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Distribution fittin characteristics are found to follow certain probability distributions, then corresponding
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Storage traces stochastic models can be employed to efficiently estimate the performance of workloads.
Hyper-exponential Such approaches have been explored in specific domains using an assortment of distribu-
Performance modeling tions, including the Normal, Weibull, and Exponential. Our primary goal in this work is to
understand and model storage workload performance. However, our analysis and others’
past attempts revealed that none of the commonly-employed distributions provided a
good fit for storage workloads. We analyzed over 250 traces across 5 different workload
families using 20 widely used distributions, including ones seldom used for storage
modeling. We found that the Hyper-exponential distribution with just two phases (H;)
was superior in modeling the storage traces compared to other distributions under five
diverse metrics of accuracy, including metrics that assess the risk of over-fitting. Based
on these results, we developed a Markov-chain-based stochastic model that accurately
estimates the storage system performance across several workload traces. To assess the
applicability of the Hyper-exponential for distribution fitting beyond storage traces, we
evaluated distribution fitting for Internet traffic traces using over 1,600 traces from 3
different sources. We again found that the Hyper-exponential distribution provided a
superior fit compared to other probability distributions. To highlight the applicability of
our model, we conducted what-if analyses to investigate (i) the storage performance
impact of workload variability and garbage collection under various scenarios and
(ii) the impact on service response time of Internet flash crowds.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Analyzing workload traces can provide useful insights into the characteristics of a system, helping to design better
scheduling, caching, or service policies. Trace analysis can also help in the development of performance models that can
enable useful what-if analysis, providing answers to questions such as “how will response time be affected if the arrival
rate doubles?” or “how does workload variability impact performance?” Request-level traces, such as inter-arrival times
(IATs) or service times (STs), are especially useful as they lend themselves to such performance modeling efforts and to
the identification of system bottlenecks.
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A popular approach to analyzing request-level traces is to infer the distribution of events (e.g., distribution fitting), such
as the distribution of IATs [1,2]. By fitting the empirical IATs to known distributions, such as the Normal distribution, one
can leverage the various properties of the distribution to assess the traffic characteristics, such as burstiness and skew.
Some of these distributions enable stochastic modeling of the performance of the system or device. For example, if the
empirical IAT and/or ST traces can be shown to follow an Exponential distribution, then Markov Chain analysis or suitable
queueing models can be developed to estimate the system performance [3-5]. The benefits offered by such distributions
have encouraged many attempts to fit empirical data to these distributions or to simply assume that empirical data follows
such distributions [6-8].

Unfortunately, storage workload characteristics are often too complex or skewed to be accurately modeled by simple
Normal or Exponential distributions. Prior work has shown that storage workloads often exhibit long-tail latencies
[9-13]; specifically, prior studies [2,14] have found, via parametric fitting, that storage traffic IATs and access patterns
are well modeled by the heavy-tailed Generalized Pareto distribution. These observations also extend to other workloads;
for example, the IATs of web requests, grid computing workloads, and supercomputing workloads were found to be well
approximated by the 2-parameter Weibull distribution [ 15-17]. Such complex distributions often have atypical properties
that make them infeasible for practical analysis. For instance, the Pareto distribution can have an infinite variance [18].
Likewise, the generalized extreme value (GEV) distribution [19] and the log-logistic distribution [20], both of which we
found can accurately model storage IAT traces (see Section 5), can have infinite or undefined mean and/or variance. Thus,
distributions that accurately model empirical request-level traces may not be helpful for analyzing storage workloads,
say, for performance modeling, as we demonstrate in Section 6.

The goal of this article is to analyze various request-level traces across multiple workloads and find distributions that
(i) provide high distribution fitting accuracy and (ii) provide practical analytical properties across all traces. To the best of
our knowledge, such practical and large-scale distribution fitting study has not been carried out for request-level storage
traces. While request-level traces for various historical and modern storage systems already exist in the public domain
(e.g., SNIA’s trace repository [21]), prior studies that analyze such traces either did not focus on distribution fitting [22-24]
or did not leverage the distribution fit to enable performance modeling [1,2]; see Section 9 for a detailed discussion of
related work.

The key takeaway of our analysis is that the flexible Hyper-exponential distribution is ideally suited for fitting
and modeling request-level storage traffic. We further validate the superiority of the Hyper-exponential distribution
by considering the fitting of Internet traffic traces; the performance of Internet services is known to be critically
dependent on the variability in their IAT process [25-27]. The Hyper-exponential distribution is a probabilistic mixture of
several exponential distributions, or phases. In general, the Hyper-exponential distribution can model most heavy-tailed
distributions by selecting the appropriate parameters [28]. Importantly, since it is a mixture of Exponential distributions,
it is amenable to stochastic analysis, including queueing-theoretic modeling. Further, because the Hyper-exponential is
expressed in terms of simpler Exponential distributions, it has finite and well-defined (closed-form) mean and variance,
which are easy to compute (see Section 3). The Hyper-exponential thus provides an opportunity to accurately model
request-level traces while retaining the benefits offered by simpler distributions.

For our analysis, we use over 250 publicly available block-layer traces from five different workload families (see
Section 4), and over 1600 Internet traffic traces from three different sources (see Section 7). We used three different
metrics and associated techniques to assess the accuracy of the distribution fit: (i) R* [29], which indicates the goodness
of fit, (ii) the Jensen-Shannon divergence [30], which measures the similarity between two distributions, and (iii) the
likelihood [31], which describes the plausibility of observing the empirical data given the fitted distribution. We also
employed the Akaike and Bayesian information criteria (AIC and BIC) [32,33], that assess over-fitting by evaluating the
quality and simplicity of the fit.

We find that, compared to 19 widely used distributions (including Exponential, Generalized Pareto, Beta, Normal,
Gamma, and Weibull), the Hyper-exponential distribution, with just two phases, provides better accuracy and lower risk
of over-fitting across all traces we considered. For individual trace families, we found that Hyper-exponential is almost
always among the top 3 distributions, and often the top distribution, for any metric of accuracy. While some distributions,
like Burr and Pareto, do provide the best distribution fit in a few cases, their fit was poor in other cases (see Section 5).

To highlight the importance of distribution fitting for workload traces, we developed a stochastic model based on using
the Hyper-exponential distribution fit for IATs and STs that can estimate the performance of the storage system. Our model
relies on the fact that the Hyper-exponential is a mixture of Exponentials, and is thus amenable to Markov chain modeling.
Our resulting model accurately predicts the mean response time for workload traces. The median response time modeling
error for our Hyper-exponential-based model was 17.5%; by contrast, the median error for other distributions was at least
2.7 x larger than our error (see Section 6).

Finally, to illustrate the applications of our distribution fitting based performance model, we conducted three what-if
analyses (Section 8). First, we investigated the impact on response time of an increase in workload traffic and/or increase
in workload variability. We found that, at high arrival rates, doubling the workload variability can increase response time
by as much as 66%. Second, we explored the performance degradation caused by garbage collection (GC), common in SSDs,
as a function of various parameters, including the percentage of time spent in GC and its service rate slowdown. We found
that GC can degrade average performance by as much as 2.8 x even if it runs only 1% of the time. Third, we investigated
the impact of flash crowds on the response time of Internet services. We found that, even if the flash crowd persists for
only one minute, the mean response time within a one hour window can increase by as much as 100x. Without our
performance model, the above analyses would require extensive experimentation, and might even be infeasible.
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2. Background and prior work

To motivate the contributions of this article and provide some context for our work, we next provide a brief overview
of distribution fitting and then discuss related prior works that specifically focus on distribution fitting for storage traces.
We discuss other related works later in Section 9.

