the applicability of Bistro.

PerfIso [22] is a black-box approach for isolating the CPU in-

terference between foreground and background jobs by reserving

some buffer CPU cores to accommodate the load variations in fore-

ground jobs. However, as acknowledged by the authors, PerfIso does

require a critical one-time performance profiling of the foreground to

determine the extent of load variations that the foreground work-

load will experience, allowing PerfIso to reserve the number of

buffer cores accordingly. Thus, if the foreground workload changes

dynamically, the profiling step may have to be repeated frequently.

Further, as we show throughout our results, isolating CPU cores

alone does not mitigate processor cache contention.

Improving resource utilization in public cloud servers: In

public cloud environments, the foreground (tenant) VMs cannot be

controlled and their resource demands should be met at all times

based on their VM sizes. Zhang et al. [67] rely on historical usage

patterns of CPU and disk usage to predict the required resources

for tenant VMs; the remaining spare compute cycles and storage

space are then leveraged by the provider’s batch workloads. Re-

source Central [6] uses a similar approach to colocate production

and non-production VMs on Azure cloud servers to increase CPU

utilization.

TR-Spark [63] runs Spark on transient VMs, such as spot in-

stances, which can be used by the provider in the background. The

key idea is to introduce checkpointing to allow job progress despite

worker failures by modifying Spark’s Task Scheduler. MOON [28]

provides a similar solution, but for Hadoop jobs. However, TR-Spark

relies on prediction of worker failures, suggesting that changes

in the foreground workload can be predicted. In general, tenant

workloads need not follow specific patterns and may not be pre-

dictable [16]; the performance and revenue loss due to mispredic-

tions can be substantial [8].

Regulating the usage of specific resources: dCat [62] presents

a cache performance isolation approach by exploiting the CAT

technology (cache allocation technology [40]) on Intel’s newer x86

machines to dynamically resize the cache allocation based on the

needs of the workloads. However, dCat can only be used on servers

equipped with CAT. QJUMP [21] addresses in-network interference

by defining priority levels for packets, allowing foreground job pack-

ets to jump-the-queue over background job packets. MIMP [68]

proposes a similar CPU scheduling policy that allows background

Hadoop jobs to run only when foreground VMs are not actively

utilizing the CPU. CPI2 [66] employs statistical approaches to ana-

lyze an application’s Cycles-Per-Instruction (CPI) metric to detect

and mitigate processor interference between threads of different

jobs. The generic idea in CPI2 of analyzing CPI to detect resource

contention is similar to Scavenger’s use of IPC to detect foreground

cache pressure; however, unlike CPI2, Scavenger also leverages

IPC, via a moving window approach, to detect phase changes in

the workload. Tableau [57] is a scheduler for Xen that mitigates

CPU interference among VMs (all foreground) by scheduling them

according to their complementary resource demands. Dirigent [69]

is a white-box solution that profiles the execution of foreground

jobs and uses this profile to yield processor resources when the

foreground is making good progress. PerfGreen [53] uses a similar

idea to leverage idle cores for running batch jobs.

The above works target a specific resource contention. In general,

several resources may simultaneously be under interference [24, 34].

Further, as we show in our results, e.g., Figure 4, managing the

contention for a single resource, such as CPU cores, may not suffice.

Mitigating interference among colocated workloads/VMs:

Bubble-Up [37] presents a resource usage characterization method-

ology that uses a “Bubble” program capable of applying variable

pressure to the memory subsystem of a server. Based on profiling

of the Bubble program when colocated with a foreground applica-

tion, the authors learn how much memory pressure the application

generates. Cuanta [20] presents a similar approach to estimate the

cache usage behavior of applications. Paragon [9] uses collaborative

filtering techniques for quickly classifying an incoming application

based on the performance interference it causes and can tolerate.

In an offline step, a few applications are run across different server

configurations and against multiple microbenchmarks for training.

DIAL [24] also uses profiling to estimate the intensity of interfer-

ence before deciding on load balancing strategies.

The above works require profiling of foreground applications to

infer their resource requirements; however, this may not be feasible

in cloud environments where workloads can change unpredictably.

Consequently, tenant VMs may exhibit dynamic resource usage

patterns which cannot be captured by limited profiling.

9 Conclusion

This paper presents Scavenger, a dynamic, black-box multi-resource

manager that improves resource utilization in cloud servers. Scav-

enger works by colocating batch job containers with black-box

tenant VMs on host servers and dynamically regulating the re-

source usage of batch jobs to meet the resource demands of the

VMs. Importantly, Scavenger does so without instrumenting or

offline profiling the tenant VMs. Experimental results on differ-

ent testbeds show that Scavenger increases server usage without

compromising the resource demands of tenant VMs. In general,

Scavenger’s ability to improve server usage is inversely propor-

tional to the tenant and batch workload’s resource demand. By

regulating the batch workload’s resource consumption, Scavenger

mitigates the latency degradation of tenant workloads in all cases.
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