2.1. Significance of distribution fitting

Distribution fitting is the process of selecting a statistical distribution that best fits the target empirical data set.
Distribution fitting is a popular tool for analyzing empirical data, with books and journals dedicated to the topic [18,34].
We are specifically interested in Parametric fitting (or inference), where the empirical data is fit to a distribution with a
known structure, but variable parameter values [35].

The key advantage of distribution fitting is that the many properties of the fitted distribution can now be directly
applied to study the empirical data and possibly make predictions of future events. Further, appropriate statistical tests
or hypothesis testing can be used to analyze the characteristics of the data. For example, if the service time (ST) of a
storage workload is shown to follow a Pareto distribution, then the many moments of the distribution, as well as the tail
probability (probability that a request takes longer than x seconds to complete), can be obtained in closed-form without
any significant computational effort [18]. Likewise, if the inter-arrival time (IAT) of requests is shown to follow a Normal
distribution, confidence intervals can be easily obtained for various measures of the data [5].

A more subtle but practical advantage of distribution fitting is the performance models that it enables. For example,
if the request-level characteristics of a storage workload are shown to follow an Exponential distribution, its Markovian
property can be used to track the evolution of the number of requests in the storage system as a continuous time Markov
chain [4]. Likewise, based on the fitted distribution, various queueing-theoretic results can be applied to estimate the
performance (e.g., response time) of the storage system.

Of course, the above advantages can only be realized if an accurate enough distribution fit is found. There are several
techniques that exist in the literature for distribution fitting [18,34]. Typically, there is an associated metric of accuracy
that each technique aims to optimize for when deriving the parameters of a fitted distribution. Rather than using a single
technique or metric, we employ the suggested practice [36,37] of using multiple techniques and metrics to evaluate the
distribution fitting; this avoids bias in results as a distribution may exhibit high accuracy for only one metric. We discuss
our techniques and metrics in Section 5.1.

2.2. Prior work on fitting storage traces

Prior work on distribution fitting for storage workloads is restricted to analyzing traces from a specific source. Gomez
et al. [2] analyzed disk access patterns for HP-UX servers [38] and found that the spatial access pattern is well modeled
by a Pareto distribution. The authors employed parametric fitting to find the Pareto parameters but did not evaluate the
accuracy of the fit. Gracia-Tinedo et al. [ 14] analyzed network traffic for the UbuntuOne cloud storage service and found
that the IATs of some of the operations have long tails and are thus not well approximated by the Exponential distribution.
Instead, the authors visually inspected the IATs and used a Pareto distribution fit. Birke et al. [39] analyzed storage
workloads in an enterprise cloud and found that the VM-level storage capacity is well approximated by an Exponential
distribution.

In general, heavy-tailed distributions have been used to model storage workload characteristics. However, we note
that the above works rarely employ (one or more) statistical tests for evaluating the accuracy of the distribution fit.
Instead, these studies employ simple accuracy fit metrics, such as mean and percentiles of modeling error, to evaluate
the distribution fit. Further, prior work has not explored the performance models enabled by the fitted distribution.

3. Hyper-exponential distribution and related performance models

We now describe the Hyper-exponential distribution, which we find to be an accurate fit for the storage traces we
analyze in Section 5. We then discuss the performance models enabled by the Hyper-exponential distribution, and other
distributions.

The k-phase Hyper-exponential distribution, denoted as H, is a probabilistic mixture of k Exponential distributions.
The k-phase Hyper-exponential has (2k — 1) parameters, and can be expressed as:

Exp(X\1) with probability p;

Hy = Exp(A;) with probability p, (1)

Exp(A) with probability py,
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Fig. 1. Illustration of the probability distribution function (PDF) of various distributions, all with mean 20.

where p; + p, + - -+ + pr = 1. Since the Hyper-exponential is simply a mixture of Exponentials, its moments are finite
ancl:l can be easily expressed in closed form. For example, the mean (first moment) of a k-phase Hyper-exponential is
> i1 Di/hie

'[r% its simplest form, a 2-phase Hyper-exponential, or H,, is a mixture of two Exponential distributions, say Exp(}1)
with probability p and Exp(X,) with probability (1 — p). Since the number of parameters to be estimated for the k-phase
Hyper-exponential distribution scales linearly with k, it is beneficial to use a small value of k for efficient distribution
fitting. In Section 5 we show that the H, with k = 2 is already powerful enough to model the inter-arrival times (IATs)
and service times (STs) of storage traces.

The Hyper-exponential distribution has been used for modeling metrics in other communities, such as modeling the
amount of rainfall in a region [40], modeling the completion time in manufacturing systems [41], modeling the reliability
of software [42], and even the modeling of network traffic [43]. However, to the best of our knowledge, the Hyper-
exponential is not a commonly employed distribution in the storage community and hence has not been applied to model
storage workload characteristics.

3.1. The need for a flexible and heavy-tailed distribution

As discussed in Section 2.2, storage workload characteristics often exhibit heavy-tailed behavior [18]; this is further
evidenced by prior work that focuses on the long-tail latencies of storage workloads [9-13]. The Exponential distribution
has a single parameter and is not heavy-tailed. In fact, a heavy-tailed distribution is often defined as one whose tail
probability is heavier than that of an Exponential [44]. The Pareto and Weibull are heavy-tailed distributions that are
often employed for distribution fitting of empirical data that exhibits long tails. There are several other heavy-tailed
distributions that exist, such as the Lognormal, Burr, Loglogistic, etc.; we evaluated distribution fitting with many of these
in our trace analysis in Section 5. We find that, despite several statistical fitting techniques, the above distributions are
not flexible enough to accurately fit the IATs and STs of storage workload traces obtained from different sources. That
is, while a given heavy-tailed distribution fits a specific trace accurately, it does not fit other traces well. The 2-phase
Hyper-exponential distribution, H,, is flexible (3 parameters) and heavy-tailed. It has been shown that the k-phase Hyper-
exponential can model most heavy-tailed distributions by selecting the appropriate parameters [28]. Like the Exponential
distribution, the Hyper-exponential does have a decaying probability distribution function. We illustrate the probability
density function (PDF) of the Hyper-exponential and other common distributions in Fig. 1; here, we show the PDF for a
2-phase Hyper-exponential, or H,.

3.2. Performance models enabled by the hyper-exponential

Since the Hyper-exponential has more parameters than the Exponential, it is more flexible than the Exponential
distribution. However, the Hyper-exponential retains many of the analytical advantages of the Exponential distribution.
Specifically, the memoryless or Markovian property of the Exponential allows us to model the evolution of events as a
continuous time Markov chain [4]. If the IAT and ST are modeled as Exponentials, then we can model the storage system
using an M/M/1 Markov chain, as shown in Fig. 2. The Markov chain tracks the number of requests in the system as they
dynamically increase due to arrivals and decrease due to service events. By solving for the steady-state probability of the
different states of the chain, we can derive the mean number of requests in the system [5]; the mean number in system
can then be converted to the mean response time via Little’s Law [45]. Fortunately, the Hyper-exponential is also amenable
to Markov chain analysis due to its mixture of Exponential nature. Specifically, each phase of a Hyper-exponential can be
modeled as a state in the Markov chain. However, the resulting chain is quite complex. Consider a workload whose IAT
and ST are modeled as 2-phase Hyper-exponentials:

Exp(X1) W.p. p Exp(p1) w.p. q
IAT = ST =
)

Exp(X2) w.p. (1-p Exp(p2) w.p. (1-q)
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Fig. 2. Illustration of an M/M/1 Markov chain performance model with mean IAT = 1/A and mean ST = 1/u. The Markov chain tracks the number
of requests in the storage system.
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Fig. 3. Illustration of an H,/H,/1 Markov chain with the IAT modeled as an H,(p, A1, A2) and the ST modeled as an Ha(q, i1, i2). We color-code
some of the transitions and only show ST events for simplicity. The state space (i, j, k) refers to the number of requests in system, phase of the ST,
and phase of the IAT, respectively.

Fig. 3 shows the Markov chain for the H,/H,/1 system with the above IAT and ST distributions. Such chains have a
repeating structure and can be solved, either numerically (e.g., using matrix analytic methods [46]) or analytically. Thus,
the Hyper-exponential is a flexible and heavy-tailed distribution that also allows for exact performance models.

For other distributions, such as Pareto or Weibull, exact performance models are not known. However, approximations
are available [47]; we leverage these models and approximations in Section 6 to model the performance of a storage
system with different distribution fits.

4. Description of traces and workloads

For the distribution fitting analysis of storage traces, we consider more than 250 different block-level traces from 5
different sources, including those from Flash-based devices and hard disks. We also consider more than 1600 Internet
traffic traces from 3 different sources, including web access traces and network packet traces. We focus on the following
request-level information in the traces, when available:

o Inter-arrival time (IAT): The IAT is defined as the time between successive requests. When analyzing IAT, we distinguish
between reads and writes to better understand their individual characteristics.

o Service time (ST): The ST is defined as the time taken by the request for processing at the device, and does not include
the queueing/waiting time at the device or at the upper layers. ST is often difficult to obtain as there is some queueing
that happens within the device which cannot be easily tracked due to vendor-specific (proprietary) firmware [48].

e Response time (RT): The RT is the performance metric defined as the time taken by the request to complete service from
when it first arrives at the block layer.

4.1. Florida international university traces

These are an assortment of 3-4 week-long block traces obtained from various HDD-based production systems in the
Department of Computer Science at Florida International University (FIU) by Verma et al. [49]. The home 1-4 workloads
are 4 separate traces of the home directories of 4 different users in FIU’s research group. The mail workload served the
department’s e-mail inboxes. The online workload is a web server hosting the department’s course management system.
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The webmail workload is a web interface to the department’s mail server. The webusers workload served the department
members’ websites. Lastly, the webresearch workload is an Apache server managing around 10 research projects. We
analyzed the read and write IATs separately for each trace to better understand access type specific traffic, resulting in
18 total traces. ST information is not available for these traces.

4.2. Virtual desktop infrastructure (VDI) traces

These are a collection of storage traffic traces from an enterprise virtual desktop infrastructure (VDI), obtained from
Lee et al. [24]. The month-long traces contain I/O information for six different block storage devices (LUNs), with each
device corresponding to one VDI server, which itself hosts about 50 VMs. We analyzed the read and write IATs separately
for each of the 6 devices, resulting in 12 traces. ST information is not provided for these traces.

4.3. Mobile storage subsystem traces

These 31 application-specific block-level I/O traces were collected on a Nexus 5 smartphone when running different
mobile applications, as detailed in Zhou et al. [23]. The storage subsystem is a Flash-based (SanDisk iNAND) eMMC. I/O
information is collected at the block layer and the eMMC driver layer, so we have both IAT and ST traces, and response
times (RT). We analyzed the read and writes IATs and STs separately, resulting in 62 traces each. We leveraged the
response times to validate our performance models in Section 6.

4.4. Microsoft production server storage traces

These historical traces were collected on real production storage servers of Microsoft services, as described in
Kavalanekar et al. [22]. We use the block-level IAT information for the storage metadata servers, separated by access
type (reads and writes), resulting in 72 traces. ST information is not provided for these traces.

4.5. Cloudphysics traces

These week-long block I/O traces were collected by CloudPhysics [50] from production VMware virtual disks in
customer data centers running the VMware ESXi hypervisor [51]. A user-mode application, deployed on each ESXi host,
coordinated with the standard VMware vscsiStats utility [52] to collect complete block I/O traces for the virtual disks.
Although CloudPhysics did not record customers’ specific application usage, they estimated that approximately 10%-15%
were running database applications. We obtain arrival time information from 42 traces and use them for IAT fitting; the
traces did not have ST information.

4.6. Wikipedia access traces

These traces consist of sampled user requests to Wikipedia in all languages, as detailed in Guido et al. [53] and obtained
from WikiBench [54]. These traces contain request arrival times, allowing us to obtain IAT information. We choose the
most recently available subset of traces (for October 2007) in our analysis. This subset spans 21 days, and is divided into
500 subtraces of one hour each. We filter the requests to include only topic page views and exclude edit requests and
image load requests that are indirectly generated from the original requests.

4.7. Stack exchange: Stackoverflow traces

These traces are published by Stack Exchange for all user-contributed content across different websites in their
network, available at the Internet Archive [55]. We use Posts data from Stackoverflow site, the biggest site in terms of
daily traffic. This dataset contains questions and answers posted by site users; we use all available data for the last decade
(January 2010 to November 2019), resulting in 119 monthly subtraces. We consider only question type posts, and obtain
IAT information for each subtrace.

4.8. Waikato internet traffic storage (WITS) traces

These publicly available network traces are published by the WAND network research group [56]; they contain packet
level information captured at the University or ISP level. We use the ISPDSL-II [57] trace family, which contains packet
header information captured from a New Zealand ISP. We focus on the one billion most recent packets, resulting in
1077 subtraces, each containing roughly one minute’s worth of packets. These traces contain only IAT information of the
network packets.



M. Wajahat, A. Yele, T. Estro et al. / Performance Evaluation 142 (2020) 102121 7

Table 1
List of distributions evaluated for fitting, organized by the number of
parameters in the distribution.

1 parameter 2 parameter 3 parameter
Exponential Birnbaum-Saunders Burr
Rayleigh Beta Generalized Extreme Value
Rician Extreme Value Generalized Pareto
Gamma Hyper-exponential (H;)
Half Normal t Location-Scale
Inverse Gaussian
Logistic
Loglogistic
Lognormal
Nakagami
Normal
Weibull

5. Request-level distribution fitting for storage traces

We now present our first contribution, analyzing the distribution fit for storage workload traces. We start with a
description of the distribution fitting methods we employ and then present our results for IAT analysis and ST analysis.
Later, in Section 7, we extend our distribution fitting analysis to Internet traffic traces.

Note that the focus of our study is analyzing the distribution fitting of the traces, and not the analysis of the traces
themselves. The traces we analyze for distribution fitting have been studied before [22-24,58], in other contexts, such as
for deduplication and energy management.

5.1. Methods and metrics for distribution fitting

We consider several widely used distributions for our distribution fitting analysis. The full list of distributions we
consider is listed categorically by the number of parameters in Table 1. To find the parameters of a given distribution
that result in the best fit to the empirical trace, we use three different techniques. Each of these techniques has its own
designated metric of accuracy. We also evaluate the risk of over-fitting by reporting metrics that estimate the model
quality. Using multiple techniques and metrics avoids any bias that a fitted distribution may have to a single metric [36,37].
Our code for distribution fitting using the following techniques is publicly available at GitHub [59].

5.1.1. Least squares optimization to maximize R?

The coefficient of determination, R*> [29], indicates the goodness of fit—that is, the closeness of the empirical data to
the fitted distribution. It is often used as the first step in evaluating a fit. R? typically lies between 0 and 1, with higher
values indicating a better fit, though negative values are possible when the fit is poor. We use the least squares approach
to minimize the sum of the squares of the residuals between the empirical Cumulative Distribution Function (CDF) and
the CDF of the target distribution. Our global optimization heuristically chooses initialization points and then applies the
interior-point method to find the best parameter values [60,61]. At a high-level, the optimization tests the value of the
objective function in the neighborhood of the initialization points, and moves in the direction that best improves the
objective value [62]; eventually, the algorithm converges to the parameter values that result in the best value of the
objective function [63].

It has been shown in prior statistical studies that the R?> metric alone may be insufficient to evaluate the fit [64]; we
thus consider additional metrics as well.

5.1.2. Global search algorithm to minimize divergence

JSD, the Jensen-Shannon divergence [30], is a symmetric and smoothed version of the Kullback-Leibler divergence, and
measures the similarity between two probability distributions. JSD is popular in information theory and coding theory
to measure the relative entropy, or distance, between two distributions [65]. JSD typically lies in the (0, 1) range, with
lower values indicating higher accuracy. We use the global search algorithm [60] to find parameter values that minimize
the JSD between the empirical PDF and the PDF of the target distribution. The algorithm is similar to the one described
above for maximizing R?, and uses a similar framework for initialization and convergence.

5.1.3. Expectation-maximization to maximize likelihood

The likelihood objective function [31], the higher the better, is often used in Bayesian statistics to describe the probability
of observing the empirical data given the target (fitted) distribution [66]. We use the popular expectation-maximization
(EM) algorithm [31] to find the distribution parameters that maximize the expected log likelihood. EM is an iterative
algorithm; we follow the suggested practice of using normally distributed values, with the same mean and variance as
that of the empirical data, to generate our initial guesses [67,68]. The best performing initialization is then chosen.
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Fig. 4. CDF of the R? metric (higher is better) for Hyper-exponential, Exponential, and the best alternative distribution fit for all five storage workload
traces.

5.1.4. Akaike information criterion

AIC [32], the lower the better, is an estimator of the relative quality of statistical models for a given dataset, and is
often used for model selection. AIC estimates the amount of information lost by the model, and deals with the trade-off
between goodness of fit and simplicity of the model by penalizing log likelihood proportional to the number of model
parameters. AIC is reported for the distribution fit obtained via the EM algorithm that maximizes likelihood.

5.1.5. Bayesian information criterion

BIC [33], the lower the better, is similar to AIC but imposes a larger penalty for the number of parameters. BIC can
select the true model with probability close to 1 when the number of data points is high. As both AIC and BIC deal with the
trade-off between goodness of fit and simplicity of the model, they allow us to assess both over-fitting and under-fitting
of distributions to data, and help select the best model.

5.2. Inter-arrival time (IAT) trace analysis

All five storage trace families that we studied - FIU, Microsoft, Mobile, VDI, and CloudPhysics (see Sections 4.1-4.5) —
have IAT information. Figs. 4, 5, and 6, respectively, show the R?, JSD, and log-likelihood metrics for the different trace
families under three distribution fits: (i) Hyper-exponential with two phases (H,), (ii) Exponential, and (iii) the best
alternative distribution (apart from Hyper-exponential and Exponential). We include the Exponential as a baseline as it
enables useful performance modeling of systems and has often been used as the default IAT distribution in performance
studies [6-8].

We see that the Hyper-exponential is always at least as good as the best alternative distribution; the median R? for
Hyper-exponential ranges from 0.93-0.98 for all trace families. By contrast, the Exponential is typically inaccurate, with
the median R? for Exponential ranging from 0.4-0.8 for the different trace families. Note the stark contrast around the
median in the Cumulative Distribution Function (CDF) plots for the Microsoft trace; this is because of the difference in
behavior of reads and writes. We separately analyzed reads and writes and found that the fit accuracy for all distributions
was better for reads than for writes, indicating bursty IAT behavior of write requests; this is expected as most operating
systems batch writes in their page cache and flush them periodically in groups.

Finally, note that the best alternative distribution often changes based on the trace family. Similarly, we observed that
the best alternative distribution for a given trace family changed with the metric of accuracy. We note that the likelihood
value depends on the number of data points, and so likelihood values should not be compared across trace families.

To assess the risk of over-fitting, we now present the AIC and BIC values for the various distribution fits. Figs. 7 and 8
show the AIC and BIC metrics, respectively, for the different trace families; we show results for the H,, Exponential, and
the best alternative distribution. We see that H, provides a superior fit, and typically has the lowest median AIC and BIC
(lower is better). Note that the AIC and BIC results look similar, as they are both based on the log-likelihood metric (see
Sections 5.1.4 and 5.1.5), with slightly different penalty functions for the number of model parameters.
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To better assess the fitting capabilities of the Hyper-exponential, we show the top 3 distribution fits, using the median
accuracy, across each trace family and for all traces in Tables 2 and 4, respectively. We also show the top 3 distribution
fits, using the median AIC and BIC values, across each trace family and for all traces in Tables 3 and 5, respectively. We
see that the Hyper-exponential almost always ranks in the top 3 for any trace family under all 5 accuracy metrics. The
only exception is the R* and JSD metrics under the CloudPhysics traces, for which the Hyper-exponential ranks as the
fifth best distribution fit. For these traces, the median R? and JSD values for Hyper-exponential are 0.938 and 0.184,
respectively, whereas the corresponding median values for the top-ranked distribution are 0.959 (2.2% better) and 0.159
(13.6% better), respectively. One possible reason for the slightly lower R? and JSD values under the CloudPhysics traces for
the Hyper-exponential is that these traces contain virtual machine level IAT information; VMs are naturally more prone
to performance fluctuations due to their virtual nature, and this hurts the distribution fit accuracy [69,70].
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Across all storage traces, the Hyper-exponential resulted in the best fit under JSD and log-likelihood (Table 4), with

the median being 8.7% and 0.8% more accurate, respectively, than the top alternative distribution. For R?, the Hyper-
exponential is a close second, next only to t-location, and only by 1.4%. Finally, the Hyper-exponential also provides the
highest quality fit, with the lowest median AIC and BIC values across all traces we used (Table 5). This shows that the

Hyper-exponential’s superior distribution fit is not a result of over-fitting.
In summary, the Hyper-exponential consistently provides superior distribution fit under diverse accuracy metrics for

all trace families we consider.
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Table 2

Ranking of the top 3 fitted distributions (top-to-bottom) for each storage workload trace
family. Here, LogN, LogL, BSaunders, GPareto, and GEV refer to Lognormal, Loglogistic,
Birnbaum-Saunders, Generalized Pareto, and Generalized Extreme Value, respectively.

FIU Microsoft Mobile
R? JSD LL R? JSD LL R? JSD LL
t-location H, H, H, Burr GPareto H, H, H,
H, GPareto GPareto t-location LogL GEV Burr GEV GPareto
Burr Gamma t-location LogN H, H, LogN Exp GEV
VDI CloudPhysics
R? JSD LL R? JsD LL
H, H, H, GPareto GPareto H,
LogN Burr Exp GEV LogN GPareto
Burr GPareto GPareto t-location BSaunders LogL
Table 3

Ranking of the top 3 fitted distributions (top-to-bottom), according to AIC and BIC, for each storage workload
trace family. Here, LogL, GPareto and GEV refer to Log Logistic, Generalized Pareto, and Generalized Extreme Value,

respectively.

FIU Microsoft Mobile VDI CloudPhysics
AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC
H, H, GPareto GPareto H, H, H, H, H, H,
GPareto GPareto GEV GEV GPareto ~ GPareto  Exp Exp GPareto ~ GPareto
t-location t-location H, H, GEV GEV GPareto GPareto LogL LogL
Table 4
Median R?, JSD, and log-likelihood across all storage work-
load traces for the top 3 distributions in each case, sorted
by accuracy.
(a) R? (higher is better)
Distribution R?
t-location 0.967
Hyper-exponential 0.953
Burr 0.951
(b) JSD (lower is better)
Distribution JSD
Hyper-exponential 0.126
Birnbaum-Saunders 0.138
Generalized Pareto 0.144
(c) Log-likelihood, LL (higher is better)
Distribution LL
Hyper-exponential —740558
Generalized Pareto —746798
Generalized Extreme Value —784925
Table 5
Median AIC and BIC values across all storage workload
traces for the top 3 distributions in each case, sorted by
accuracy.
(a) AIC (lower is better) (b) BIC (lower is better)
Distribution AIC Distribution BIC
Hyper-exponential —3816 Hyper-exponential —3799
Generalized Pareto —3226 Generalized Pareto —3213
t-location —2299 t-location —2283

5.3. Analyzing the distribution fit

Fig. 9 shows examples of distribution fits from each family of storage workload traces. The x-axis is on a log scale,
and the y-axis uses square root scale, a measure that preserves the relative y-axis values per x-axis point and allows us
to visually compare tails of empirical data [71]. We show the histogram for the empirical trace data and overlay it with
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alternative distribution (per log-likelihood).

the probability density function (PDF) of the Hyper-exponential (H; ), Exponential, and the top alternative distribution for
that trace.

Fig. 9(a) represents the case where the H, captures the high PDF region (around 1072) well whereas the other
distributions, including the best alternative distribution for this trace, Generalized Pareto, fail to accurately fit around
this region. Fig. 9(b) represents the case where all distributions perform similarly, but there is a difference at the tail
distribution (right of the graph). On close inspection, we see that the Exponential under-fits and the Loglogistic over-fits
the tail probability; by contrast, the H, accurately fits the tail. Fig. 9(c) represents a worst-case fitting example where
no distribution performs well. However, we clearly see that the H, has two distinct centers of high PDF (around 103
and 10?%) that provide good coverage of the empirical data. By contrast, the other distributions concentrate around a
single IAT range; Fig. 9(e) shows a similar example for a CloudPhysics trace. Finally, Fig. 9(d) shows another non-trivial
example where the H, is able to fit the center of the PDF (around 1073) as well as the tail (around 10°), whereas the
other distributions only fit the center.

These examples illustrate the flexible and heavy-tailed nature of H,, which is important for accurately fitting the
different types of storage traces, as we alluded to in Section 3.1.

5.4. Sensitivity analysis for number of phases of the hyper-exponential

While we only make use of the 2-phase Hyper-exponential in the above analysis, the Hyper-exponential can be
extended to include more phases (more Exponentials within the mixture distribution), though at the expense of increased
computational complexity. Fig. 10(a) shows the accuracy for all five metrics as a function of the number of phases, k, of
the k-phase Hyper-exponential. These results are for the home3 subtrace from the FIU trace family; results are similar for
other traces. Note that k = 1 refers to the Exponential distribution. We see that accuracy increases as we go from the
Exponential to the 2-phase Hyper-exponential, but then largely stabilizes beyond k = 2; note that for AIC and BIC, lower
values are better. For JSD, whose range of values is small and thus not distinguishable in the figure, the value drops from
0.0061 for k = 1 to 0.0058 for k = 2 (smaller ]JSD is better), and then largely remains unchanged.

Fig. 10(b) shows the time taken for the distribution fitting for different k values. We see that the computation time
scales with the number of phases, as expected. Note that the LL, AIC, and BIC data points overlap as the same (EM)
algorithm is employed for their fits (see Section 5.1). We did not specifically optimize the code for computation time as
that is not the focus of this work; however, we used the same code for all phases to enable a fair comparison. In summary,
k = 2 provides a good trade-off between high accuracy and low computation time, thus representing a good choice for
the Hyper-exponential distribution fitting.

5.5. Service time (ST) trace analysis

We performed a similar distribution fitting for service times (ST). Only one of the trace families we studied, mobile
storage traces, had ST information. Our ST analysis results are similar to IAT analysis, so we briefly highlight the results.
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We again find that H, consistently provides a superior fit for service time under all accuracy metrics. We also
find that the top alternative distribution changes with the accuracy metric. For R?, JSD, and log-likelihood, the best
alternative distribution was Lognormal, Birnbaum-Saunders, and Burr, respectively. The Exponential and Generalized
Pareto distributions did not provide a good fit for ST.

6. Performance modeling evaluation

We now present our performance modeling study that demonstrates the applicability of the Hyper-exponential
distribution fit to predict the mean response time for the modeled storage workload. We first describe the performance
models we use, and then present our modeling results.

6.1. Methodology

As discussed in Section 3.2, both the Exponential and Hyper-exponential distributions enable Markov chain models.
These, in turn, can be solved analytically or numerically to find the mean response time; for other distributions, only
approximate results are available.

6.1.1. Hyper-exponential-based model (Hy/H,/1)

When the IAT and ST are distributed as 2-phase Hyper-exponentials, the resulting queueing model is referred to as a
H,/H,/1 queue [5]. For this queue, closed-form analytical expressions for mean response time can be obtained [72]. The
analysis involves tracking the queue length in the Markov chain (see Fig. 3) given the input (IAT) and output (ST) processes,
resulting in a degree 3 polynomial that can be solved to derive the mean queueing time, E[W1]; here, E[X] denotes the
expectation or mean of the random variable X. Adding the mean ST to the mean queueing time gives the mean response
time of the system, [T] = E[W] + E[ST]. Using the above approach, the mean response time for the H,/H,/1 model can
be obtained in less than one millisecond with negligible CPU and memory overhead.

6.1.2. Exponential-based model (M/M /1)
When the IAT and ST are distributed as Exponentials, we can model the resulting M/M/1 system [4] as a simple
Markov chain (see Fig. 2) that can be easily solved to obtain the mean response time as E[T] = 1/(E[ST]~! — E[IAT]™").

6.1.3. Models for other distributions (G/G/1)

For general IAT and ST distributions, the queueing model is referred to as the G/G/1 queue [4]. For G/G/1, exact
results are not known, and Markov chain modeling is not applicable for distributions other than the Exponential and
Hyper-exponential. However, the Kingman’s approximation [47] is widely used to estimate the mean waiting time of
G/G/1 as

2
E[T] ~ E[ST] + E[ST] . (Var[IAT] Var[ST])

2(E[IAT] — E[ST]) E[IAT]? E[ST]?

where Var[X] denotes the variance of the random variable X. Note that given the parameters of the IAT and ST distribution
fit, their mean and variance can be easily computed.
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Fig. 12. Response time modeling error for the Hyper-exponential, Exponential, and other top alternative distribution fits for all mobile storage traces.

6.2. Response time modeling results

We consider the mobile storage subsystem traces (see Section 4.3), which contain IAT, ST, and response time (RT)
information for 31 traces. Note that the other trace families we consider in this article do not contain service time (ST) or
response time (RT) information, so we do not evaluate the performance model on those traces. Zhou et al. [23] reported
that the observed response time for their mobile traces is typically 2 x the service time, suggesting that there is significant
delay in the system. This motivated our response time modeling efforts for these traces. Since the scheduler used for the
Flash-based mobile storage subsystem does not maintain different service queues for reads and writes [23], we model
the IATs and STs for both request access types together.

Fig. 11 shows the CDF of the mean response time modeling error for the 31 mobile storage traces. We show modeling
error results for the case of Hyper-exponential and Exponential based distribution fits of IATs and STs, using the H,/H,/1
and M/M/1 queueing models, respectively. Additionally, we show results for the two other top alternative distribution
fits (ordered by median accuracy), whose response time is modeled by the G/G/1 approximation. We note that while the
General Extreme Value, t-location, Burr, and the Loglogistic distribution also resulted in high median accuracy for the IAT
and ST distribution fits, their fitted parameters resulted in infinite mean and/or variance. Clearly, this would result in a
poor approximation and so we omit these distributions.

We see that the Hyper-exponential-based modeling error for mean response time is significantly lower than the other
distributions in Fig. 11. The median error for the Hyper-exponential, Exponential, Generalized Pareto, and Lognormal
based response time modeling is 17.5%, 48.8%, 87.8%, and 361.2%, respectively. The corresponding mean error numbers
are 19.8%, 52.1%, 96.9%, and 672.2%, respectively; the mean error is higher than the median error due to the much higher
error values for a few traces. The high error numbers for the Generalized Pareto and Lognormal based modeling should
be expected since the response time model is only an approximation for these cases. Note that an error > 100% indicates
that the predicted response time is at least twice the actual response time. Across all traces, the H,/H,/1 model reduces
the relative modeling error by about 64% when compared to the M/M/1 model.

Fig. 12 shows the per-trace response time modeling errors for all 31 mobile storage traces. In most cases, the Hyper-
exponential-based H,/H,/1 model results in low error; the modeling error is less than 20% for 24 of the 31 traces and less
than 25% for 27 of the 31 traces. We inspected the remaining 4 traces (DtoH, idle, callln, and youtube) and found that for
most of these, the number of entries in the trace was small. It is likely that the smaller sample size in these traces resulted
in poor accuracy for our modeling approach. It should be noted that the modeling error for these 4 traces using the other
distributions in Fig. 12 is also high. Although our approach does not have a minimum sample size requirement for the
trace, in general, the more data points we have, the better is our modeling accuracy. In our evaluation, a minimum trace
length of 3000 provided good modeling accuracy. Of the four traces that had high modeling error, two of them, namely
callln and youtube, had fewer than 3000 data points; specifically, they had 1490 and 2079 data points, respectively.
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Compared to the M/M /1 model, our H,/H,/1 model provides better modeling accuracy for 27 of the 31 traces, lowering
the modeling error by about 76% for these traces. For the remaining 4 traces, the M /M /1 results in about 7% lower relative
error. Note that the H,/H,/1 is significantly better than the Generalized Pareto and Lognormal based models for almost

all traces.

7. Distribution fitting for internet traces

We now explore the applicability of the Hyper-exponential for distribution fitting beyond storage traces. Specifically,
we evaluate distribution fitting for the three Internet traffic trace families - Wikipedia, Stackoverflow, and WITS -
described in Sections 4.6-4.8. We use the same methods and metrics for fitting as described in Section 5.

All Internet trace families that we studied have IAT information. Figs. 13, 14, 15, 16, and 17, respectively, show the R?,
JSD, log-likelihood, AIC, and BIC metrics for the different Internet trace families under three distribution fits: (i) Hyper-
exponential with two phases (H;), (ii) Exponential, and (iii) the best alternative distribution (apart from Hyper-exponential
and Exponential). We see that the Hyper-exponential almost always provides a superior fit. The median metric value
achieved for the H,, as observed in each figure, is always superior when compared to the other distributions, except for
the R?> metric under the Wikipedia trace (Fig. 13(a)) where the median value is slightly lower than that of Burr, but is still
quite competitive (median R? greater than 0.985). Note that the R? value for Hyper-exponential under the Stackoverflow
and WITS traces (Figs. 13(b) and 13(c)) is almost always close to 1 for all subtraces. As with the storage workload traces,
the best alternative distribution often changes based on the trace family and based on the metric of accuracy.
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Table 6

(a) Wikipedia.

traces.

Ranking of the top 3 fitted distributions (top-to-bottom) for each Internet traffic trace family. Here, LogL, BSaunders,
GPareto, and GEV refer to Loglogistic, Birnbaum-Saunders, Generalized Pareto, and Generalized Extreme Value,

respectively.
Wikipedia Stackoverflow WITS
R? JSD LL R? JSD LL R? JSD LL
Burr H, GEV H, Burr GPareto H, H, H,
Weibull Exponential H, Burr H, H, Gamma BSaunders GPareto
Gamma Weibull GPareto GPareto LogL Burr Nakagami Exponential Weibull
Table 7

Ranking of the top 3 fitted distributions (top-to-bottom), according to AIC and BIC, for each Internet
traffic trace family. Here, GPareto and GEV refer to Generalized Pareto, and Generalized Extreme Value,

respectively.

Wikipedia Stackoverflow WITS
AIC BIC AIC BIC AIC BIC
GEV GEV GPareto GPareto H, H,
H, H, H, H, GPareto GPareto
GPareto GPareto Burr Burr Weibull Weibull

To better assess the fitting capabilities of the Hyper-exponential, we show the top 3 distribution fits, using the median
accuracy, across each trace family and for all traces in Tables 6 and 8, respectively. We also show the top 3 distribution
fits, using the median AIC and BIC values, across each trace family and for all traces in Tables 7 and 9, respectively. We see
that the Hyper-exponential always ranks in the top 3 for any trace family under all 5 accuracy metrics, except for the R?
metric under Wikipedia. Importantly, when considering the median metric values for the distribution fit across all traces,
the Hyper-exponential always ranks at the top for all five metrics (Tables 8 and 9).

In summary, the Hyper-exponential consistently provides superior distribution fit under diverse accuracy metrics for
all Internet traffic trace families we consider. The results in this section also show that the Hyper-exponential’s superior
distribution fit properties (illustrated by some example fits in Fig. 18) extend beyond the storage workload traces.
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Table 8
Median R?, JSD, and log-likelihood across all Internet traffic
traces for the top 3 distributions in each case, sorted by

accuracy.
(a) R? (higher is better) (b) JSD (lower is better)
Distribution R? Distribution JSD
Hyper-exponential 0.9982 Hyper-exponential 0.0299
Gamma 0.9975 Exponential 0.0432
Nakagami 0.9968 Birnbaum-Saunders 0.0434
(c) Log-likelihood, LL (higher is better)
Distribution LL
Hyper-exponential —4687689
Generalized Pareto —4759002
Weibull —4775405
Table 9

Median AIC and BIC values across all Internet traffic traces
for the top 3 distributions in each case, sorted by accuracy.

(a) AIC (lower is better) (b) BIC (lower is better)
Distribution AIC Distribution BIC
Hyper-exponential 9375384 Hyper-exponential 9375420
Generalized Pareto 9518010 Generalized Pareto 9518046
Weibull 9550813 Weibull 9550837
500
1
T [ JEmpirical T 100 [ JEmpirical 400 —E?ppe‘:f:,lj
% = Hyperexp % = Hyperexp
E E (iT’pareto 300
o o
2 g %0 200
<4 <]
g g 100
jou jou
193 %) o
0 5 0
0 0.5 1 15 2 0 1 2 0 1 2 3
Log,, (Interarrival Time) — Log,, (Interarrival Time) — Log10 (Interarrival Time) —
(a) Wikipedia. (b) Stackoverflow. (c) WITS.

Fig. 18. Results of distribution fit for a sample trace from each Internet traffic trace family for Hyper-exponential, Exponential, and the best alternative
distribution (per log-likelihood).

8. Modeling use case: What-if analysis

An immediate and interesting use case for any system modeling approach is what-if analysis. We now present three
such what-if analyses enabled by the H,/H,/1 performance models we presented in Section 6.1.1, covering both storage
systems and Internet services.

8.1. Impact of request arrivals on response time

Our first use case analyzes the impact of change in arrival rate of requests (inverse of inter-arrival time, 1/E[IAT])
on response time. Without loss of generality, we consider the first subtrace shown in Fig. 12, namely, the msg subtrace
from the mobile storage traces. We use the H,/H,/1 model, whose Markov chain is shown in Fig. 3, to obtain the mean
response time estimates. Note, from Fig. 12, that the H,/H,/1 model provides an accurate response time estimation for
the msg subtrace. As discussed in Section 6.1.1, the input to this model is the IAT and ST parameters of the subtrace. We
use the IAT and ST Hyper-exponential distribution fit parameters for the msg subtrace from Section 5 as inputs for our
modeling and what-if analyses in this section.

The black line in Fig. 20(a) shows the results of our analysis; the cross marker on the line corresponds to the arrival
rate observed in the msg subtrace (about 330 req/s). As the arrival rate increases, the mean response time increases, as
expected. When the request rate doubles to 660 req/s, the mean response time increases from about 1.9 ms to 2.7 ms.

We also analyzed the impact of variability in inter-arrival time (IAT). A less variable IAT indicates that the request
arrivals are more evenly spaced whereas a more variable IAT indicates that the request arrivals are more unevenly
spaced (e.g., more temporally batched or bursty requests). We used the squared coefficient of variation of IAT, CZ,, to

IAT
parameterize variability. Cﬁar is the normalized variability of IAT, and is mathematically defined as the variability in IAT
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Fig. 19. Illustration of our modified H,/H,/1 Markov chain that models the impact of garbage collection (GC) on storage system performance. For
ease of presentation, we highlight specific only transitions and transition rates in the figure.

divided by the square of the mean IAT. For the msg subtrace, C3; ~ 4. Note that CZ; has no units: larger C7; values imply
higher IAT variability. For a fixed IAT or request rate, a doubling of C,fﬂ implies a doubling of the IAT variability.

The red, black, and blue lines in Fig. 20(a) show the impact on mean response time under quT =8, CIiT = 4, and
C,f” = 2, respectively. We modeled the different IAT variabilities by changing the probability parameter (p) of the IAT
hyper-exponential distribution (see Eq. 3.2). We see that IAT variability significantly impacts response time, especially at
high arrival rate. When Cﬁ\r doubles from 2 to 4, mean response time increases by 29% on average, and by up to 53%, for
the arrival rate range considered in Fig. 20(a). Likewise, as C,iT doubles from 4 to 8, mean response time increases by 33%
on average, and by up to 66% at high arrival rates.

8.2. Impact of garbage collection’s service rate slowdown on response time

We analyzed a more complex use case using our performance models: the impact of performance degradation events,
such as garbage collection (GC) on response time. To analyze this use case, we extended our H,/H,/1 Markov chain model
for the msg subtrace to include an additional regime where the service rate of the storage device (inverse of mean service
time, 1/E[ST]) is reduced to represent the degraded service rate under GC; the service rate slowdown under GC is a model
parameter that we vary. We also vary the percentage of time spent in GC, with the frequency of GC set to once every
minute (configurable).

Fig. 19 shows our modified H,/H,/1 Markov chain; for ease of presentation, we show only specific transitions in the
figure. Essentially, this modified Markov chain additionally includes a replica of the chain in Fig. 3 with lower service rates
(1 x slowdown and u, x slowdown), representing the state space under GC. In Fig. 19, the states with a dotted boundary
represent the replica states when the system is under GC, with service rates lowered by a multiplicative slowdown factor
of s < 1. The state space is now a quadruple, (i, j, k, I), with the last element denoting whether the system is under GC
(I = 2)ornot (I = 1). Transitions are added from every state in the original chain to the corresponding state in the replica
chain, with the transition rate determined by the GC frequency. In Fig. 19, we denote the rate of transition of the system
to GC b31/ acc, and the rate of return to “normal” conditions (no GC) by ay. The fraction of time spent in GC is then given
by =

This extended model is more complex than the H,/H,/1 model in Fig. 3, and has not been analyzed before, to the best
of our knowledge. Although this extended model has an infinite state space, the repeating structure of the underlying
Markov chain still allows us to obtain the mean response time numerically as a function of the various parameters, using
matrix analytic methods [46]—and in less than one second with a small memory footprint (a couple MBs). Note that
our model is only an approximation, because real-world SSDs typically have proprietary firmware whose behavior and
parameters are largely unknown [48]; nevertheless, to provide useful results, we explored all model parameters over a
range of possible values. (More precise models can be constructed using parameters obtained from the GC bounds of a
specific storage device under a given workload.)

Fig. 20(b) shows the results of our analysis; note the log scale on the y-axis. Here, the arrival rate is the same as that
observed in the msg subtrace (330 req/s). The range of parameters (percentage time spent in GC and GC slowdown) in
the figure was chosen based on numbers reported in prior studies on GC [73,74]. We see that the service rate slowdown
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Fig. 20. Results of our what-if analysis. Figure (a) shows the impact of arrival rate on response time under different inter-arrival time (IAT)
variabilities. Figure (b) shows the impact of time spent in garbage collection (GC) on response time for different GC service rate slowdowns.
Figure (c) shows the impact of intensity of flash crowds on response time for different flash crowd durations.

significantly impacts response time, even when the fraction of time spent in GC is quite small. For example, even if we
spend only 5% of the time in GC, the mean response time increases to 2 ms, 4.4 ms, and 40.9 ms, under 2 x, 10x, and 100x
service rate slowdown, respectively. By contrast, without GC, the response time is about 1.8 ms. We also tried other GC
frequencies, once every 6s and once every 600 s, and found the results (and trends) to be qualitatively similar. In general,
our above models can also be employed for analyzing other use cases, such as the impact of device aging (by considering
multiple service rate slowdown regimes) or the impact of newer hardware (faster service rate) on response time.

8.3. Impact of flash crowds on response time

Our last use case analyzes the impact of flash crowds, a common occurrence for Internet services [25,75], on the
response time of requests. We model flash crowds by extending our H,/H,/1 Markov chain model to include an additional
regime where the arrival rate of requests is increased (by a multiplicative factor, surge) to represent the surge in traffic;
the time spent in this regime and the increased request rate are configurable model parameters that we vary. The resulting
Markov chain is similar to the one illustrated in Fig. 19, but this time there is no slowdown in service rate in the replica
chain (dotted states); instead, there is an increase in request rate for this regime (from A; to A; x surge and from A, to
Ay X surge).

Again, this extended model is more complex than the H,/H,/1 model in Fig. 3, and has not been analyzed before, to the
best of our knowledge. We employ matrix analytic methods [46] to efficiently obtain the mean response time numerically
for this model. Although only an approximation, we believe that the results obtained from this model provide us with
expected trends in performance as the intensity and duration of the flash crowd changes.

We consider a Wikipedia access trace (specifically, trace 1191201596, for which the Hyper-exponential distribution
resulted in the best fit) and employ its H; fit model parameters for the H,/H,/1 Markov chain IAT distribution. For this
trace, CIiT = 2.8 with mean request rate of 263 req/s. For modeling the H, ST, we scale the IAT parameters to obtain a load
(or system utilization) of 20%, consistent with the low utilization values experienced by Internet host servers [76-78]. To
model a flash crowd, we scale the A; and A, values for the IAT, as explained above, while keeping all other parameters
constant.

Fig. 20(c) shows the results of our analysis. We vary the flash crowd surge factor from 1-20, based on flash crowd peak
sizes reported by prior work [75,79]. We consider three different flash crowd durations, with flash crowd frequency of
once per hour: 1, 2, and 3 min; these values are based on flash crowd durations reported by prior empirical work [80,81].
When there is no flash crowd (corresponding to an x-value of 1), the mean response time is about 0.6 ms. For a 5x larger
flash crowd, the response time increases to about 3 ms. For a 20x larger flash crowd, the response time substantially
increases to about 59 ms, 201 ms, and 411 ms, for flash crowd durations of 1, 2, and 3 min, respectively; this corresponds
to a response time increase (relative to no flash crowds) of almost 100x, 335x, and 685x, respectively. Clearly, the
response time suffers significantly as the flash crowd duration increases.

The above three use cases highlight the benefits of our distribution fitting based performance modeling approach.
Without such models, the above what-if analysis would require extensive experimentation and might even be infeasible.

9. Related work
9.1. Analyzing disk access patterns

Storage workloads have been the focus of analysis since at least as far back as the 1980s when disk access patterns
were studied. Ruemmler and Wilkes [38] presented an analysis of disk access patterns on three HP-UX systems collected

in 1992. Their analysis focused on the volume of read versus write traffic, and the nature of the traffic, such as sequential,
synchronous, swap traffic, etc. A similar study was later conducted by Keeton et al. [82] for disk block traces from a mail
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server and a database server in 2000. While both papers analyze skew in I/O load across devices, distribution fitting of the
1/0O traffic is not considered. Gomez and Santonja [2] later analyzed and specifically modeled the disk access patterns for
the traces provided by Ruemmler and Wilkes. They found that the spatial access pattern is well modeled as a heavy-tailed
Pareto distribution; however, the fitted parameters do result in infinite variance.

Verma et al. [49] analyzed block-level I/O traces from various servers at FIU’s Computer Science department. The
analysis focused on the usage of working sets, variability in workload intensity, and read-idle time distribution. The
authors observed that data usage was highly skewed, but did not consider distribution fitting.

9.2. Analyzing request-level storage traces

Kavalanekar et al. [22] analyzed the characteristics of storage workload traces from production servers at Microsoft. The
analysis focused on block-level statistics, file access frequencies, and temporal and spatial self-similarity. IAT (inter-arrival
time) analysis was also conducted, focusing on the visualization of the IAT histograms and the overall rate of requests,
but not on distribution fitting.

Gracia-Tinedo et al. [ 14] analyzed user-level storage workloads for the personal cloud service, UbuntuOne. The analysis
shows that some of the inter-operation times, such as those for Upload, are not well approximated by the Exponential
distribution and are better approximated by the Pareto distribution.

Zhou et al. [23] analyzed block-level I/O traces from common applications, such as email and YouTube, on a Nexus 5
smartphone equipped with a Flash-based eMMC (embedded multimedia card) device. The analysis focused on the size of
the requests (or service times, STs) received by the eMMc device and their access type (read versus write). IATs of the
traces are also considered, but the analysis is restricted to mean IAT and the extent of batching among requests.

In our analysis here we considered several of the above traces (that are publicly available on SNIA’s repository [21]),
but focused on the distribution fitting of their IAT and ST traces, separated by reads and writes. By finding an accurate
distribution fit, we enabled queueing-based performance models that can accurately predict the response time for
requests.

9.3. Analyzing the aggregate storage volume of workloads

Leung et al. [83] analyzed the traffic for two enterprise file servers deployed at NetApp. The paper analyzes various
characteristics of file I/O traffic such as volume, lifetimes, access frequency, etc. The authors do find that several of the
characteristics are heavy-tailed, but do not identify a specific distribution fit. Birke et al. [39] analyzed storage workloads
on VMs in an enterprise private cloud and found that the VM-level storage capacity and used storage volume can be well
approximated by an Exponential distribution. Mei et al. [84] analyzed and modeled a few traces from MSR and found that
the spatio-temporal behavior is well modeled as a Gaussian.

Seo et al. [85] presented a data-mining and clustering approach to classify and thus characterize /O workloads using
previously published deduplication traces [21,58]. While classification is a useful characterization of workloads, the
classified workloads and clusters are not intuitive and require further analysis. For instance, while the authors do use
the mean IAT as a feature, the clustering results do not provide any information about the IAT distribution within the
cluster.

9.4. Analyzing the network traffic of storage workloads

Lee et al. [24] analyzed storage traffic on servers that host commercial virtual desktop infrastructure (VDI) VMs. The
analysis is focused on the traffic volume and burstiness of specific applications on these VDI servers. A similar analysis
was conducted on a smaller set of traces by Shamma et al. [86]. Drago et al. [87] analyzed the network traffic to Dropbox
from home networks and found that a small number of users are responsible for most of the traffic.

9.5. Analyzing file system characteristics

Prior work has also focused on analyzing file system characteristics, such as file size, file count, directory count, etc.
For example, the file size distribution was found to be well modeled by a Lognormal [88], Lambda [89] (similar to Normal
and Logistic), or Bimodal [90,91] distribution, depending on the source of the trace. A recent work, Impressions [92],
focused on generating realistic file system images with associated metadata to facilitate performance benchmarking of
file systems. Our focus in this article is on request-level modeling for IAT and ST (service time). ST is the time required to
service a request on a device, and is thus different from file size.

9.6. Other storage analysis works
There are several other storage analysis studies that focus on other metrics such as device failures [93,94], data

corruption [95], data deduplication, etc. These are orthogonal to our article: we focus specifically on request-level
distribution fitting and performance modeling.
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10. Conclusions

Storage workload modeling is critical to optimizing storage systems—often the slowest component of any system. Good
models depend on an accurate characterization of inter-arrival times and service requirements. Many distributions exist
that have been found to accurately model behavior in other domains, but not for storage systems—in part because storage
systems exhibit multi-modalities and long tails [48,96]. And some distributions that do fit storage systems, however, do
not provide analytical properties that can be used to, say, build an accurate and efficient performance model for storage
systems. This article makes the following contributions:

1. We undertook a detailed study of distribution fitting for storage workloads, using over 250 traces from five different
sources, and evaluated their fitness using 20 different probability distributions under 5 diverse accuracy metrics.

2. We discovered that the seldom used Hyper-exponential distribution provided the best fit based on all five metrics of
accuracy. Moreover, we found that only two phases were needed to make this distribution fit well: more phases did
not improve accuracy by much, and took longer to fit compared to other distributions.

3. This Hyper-exponential distribution with two terms (H;) is amenable to performance modeling. We built such a model
and evaluated it in predicting storage performance. Whereas the few other distributions (e.g., Exponential) that do
enable modeling resulted in at least 48% median modeling error, and as high as 361% error, H,'s median error was
under 18%.

4. To assess the applicability of the Hyper-exponential for distribution fitting beyond storage traces, we evaluated
distribution fitting for Internet traffic traces using over 1600 traces from 3 different sources. We again found that
the Hyper-exponential distribution provided a superior fit compared to other probability distributions.

5. We employed and extended our Hyper-exponential-based performance model to conduct three different what-if
analyses. First, we highlighted the severe impact of workload variability on response time. Second, we investigated
the performance impact of different parameters of garbage collection; we found that even if garbage collection is only
active for a fraction of time, performance can degrade by as much 20x. Third, we investigated the impact of flash
crowds on the response time of internet services; we found that flash crowds lasting only a couple of minutes can
increase response time by as much as 335 x.

In the near term we plan to collect a larger and longer-term set of traces to analyze. For example, We are interested in
how H,’s parameters may change over time as, say, the workloads change. In general, we expect to redo the distribution
fitting only in response to a significant change in the workload, and not just a change in the mean arrival rate; such
significant changes in the workload can be detected by existing techniques, such as change point detection [97,98].

There is a shortage of traces with timing information from inside devices. We plan to purchase, instrument, and
capture traces with internal device service times (e.g., using Open-Channel SSDs from CNEX Labs). Such data sets will
be invaluable when released and for our future performance modeling efforts. Our long-term goal is to develop an I/O
scheduler for the Linux kernel that leverages our H,-based performance model, prove its efficacy, and release it publicly.
Scheduling 1/Os and predicting performance for just a single device is challenging. Our longer term plans therefore include
evaluating the Hyper-exponential distribution for more complex environments such as multi-tier and hybrid storage,
virtualized storage, RAID, LVM—especially where devices of very different properties may be used (e.g., NVMe+SSD+SMR).
We will start by developing H, models for each device because there is no known theory currently for developing a single
unified model for a composite system. However, queueing theory suggests that, with some limitations, it may be possible
to mathematically compose certain individual models (including Hyper-exponential-based models) into a single unified
performance model [99-101].
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